metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(1,10-phenanthroline-κ2N,N′)(DL-threoninato-κ2N,O1)copper(II) chloride dihydrate

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 6 April 2010; accepted 26 April 2010; online 30 April 2010)

The asymmetric unit of the title compound, [Cu(C4H8NO3)(C12H8N2)(H2O)]Cl·2H2O, contains a complex cation, a chloride anion and two water mol­ecules. The CuII ion has a distorted square-pyramidal coordination geometry formed by one bidentate phenanthroline ligand, one O,N-bidentate DL-threoninate ligand and one apical water mol­ecule. In the crystal structure, inter­molecular O—H⋯O, N—H⋯O, N—H⋯Cl and O—H⋯Cl hydrogen bonds link the components into layers. A single weak inter­molecular C—H⋯O inter­action connects these layers into a three-dimensional network.

Related literature

For background to the inter­actions of transition-metal complexes with DNA, see: Vaidyanathan & Nair (2003[Vaidyanathan, V. G. & Nair, B. U. (2003). J. Inorg. Biochem. 93, 271-276.]); Rao et al. (2007[Rao, R., Patra, A. K. & Chetana, P. R. (2007). Polyhedron, 26, 5331-5338.], 2008[Rao, R., Patra, A. K. & Chetana, P. R. (2008). Polyhedron, 27, 1343-1352.]); Kumar & Arunachalam (2007[Kumar, R. S. & Arunachalam, S. (2007). Polyhedron, 26, 3255-3262.]); Patel et al. (2006[Patel, R. N., Singh, N., Shukla, K. K., Gundla, V. L. N. & Chauhan, U. K. (2006). Spectrochimica Acta Part A, 63, 21-26.]); Wang et al. (2007[Wang, X. L., Chao, H., Peng, B. & Ji, L. N. (2007). Transition Met. Chem. 32, 125-130.]); Zhang et al. (2004[Zhang, S. C., Zhu, Y. G., Tu, C., Wei, H. Y., Yang, Z., Lin, L. P., Ding, J., Zhang, J. F. & Guo, Z. J. (2004). J. Inorg. Biochem. 98, 2099-210.]). For a related structure, see: Lu et al. (2004[Lu, L.-P., Zhu, M.-L. & Yang, P. (2004). Acta Cryst. C60, m21-m23.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C4H8NO3)(C12H8N2)(H2O)]Cl·2H2O

  • Mr = 451.36

  • Triclinic, [P \overline 1]

  • a = 7.1972 (1) Å

  • b = 11.9785 (2) Å

  • c = 12.2915 (2) Å

  • α = 65.664 (1)°

  • β = 78.079 (1)°

  • γ = 81.345 (1)°

  • V = 942.15 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.34 mm−1

  • T = 296 K

  • 0.34 × 0.20 × 0.07 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.656, Tmax = 0.911

  • 29845 measured reflections

  • 8056 independent reflections

  • 5995 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.092

  • S = 1.04

  • 8056 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯Cl1 0.80 2.36 3.1411 (13) 166
O1W—H2W1⋯O2i 0.82 1.90 2.7114 (18) 167
O3—H1O3⋯O1ii 0.90 2.03 2.9089 (18) 164
N3—H1N3⋯Cl1iii 0.86 2.62 3.3992 (13) 151
N3—H2N3⋯O2Wi 0.94 2.07 3.0085 (19) 175
O2W—H1W2⋯Cl1i 0.87 2.35 3.2104 (16) 175
O2W—H2W2⋯Cl1iv 0.84 2.33 3.1463 (14) 162
O3W—H1W3⋯O2W 1.01 1.95 2.954 (2) 170
O3W—H2W3⋯O3ii 0.91 2.03 2.901 (2) 159
C7—H7A⋯O2v 0.93 2.41 3.292 (2) 157
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1; (iii) x+1, y, z; (iv) x, y-1, z+1; (v) x, y, z-1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The interaction of transition metal complexes with DNA is a vibrant area of research and has long been investigated in relation to the development of new reagents for molecular biology, biotechnology and medicine (Vaidyanathan et al., 2003; Rao et al., 2008; Kumar et al., 2007). Among all the transition metals, copper is the most widely used metals in these studies as it is a bioessential element with +1 and +2 oxidation states (Patel et al., 2006; Wang et al., 2007; Vaidyanathan et al., 2003). Copper(II) complexes have been found to be useful in the treatment of many diseases as well as cancer. Copper(II) complexes of 1,10-phenanthroline and its derivatives exhibit various biological activities such as antimicrobial, antimycobaterial, anticandida and antitumor activities. Copper complexes of amino acids have been reported to exhibit effective antitumor and artificial nuclease activity. Several reports have also shown that these complexes show efficient DNA cleavage activity by either oxidative or hydrolytic pathways (Kumar et al., 2007; Zhang et al., 2004; Rao et al., 2007). In the title compound, aqua(DL-threoninato-κ2N,O)(1,10-phenanthroline)copper(II) chloride dihydrate, DL-threonine has been selected as the ligand for the complex.

The asymmetric unit of the title compound (Fig. 1) consists of one CuII complex cation, one chlorine anion and two water molecules. The CuII ion is coordinated by N1 and N2 atoms from the phenanthroline ligand and N3 and O1 atoms from the threoninato ligand in the basal plane and the O1W water molecule is coordinated in the apical site to form a distorted square-pyramidal geometry. The bond lengths are within normal values (Allen et al., 1987) and are comparable to those observed for a closely related structure (Lu et al., 2004).

In the crystal structure (Fig. 2), intermolecular C7—H7A···O2 hydrogen bonds (Table 1) link the CuII complex cations into chains along the c axis. Intermolecular O1W—H2W1···O2, O3—H1O3···O1, N3—H2N3···O2W, O3W—H2W3···O3, O3W—H1W3···O2W, N3—H1N3···Cl1, O2W—H1W2···Cl1, O2W—H2W2···Cl1 and O1W—H1W1—Cl1 interactions (Table 1) link the molecules into a three-dimensional network.

Related literature top

For background to the interactions of transition-metal complexes with DNA, see: Vaidyanathan et al. (2003); Rao et al. (2007, 2008); Kumar et al. (2007); Patel et al. (2006); Wang et al. (2007); Zhang et al. (2004). For a related structure, see: Lu et al. (2004). For standard bond-length data, see: Allen et al. (1987).

Experimental top

To an ethanolic solution (10.0 ml) of copper(II) chloride dihydrate (0.1708 g, 1 mmol), an ethanolic solution (10.0 ml) of DL-threonine (0.1191 g, 1 mmol) was added. After a few minutes, an ethanolic solution (20.0 ml) of 1,10-phenanthroline (0.1982 g, 1 mmol) was added dropwise to the mixture solution. The pH of the resulting solution was then adjusted to pH 8 by adding a few drops of NaOH aqueous solution. The blue solution was filtered and left to evaporate slowly at room temperature. Blue blocky single crystals of the title compound suitable for X-ray diffraction were obtained after a few days.

Refinement top

H atoms attached to N and O atoms were located from difference Fourier map and allowed to ride on their parent atoms and constrained to be 1.5Ueq for the water molecules and 1.2Ueq for the amino group. The remaining H atoms were positioned geometrically and refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl group [C–H = 0.93 to 0.98 Å, O–H = 0.7992 to 1.0137 Å, N–H = 0.8636 to 0.9420 Å].

Structure description top

The interaction of transition metal complexes with DNA is a vibrant area of research and has long been investigated in relation to the development of new reagents for molecular biology, biotechnology and medicine (Vaidyanathan et al., 2003; Rao et al., 2008; Kumar et al., 2007). Among all the transition metals, copper is the most widely used metals in these studies as it is a bioessential element with +1 and +2 oxidation states (Patel et al., 2006; Wang et al., 2007; Vaidyanathan et al., 2003). Copper(II) complexes have been found to be useful in the treatment of many diseases as well as cancer. Copper(II) complexes of 1,10-phenanthroline and its derivatives exhibit various biological activities such as antimicrobial, antimycobaterial, anticandida and antitumor activities. Copper complexes of amino acids have been reported to exhibit effective antitumor and artificial nuclease activity. Several reports have also shown that these complexes show efficient DNA cleavage activity by either oxidative or hydrolytic pathways (Kumar et al., 2007; Zhang et al., 2004; Rao et al., 2007). In the title compound, aqua(DL-threoninato-κ2N,O)(1,10-phenanthroline)copper(II) chloride dihydrate, DL-threonine has been selected as the ligand for the complex.

The asymmetric unit of the title compound (Fig. 1) consists of one CuII complex cation, one chlorine anion and two water molecules. The CuII ion is coordinated by N1 and N2 atoms from the phenanthroline ligand and N3 and O1 atoms from the threoninato ligand in the basal plane and the O1W water molecule is coordinated in the apical site to form a distorted square-pyramidal geometry. The bond lengths are within normal values (Allen et al., 1987) and are comparable to those observed for a closely related structure (Lu et al., 2004).

In the crystal structure (Fig. 2), intermolecular C7—H7A···O2 hydrogen bonds (Table 1) link the CuII complex cations into chains along the c axis. Intermolecular O1W—H2W1···O2, O3—H1O3···O1, N3—H2N3···O2W, O3W—H2W3···O3, O3W—H1W3···O2W, N3—H1N3···Cl1, O2W—H1W2···Cl1, O2W—H2W2···Cl1 and O1W—H1W1—Cl1 interactions (Table 1) link the molecules into a three-dimensional network.

For background to the interactions of transition-metal complexes with DNA, see: Vaidyanathan et al. (2003); Rao et al. (2007, 2008); Kumar et al. (2007); Patel et al. (2006); Wang et al. (2007); Zhang et al. (2004). For a related structure, see: Lu et al. (2004). For standard bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. Intermolecular interactions are shown as dashed lines. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
Aqua(1,10-phenanthroline-κ2N,N')(DL-threoninato- κ2N,O1)copper(II) chloride dihydrate top
Crystal data top
[Cu(C4H8NO3)(C12H8N2)(H2O)]Cl·2H2OZ = 2
Mr = 451.36F(000) = 466
Triclinic, P1Dx = 1.591 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1972 (1) ÅCell parameters from 9968 reflections
b = 11.9785 (2) Åθ = 2.9–32.7°
c = 12.2915 (2) ŵ = 1.34 mm1
α = 65.664 (1)°T = 296 K
β = 78.079 (1)°Block, blue
γ = 81.345 (1)°0.34 × 0.20 × 0.07 mm
V = 942.15 (3) Å3
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
8056 independent reflections
Radiation source: fine-focus sealed tube5995 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 34.7°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.656, Tmax = 0.911k = 1819
29845 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0404P)2 + 0.1542P]
where P = (Fo2 + 2Fc2)/3
8056 reflections(Δ/σ)max < 0.001
245 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Cu(C4H8NO3)(C12H8N2)(H2O)]Cl·2H2Oγ = 81.345 (1)°
Mr = 451.36V = 942.15 (3) Å3
Triclinic, P1Z = 2
a = 7.1972 (1) ÅMo Kα radiation
b = 11.9785 (2) ŵ = 1.34 mm1
c = 12.2915 (2) ÅT = 296 K
α = 65.664 (1)°0.34 × 0.20 × 0.07 mm
β = 78.079 (1)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
8056 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5995 reflections with I > 2σ(I)
Tmin = 0.656, Tmax = 0.911Rint = 0.028
29845 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.04Δρmax = 0.47 e Å3
8056 reflectionsΔρmin = 0.41 e Å3
245 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.76442 (2)0.603112 (14)0.250328 (14)0.02828 (5)
O1W0.45829 (16)0.66307 (10)0.28057 (11)0.0473 (3)
H1W10.39720.72270.24220.071*
H2W10.37700.61350.32010.071*
O10.77687 (16)0.50694 (9)0.42081 (9)0.0359 (2)
O20.7643 (2)0.52774 (11)0.59298 (9)0.0493 (3)
O31.07351 (19)0.74151 (11)0.44492 (13)0.0558 (3)
H1O31.09570.66090.48910.084*
N10.72609 (17)0.45456 (11)0.22337 (11)0.0325 (2)
N20.80300 (17)0.67993 (11)0.06759 (10)0.0305 (2)
N30.83142 (17)0.74053 (10)0.28305 (10)0.0296 (2)
H1N30.94970.75640.25960.036*
H2N30.75700.81220.24330.036*
C10.74069 (19)0.47692 (13)0.10467 (13)0.0314 (3)
C20.6821 (2)0.34333 (14)0.30518 (16)0.0407 (3)
H2A0.67040.32750.38690.049*
C30.6532 (3)0.24997 (15)0.27161 (19)0.0491 (4)
H3A0.62230.17330.33070.059*
C40.6702 (3)0.27118 (16)0.15218 (19)0.0484 (4)
H4A0.65260.20880.12960.058*
C50.7146 (2)0.38811 (15)0.06321 (16)0.0394 (3)
C60.7318 (2)0.42233 (18)0.06444 (17)0.0482 (4)
H6A0.71680.36410.09320.058*
C70.7694 (2)0.53790 (18)0.14407 (16)0.0467 (4)
H7A0.77960.55750.22650.056*
C80.7939 (2)0.63054 (16)0.10411 (14)0.0381 (3)
C90.8273 (2)0.75297 (17)0.18067 (14)0.0454 (4)
H9A0.83510.77880.26380.054*
C100.8481 (2)0.83416 (16)0.13287 (14)0.0437 (4)
H10A0.86980.91540.18330.052*
C110.8368 (2)0.79473 (14)0.00808 (13)0.0364 (3)
H11A0.85340.85060.02320.044*
C120.78101 (19)0.59920 (14)0.01996 (13)0.0309 (3)
C130.7721 (2)0.57113 (13)0.48255 (12)0.0322 (3)
C140.7668 (2)0.71093 (13)0.41344 (12)0.0319 (3)
H14A0.63300.74210.42250.038*
C150.8735 (3)0.77207 (14)0.46657 (14)0.0409 (3)
H15A0.83000.74240.55410.049*
C160.8433 (3)0.91054 (16)0.4121 (2)0.0563 (5)
H16A0.91720.94470.44610.084*
H16B0.71090.93460.42970.084*
H16C0.88270.94030.32610.084*
Cl10.22654 (6)0.87371 (4)0.09619 (4)0.04803 (10)
O2W0.4269 (2)0.03917 (12)0.83732 (12)0.0539 (3)
H1W20.51740.06030.86000.081*
H2W20.38270.01820.90140.081*
O3W0.6557 (2)0.08312 (18)0.59634 (17)0.0851 (5)
H1W30.56650.06300.67630.128*
H2W30.72130.14080.60020.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03672 (10)0.02541 (8)0.02496 (8)0.00530 (6)0.00529 (6)0.01097 (6)
O1W0.0328 (5)0.0366 (6)0.0579 (7)0.0045 (4)0.0043 (5)0.0048 (5)
O10.0538 (6)0.0256 (4)0.0297 (5)0.0058 (4)0.0116 (4)0.0091 (4)
O20.0797 (9)0.0429 (6)0.0247 (5)0.0253 (6)0.0091 (5)0.0056 (4)
O30.0573 (8)0.0389 (6)0.0764 (9)0.0043 (5)0.0328 (7)0.0172 (6)
N10.0361 (6)0.0288 (6)0.0358 (6)0.0036 (5)0.0063 (5)0.0153 (5)
N20.0347 (6)0.0314 (6)0.0278 (5)0.0040 (5)0.0045 (4)0.0138 (4)
N30.0370 (6)0.0273 (5)0.0246 (5)0.0077 (4)0.0041 (4)0.0088 (4)
C10.0290 (6)0.0341 (7)0.0391 (7)0.0011 (5)0.0089 (5)0.0221 (6)
C20.0470 (8)0.0300 (7)0.0449 (8)0.0055 (6)0.0078 (7)0.0137 (6)
C30.0521 (10)0.0301 (7)0.0664 (12)0.0059 (7)0.0099 (9)0.0192 (8)
C40.0465 (9)0.0380 (8)0.0762 (13)0.0006 (7)0.0169 (9)0.0357 (9)
C50.0348 (7)0.0408 (8)0.0566 (10)0.0045 (6)0.0136 (7)0.0326 (7)
C60.0465 (9)0.0598 (11)0.0623 (11)0.0067 (8)0.0192 (8)0.0464 (10)
C70.0465 (9)0.0663 (11)0.0438 (9)0.0066 (8)0.0156 (7)0.0378 (9)
C80.0339 (7)0.0530 (9)0.0345 (7)0.0040 (6)0.0100 (6)0.0246 (7)
C90.0470 (9)0.0588 (10)0.0288 (7)0.0008 (8)0.0080 (6)0.0165 (7)
C100.0497 (9)0.0430 (8)0.0308 (7)0.0044 (7)0.0045 (6)0.0076 (6)
C110.0421 (8)0.0338 (7)0.0319 (7)0.0060 (6)0.0033 (6)0.0118 (6)
C120.0274 (6)0.0383 (7)0.0324 (6)0.0009 (5)0.0066 (5)0.0194 (6)
C130.0390 (7)0.0303 (6)0.0266 (6)0.0096 (5)0.0058 (5)0.0080 (5)
C140.0401 (7)0.0293 (6)0.0275 (6)0.0050 (5)0.0042 (5)0.0120 (5)
C150.0605 (10)0.0353 (7)0.0331 (7)0.0103 (7)0.0100 (7)0.0161 (6)
C160.0703 (12)0.0361 (8)0.0740 (13)0.0048 (8)0.0184 (10)0.0296 (9)
Cl10.0520 (2)0.03659 (19)0.0500 (2)0.01029 (17)0.01205 (18)0.00742 (17)
O2W0.0616 (8)0.0483 (7)0.0475 (7)0.0081 (6)0.0133 (6)0.0114 (6)
O3W0.0749 (11)0.1128 (15)0.0905 (13)0.0229 (10)0.0039 (9)0.0616 (12)
Geometric parameters (Å, º) top
Cu1—O11.9450 (10)C4—H4A0.9300
Cu1—N31.9921 (11)C5—C61.432 (2)
Cu1—N12.0059 (12)C6—C71.354 (3)
Cu1—N22.0210 (11)C6—H6A0.9300
Cu1—O1W2.2167 (11)C7—C81.431 (2)
O1W—H1W10.7992C7—H7A0.9300
O1W—H2W10.8250C8—C121.398 (2)
O1—C131.2770 (17)C8—C91.403 (3)
O2—C131.2295 (17)C9—C101.366 (2)
O3—C151.429 (2)C9—H9A0.9300
O3—H1O30.9002C10—C111.395 (2)
N1—C21.3333 (19)C10—H10A0.9300
N1—C11.3545 (19)C11—H11A0.9300
N2—C111.3298 (18)C13—C141.5326 (19)
N2—C121.3615 (17)C14—C151.524 (2)
N3—C141.4778 (17)C14—H14A0.9800
N3—H1N30.8636C15—C161.511 (2)
N3—H2N30.9420C15—H15A0.9800
C1—C51.4047 (19)C16—H16A0.9600
C1—C121.435 (2)C16—H16B0.9600
C2—C31.397 (2)C16—H16C0.9600
C2—H2A0.9300O2W—H1W20.8654
C3—C41.365 (3)O2W—H2W20.8422
C3—H3A0.9300O3W—H1W31.0137
C4—C51.410 (3)O3W—H2W30.9153
O1—Cu1—N384.44 (4)C7—C6—H6A119.4
O1—Cu1—N192.20 (5)C5—C6—H6A119.4
N3—Cu1—N1173.26 (5)C6—C7—C8121.40 (15)
O1—Cu1—N2167.52 (5)C6—C7—H7A119.3
N3—Cu1—N299.88 (5)C8—C7—H7A119.3
N1—Cu1—N282.23 (5)C12—C8—C9116.68 (14)
O1—Cu1—O1W94.75 (5)C12—C8—C7118.61 (16)
N3—Cu1—O1W89.99 (5)C9—C8—C7124.70 (15)
N1—Cu1—O1W96.12 (5)C10—C9—C8119.91 (14)
N2—Cu1—O1W96.94 (5)C10—C9—H9A120.0
Cu1—O1W—H1W1131.4C8—C9—H9A120.0
Cu1—O1W—H2W1121.8C9—C10—C11119.74 (15)
H1W1—O1W—H2W1103.0C9—C10—H10A120.1
C13—O1—Cu1114.26 (9)C11—C10—H10A120.1
C15—O3—H1O3108.0N2—C11—C10122.16 (14)
C2—N1—C1118.50 (13)N2—C11—H11A118.9
C2—N1—Cu1128.75 (11)C10—C11—H11A118.9
C1—N1—Cu1112.69 (9)N2—C12—C8123.41 (14)
C11—N2—C12118.07 (12)N2—C12—C1116.42 (12)
C11—N2—Cu1129.83 (10)C8—C12—C1120.17 (13)
C12—N2—Cu1112.02 (9)O2—C13—O1123.99 (13)
C14—N3—Cu1106.69 (8)O2—C13—C14119.04 (13)
C14—N3—H1N3113.4O1—C13—C14116.91 (11)
Cu1—N3—H1N3114.4N3—C14—C15114.04 (12)
C14—N3—H2N3105.0N3—C14—C13109.43 (11)
Cu1—N3—H2N3108.9C15—C14—C13112.30 (12)
H1N3—N3—H2N3108.0N3—C14—H14A106.9
N1—C1—C5123.26 (14)C15—C14—H14A106.9
N1—C1—C12116.62 (12)C13—C14—H14A106.9
C5—C1—C12120.10 (14)O3—C15—C16107.21 (14)
N1—C2—C3121.86 (16)O3—C15—C14110.23 (13)
N1—C2—H2A119.1C16—C15—C14112.68 (14)
C3—C2—H2A119.1O3—C15—H15A108.9
C4—C3—C2120.03 (16)C16—C15—H15A108.9
C4—C3—H3A120.0C14—C15—H15A108.9
C2—C3—H3A120.0C15—C16—H16A109.5
C3—C4—C5119.66 (15)C15—C16—H16B109.5
C3—C4—H4A120.2H16A—C16—H16B109.5
C5—C4—H4A120.2C15—C16—H16C109.5
C1—C5—C4116.68 (15)H16A—C16—H16C109.5
C1—C5—C6118.46 (15)H16B—C16—H16C109.5
C4—C5—C6124.85 (15)H1W2—O2W—H2W2101.9
C7—C6—C5121.24 (15)H1W3—O3W—H2W398.8
N3—Cu1—O1—C1316.30 (10)C1—C5—C6—C71.0 (2)
N1—Cu1—O1—C13169.56 (10)C4—C5—C6—C7178.03 (17)
N2—Cu1—O1—C13127.31 (19)C5—C6—C7—C80.1 (3)
O1W—Cu1—O1—C1373.23 (10)C6—C7—C8—C120.9 (2)
O1—Cu1—N1—C213.31 (14)C6—C7—C8—C9177.91 (16)
N2—Cu1—N1—C2177.92 (14)C12—C8—C9—C101.0 (2)
O1W—Cu1—N1—C281.72 (14)C7—C8—C9—C10179.83 (16)
O1—Cu1—N1—C1169.68 (10)C8—C9—C10—C110.2 (3)
N2—Cu1—N1—C10.91 (10)C12—N2—C11—C100.7 (2)
O1W—Cu1—N1—C195.29 (10)Cu1—N2—C11—C10175.89 (12)
O1—Cu1—N2—C11117.8 (2)C9—C10—C11—N21.1 (3)
N3—Cu1—N2—C118.41 (14)C11—N2—C12—C80.6 (2)
N1—Cu1—N2—C11178.06 (14)Cu1—N2—C12—C8177.78 (11)
O1W—Cu1—N2—C1182.79 (13)C11—N2—C12—C1178.71 (13)
O1—Cu1—N2—C1265.5 (2)Cu1—N2—C12—C11.56 (15)
N3—Cu1—N2—C12174.87 (9)C9—C8—C12—N21.4 (2)
N1—Cu1—N2—C121.34 (9)C7—C8—C12—N2179.62 (14)
O1W—Cu1—N2—C1293.92 (10)C9—C8—C12—C1177.88 (14)
O1—Cu1—N3—C1425.06 (9)C7—C8—C12—C11.1 (2)
N2—Cu1—N3—C14166.76 (9)N1—C1—C12—N20.85 (19)
O1W—Cu1—N3—C1469.72 (9)C5—C1—C12—N2179.55 (13)
C2—N1—C1—C51.0 (2)N1—C1—C12—C8178.52 (13)
Cu1—N1—C1—C5178.33 (11)C5—C1—C12—C80.2 (2)
C2—N1—C1—C12177.68 (13)Cu1—O1—C13—O2174.42 (13)
Cu1—N1—C1—C120.33 (16)Cu1—O1—C13—C142.72 (16)
C1—N1—C2—C30.7 (2)Cu1—N3—C14—C15155.66 (11)
Cu1—N1—C2—C3177.57 (12)Cu1—N3—C14—C1328.94 (13)
N1—C2—C3—C40.2 (3)O2—C13—C14—N3164.17 (14)
C2—C3—C4—C50.8 (3)O1—C13—C14—N318.54 (18)
N1—C1—C5—C40.4 (2)O2—C13—C14—C1536.5 (2)
C12—C1—C5—C4178.26 (14)O1—C13—C14—C15146.24 (14)
N1—C1—C5—C6179.43 (14)N3—C14—C15—O355.86 (17)
C12—C1—C5—C60.8 (2)C13—C14—C15—O369.36 (16)
C3—C4—C5—C10.6 (2)N3—C14—C15—C1663.86 (19)
C3—C4—C5—C6178.46 (16)C13—C14—C15—C16170.93 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···Cl10.802.363.1411 (13)166
O1W—H2W1···O2i0.821.902.7114 (18)167
O3—H1O3···O1ii0.902.032.9089 (18)164
N3—H1N3···Cl1iii0.862.623.3992 (13)151
N3—H2N3···O2Wi0.942.073.0085 (19)175
O2W—H1W2···Cl1i0.872.353.2104 (16)175
O2W—H2W2···Cl1iv0.842.333.1463 (14)162
O3W—H1W3···O2W1.011.952.954 (2)170
O3W—H2W3···O3ii0.912.032.901 (2)159
C7—H7A···O2v0.932.413.292 (2)157
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y, z; (iv) x, y1, z+1; (v) x, y, z1.

Experimental details

Crystal data
Chemical formula[Cu(C4H8NO3)(C12H8N2)(H2O)]Cl·2H2O
Mr451.36
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.1972 (1), 11.9785 (2), 12.2915 (2)
α, β, γ (°)65.664 (1), 78.079 (1), 81.345 (1)
V3)942.15 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.34 × 0.20 × 0.07
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.656, 0.911
No. of measured, independent and
observed [I > 2σ(I)] reflections
29845, 8056, 5995
Rint0.028
(sin θ/λ)max1)0.802
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.092, 1.04
No. of reflections8056
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.41

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···Cl10.80002.36003.1411 (13)166.00
O1W—H2W1···O2i0.82001.90002.7114 (18)167.00
O3—H1O3···O1ii0.90002.03002.9089 (18)164.00
N3—H1N3···Cl1iii0.86002.62003.3992 (13)151.00
N3—H2N3···O2Wi0.94002.07003.0085 (19)175.00
O2W—H1W2···Cl1i0.87002.35003.2104 (16)175.00
O2W—H2W2···Cl1iv0.84002.33003.1463 (14)162.00
O3W—H1W3···O2W1.01001.95002.954 (2)170.00
O3W—H2W3···O3ii0.91002.03002.901 (2)159.00
C7—H7A···O2v0.93002.41003.292 (2)157.00
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y, z; (iv) x, y1, z+1; (v) x, y, z1.
 

Footnotes

Thomson Reuters ResearcherID: C-7581-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the RU research grant (PKIMIA/815002). HKF and WSL also thank USM for the Research University Golden Goose Grant (1001/PFIZIK/811012). YHT and WSL are grateful for the award of USM fellowships for financial assistance.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKumar, R. S. & Arunachalam, S. (2007). Polyhedron, 26, 3255–3262.  CAS Google Scholar
First citationLu, L.-P., Zhu, M.-L. & Yang, P. (2004). Acta Cryst. C60, m21–m23.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPatel, R. N., Singh, N., Shukla, K. K., Gundla, V. L. N. & Chauhan, U. K. (2006). Spectrochimica Acta Part A, 63, 21–26.  Web of Science CrossRef CAS Google Scholar
First citationRao, R., Patra, A. K. & Chetana, P. R. (2007). Polyhedron, 26, 5331–5338.  Web of Science CSD CrossRef CAS Google Scholar
First citationRao, R., Patra, A. K. & Chetana, P. R. (2008). Polyhedron, 27, 1343–1352.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaidyanathan, V. G. & Nair, B. U. (2003). J. Inorg. Biochem. 93, 271–276.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, X. L., Chao, H., Peng, B. & Ji, L. N. (2007). Transition Met. Chem. 32, 125–130.  Web of Science CrossRef Google Scholar
First citationZhang, S. C., Zhu, Y. G., Tu, C., Wei, H. Y., Yang, Z., Lin, L. P., Ding, J., Zhang, J. F. & Guo, Z. J. (2004). J. Inorg. Biochem. 98, 2099–210.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds