metal-organic compounds
Aqua(1,10-phenanthroline-κ2N,N′)(DL-threoninato-κ2N,O1)copper(II) chloride dihydrate
aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
The 4H8NO3)(C12H8N2)(H2O)]Cl·2H2O, contains a complex cation, a chloride anion and two water molecules. The CuII ion has a distorted square-pyramidal coordination geometry formed by one bidentate phenanthroline ligand, one O,N-bidentate DL-threoninate ligand and one apical water molecule. In the intermolecular O—H⋯O, N—H⋯O, N—H⋯Cl and O—H⋯Cl hydrogen bonds link the components into layers. A single weak intermolecular C—H⋯O interaction connects these layers into a three-dimensional network.
of the title compound, [Cu(CRelated literature
For background to the interactions of transition-metal complexes with DNA, see: Vaidyanathan & Nair (2003); Rao et al. (2007, 2008); Kumar & Arunachalam (2007); Patel et al. (2006); Wang et al. (2007); Zhang et al. (2004). For a related structure, see: Lu et al. (2004). For standard bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810015278/lh5025sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810015278/lh5025Isup2.hkl
To an ethanolic solution (10.0 ml) of copper(II) chloride dihydrate (0.1708 g, 1 mmol), an ethanolic solution (10.0 ml) of DL-threonine (0.1191 g, 1 mmol) was added. After a few minutes, an ethanolic solution (20.0 ml) of 1,10-phenanthroline (0.1982 g, 1 mmol) was added dropwise to the mixture solution. The pH of the resulting solution was then adjusted to pH 8 by adding a few drops of NaOH aqueous solution. The blue solution was filtered and left to evaporate slowly at room temperature. Blue blocky single crystals of the title compound suitable for X-ray diffraction were obtained after a few days.
H atoms attached to N and O atoms were located from difference Fourier map and allowed to ride on their parent atoms and constrained to be 1.5Ueq for the water molecules and 1.2Ueq for the amino group. The remaining H atoms were positioned geometrically and refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl group [C–H = 0.93 to 0.98 Å, O–H = 0.7992 to 1.0137 Å, N–H = 0.8636 to 0.9420 Å].
The interaction of transition metal complexes with DNA is a vibrant area of research and has long been investigated in relation to the development of new reagents for molecular biology, biotechnology and medicine (Vaidyanathan et al., 2003; Rao et al., 2008; Kumar et al., 2007). Among all the transition metals, copper is the most widely used metals in these studies as it is a bioessential element with +1 and +2 oxidation states (Patel et al., 2006; Wang et al., 2007; Vaidyanathan et al., 2003). Copper(II) complexes have been found to be useful in the treatment of many diseases as well as cancer. Copper(II) complexes of 1,10-phenanthroline and its derivatives exhibit various biological activities such as antimicrobial, antimycobaterial, anticandida and antitumor activities. Copper complexes of amino acids have been reported to exhibit effective antitumor and artificial nuclease activity. Several reports have also shown that these complexes show efficient DNA cleavage activity by either oxidative or hydrolytic pathways (Kumar et al., 2007; Zhang et al., 2004; Rao et al., 2007). In the title compound, aqua(DL-threoninato-κ2N,O)(1,10-phenanthroline)copper(II) chloride dihydrate, DL-threonine has been selected as the ligand for the complex.
The
of the title compound (Fig. 1) consists of one CuII complex cation, one chlorine anion and two water molecules. The CuII ion is coordinated by N1 and N2 atoms from the phenanthroline ligand and N3 and O1 atoms from the threoninato ligand in the basal plane and the O1W water molecule is coordinated in the apical site to form a distorted square-pyramidal geometry. The bond lengths are within normal values (Allen et al., 1987) and are comparable to those observed for a closely related structure (Lu et al., 2004).In the
(Fig. 2), intermolecular C7—H7A···O2 hydrogen bonds (Table 1) link the CuII complex cations into chains along the c axis. Intermolecular O1W—H2W1···O2, O3—H1O3···O1, N3—H2N3···O2W, O3W—H2W3···O3, O3W—H1W3···O2W, N3—H1N3···Cl1, O2W—H1W2···Cl1, O2W—H2W2···Cl1 and O1W—H1W1—Cl1 interactions (Table 1) link the molecules into a three-dimensional network.For background to the interactions of transition-metal complexes with DNA, see: Vaidyanathan et al. (2003); Rao et al. (2007, 2008); Kumar et al. (2007); Patel et al. (2006); Wang et al. (2007); Zhang et al. (2004). For a related structure, see: Lu et al. (2004). For standard bond-length data, see: Allen et al. (1987).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. | |
Fig. 2. The crystal packing of the title compound, viewed along the a axis. Intermolecular interactions are shown as dashed lines. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity. |
[Cu(C4H8NO3)(C12H8N2)(H2O)]Cl·2H2O | Z = 2 |
Mr = 451.36 | F(000) = 466 |
Triclinic, P1 | Dx = 1.591 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.1972 (1) Å | Cell parameters from 9968 reflections |
b = 11.9785 (2) Å | θ = 2.9–32.7° |
c = 12.2915 (2) Å | µ = 1.34 mm−1 |
α = 65.664 (1)° | T = 296 K |
β = 78.079 (1)° | Block, blue |
γ = 81.345 (1)° | 0.34 × 0.20 × 0.07 mm |
V = 942.15 (3) Å3 |
Bruker APEXII DUO CCD area-detector diffractometer | 8056 independent reflections |
Radiation source: fine-focus sealed tube | 5995 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
φ and ω scans | θmax = 34.7°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −11→11 |
Tmin = 0.656, Tmax = 0.911 | k = −18→19 |
29845 measured reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0404P)2 + 0.1542P] where P = (Fo2 + 2Fc2)/3 |
8056 reflections | (Δ/σ)max < 0.001 |
245 parameters | Δρmax = 0.47 e Å−3 |
0 restraints | Δρmin = −0.41 e Å−3 |
[Cu(C4H8NO3)(C12H8N2)(H2O)]Cl·2H2O | γ = 81.345 (1)° |
Mr = 451.36 | V = 942.15 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.1972 (1) Å | Mo Kα radiation |
b = 11.9785 (2) Å | µ = 1.34 mm−1 |
c = 12.2915 (2) Å | T = 296 K |
α = 65.664 (1)° | 0.34 × 0.20 × 0.07 mm |
β = 78.079 (1)° |
Bruker APEXII DUO CCD area-detector diffractometer | 8056 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 5995 reflections with I > 2σ(I) |
Tmin = 0.656, Tmax = 0.911 | Rint = 0.028 |
29845 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.47 e Å−3 |
8056 reflections | Δρmin = −0.41 e Å−3 |
245 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.76442 (2) | 0.603112 (14) | 0.250328 (14) | 0.02828 (5) | |
O1W | 0.45829 (16) | 0.66307 (10) | 0.28057 (11) | 0.0473 (3) | |
H1W1 | 0.3972 | 0.7227 | 0.2422 | 0.071* | |
H2W1 | 0.3770 | 0.6135 | 0.3201 | 0.071* | |
O1 | 0.77687 (16) | 0.50694 (9) | 0.42081 (9) | 0.0359 (2) | |
O2 | 0.7643 (2) | 0.52774 (11) | 0.59298 (9) | 0.0493 (3) | |
O3 | 1.07351 (19) | 0.74151 (11) | 0.44492 (13) | 0.0558 (3) | |
H1O3 | 1.0957 | 0.6609 | 0.4891 | 0.084* | |
N1 | 0.72609 (17) | 0.45456 (11) | 0.22337 (11) | 0.0325 (2) | |
N2 | 0.80300 (17) | 0.67993 (11) | 0.06759 (10) | 0.0305 (2) | |
N3 | 0.83142 (17) | 0.74053 (10) | 0.28305 (10) | 0.0296 (2) | |
H1N3 | 0.9497 | 0.7564 | 0.2596 | 0.036* | |
H2N3 | 0.7570 | 0.8122 | 0.2433 | 0.036* | |
C1 | 0.74069 (19) | 0.47692 (13) | 0.10467 (13) | 0.0314 (3) | |
C2 | 0.6821 (2) | 0.34333 (14) | 0.30518 (16) | 0.0407 (3) | |
H2A | 0.6704 | 0.3275 | 0.3869 | 0.049* | |
C3 | 0.6532 (3) | 0.24997 (15) | 0.27161 (19) | 0.0491 (4) | |
H3A | 0.6223 | 0.1733 | 0.3307 | 0.059* | |
C4 | 0.6702 (3) | 0.27118 (16) | 0.15218 (19) | 0.0484 (4) | |
H4A | 0.6526 | 0.2088 | 0.1296 | 0.058* | |
C5 | 0.7146 (2) | 0.38811 (15) | 0.06321 (16) | 0.0394 (3) | |
C6 | 0.7318 (2) | 0.42233 (18) | −0.06444 (17) | 0.0482 (4) | |
H6A | 0.7168 | 0.3641 | −0.0932 | 0.058* | |
C7 | 0.7694 (2) | 0.53790 (18) | −0.14407 (16) | 0.0467 (4) | |
H7A | 0.7796 | 0.5575 | −0.2265 | 0.056* | |
C8 | 0.7939 (2) | 0.63054 (16) | −0.10411 (14) | 0.0381 (3) | |
C9 | 0.8273 (2) | 0.75297 (17) | −0.18067 (14) | 0.0454 (4) | |
H9A | 0.8351 | 0.7788 | −0.2638 | 0.054* | |
C10 | 0.8481 (2) | 0.83416 (16) | −0.13287 (14) | 0.0437 (4) | |
H10A | 0.8698 | 0.9154 | −0.1833 | 0.052* | |
C11 | 0.8368 (2) | 0.79473 (14) | −0.00808 (13) | 0.0364 (3) | |
H11A | 0.8534 | 0.8506 | 0.0232 | 0.044* | |
C12 | 0.78101 (19) | 0.59920 (14) | 0.01996 (13) | 0.0309 (3) | |
C13 | 0.7721 (2) | 0.57113 (13) | 0.48255 (12) | 0.0322 (3) | |
C14 | 0.7668 (2) | 0.71093 (13) | 0.41344 (12) | 0.0319 (3) | |
H14A | 0.6330 | 0.7421 | 0.4225 | 0.038* | |
C15 | 0.8735 (3) | 0.77207 (14) | 0.46657 (14) | 0.0409 (3) | |
H15A | 0.8300 | 0.7424 | 0.5541 | 0.049* | |
C16 | 0.8433 (3) | 0.91054 (16) | 0.4121 (2) | 0.0563 (5) | |
H16A | 0.9172 | 0.9447 | 0.4461 | 0.084* | |
H16B | 0.7109 | 0.9346 | 0.4297 | 0.084* | |
H16C | 0.8827 | 0.9403 | 0.3261 | 0.084* | |
Cl1 | 0.22654 (6) | 0.87371 (4) | 0.09619 (4) | 0.04803 (10) | |
O2W | 0.4269 (2) | 0.03917 (12) | 0.83732 (12) | 0.0539 (3) | |
H1W2 | 0.5174 | 0.0603 | 0.8600 | 0.081* | |
H2W2 | 0.3827 | −0.0182 | 0.9014 | 0.081* | |
O3W | 0.6557 (2) | 0.08312 (18) | 0.59634 (17) | 0.0851 (5) | |
H1W3 | 0.5665 | 0.0630 | 0.6763 | 0.128* | |
H2W3 | 0.7213 | 0.1408 | 0.6002 | 0.128* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.03672 (10) | 0.02541 (8) | 0.02496 (8) | −0.00530 (6) | −0.00529 (6) | −0.01097 (6) |
O1W | 0.0328 (5) | 0.0366 (6) | 0.0579 (7) | −0.0045 (4) | −0.0043 (5) | −0.0048 (5) |
O1 | 0.0538 (6) | 0.0256 (4) | 0.0297 (5) | −0.0058 (4) | −0.0116 (4) | −0.0091 (4) |
O2 | 0.0797 (9) | 0.0429 (6) | 0.0247 (5) | −0.0253 (6) | −0.0091 (5) | −0.0056 (4) |
O3 | 0.0573 (8) | 0.0389 (6) | 0.0764 (9) | −0.0043 (5) | −0.0328 (7) | −0.0172 (6) |
N1 | 0.0361 (6) | 0.0288 (6) | 0.0358 (6) | −0.0036 (5) | −0.0063 (5) | −0.0153 (5) |
N2 | 0.0347 (6) | 0.0314 (6) | 0.0278 (5) | −0.0040 (5) | −0.0045 (4) | −0.0138 (4) |
N3 | 0.0370 (6) | 0.0273 (5) | 0.0246 (5) | −0.0077 (4) | −0.0041 (4) | −0.0088 (4) |
C1 | 0.0290 (6) | 0.0341 (7) | 0.0391 (7) | 0.0011 (5) | −0.0089 (5) | −0.0221 (6) |
C2 | 0.0470 (8) | 0.0300 (7) | 0.0449 (8) | −0.0055 (6) | −0.0078 (7) | −0.0137 (6) |
C3 | 0.0521 (10) | 0.0301 (7) | 0.0664 (12) | −0.0059 (7) | −0.0099 (9) | −0.0192 (8) |
C4 | 0.0465 (9) | 0.0380 (8) | 0.0762 (13) | 0.0006 (7) | −0.0169 (9) | −0.0357 (9) |
C5 | 0.0348 (7) | 0.0408 (8) | 0.0566 (10) | 0.0045 (6) | −0.0136 (7) | −0.0326 (7) |
C6 | 0.0465 (9) | 0.0598 (11) | 0.0623 (11) | 0.0067 (8) | −0.0192 (8) | −0.0464 (10) |
C7 | 0.0465 (9) | 0.0663 (11) | 0.0438 (9) | 0.0066 (8) | −0.0156 (7) | −0.0378 (9) |
C8 | 0.0339 (7) | 0.0530 (9) | 0.0345 (7) | 0.0040 (6) | −0.0100 (6) | −0.0246 (7) |
C9 | 0.0470 (9) | 0.0588 (10) | 0.0288 (7) | 0.0008 (8) | −0.0080 (6) | −0.0165 (7) |
C10 | 0.0497 (9) | 0.0430 (8) | 0.0308 (7) | −0.0044 (7) | −0.0045 (6) | −0.0076 (6) |
C11 | 0.0421 (8) | 0.0338 (7) | 0.0319 (7) | −0.0060 (6) | −0.0033 (6) | −0.0118 (6) |
C12 | 0.0274 (6) | 0.0383 (7) | 0.0324 (6) | 0.0009 (5) | −0.0066 (5) | −0.0194 (6) |
C13 | 0.0390 (7) | 0.0303 (6) | 0.0266 (6) | −0.0096 (5) | −0.0058 (5) | −0.0080 (5) |
C14 | 0.0401 (7) | 0.0293 (6) | 0.0275 (6) | −0.0050 (5) | −0.0042 (5) | −0.0120 (5) |
C15 | 0.0605 (10) | 0.0353 (7) | 0.0331 (7) | −0.0103 (7) | −0.0100 (7) | −0.0161 (6) |
C16 | 0.0703 (12) | 0.0361 (8) | 0.0740 (13) | −0.0048 (8) | −0.0184 (10) | −0.0296 (9) |
Cl1 | 0.0520 (2) | 0.03659 (19) | 0.0500 (2) | −0.01029 (17) | −0.01205 (18) | −0.00742 (17) |
O2W | 0.0616 (8) | 0.0483 (7) | 0.0475 (7) | −0.0081 (6) | −0.0133 (6) | −0.0114 (6) |
O3W | 0.0749 (11) | 0.1128 (15) | 0.0905 (13) | −0.0229 (10) | −0.0039 (9) | −0.0616 (12) |
Cu1—O1 | 1.9450 (10) | C4—H4A | 0.9300 |
Cu1—N3 | 1.9921 (11) | C5—C6 | 1.432 (2) |
Cu1—N1 | 2.0059 (12) | C6—C7 | 1.354 (3) |
Cu1—N2 | 2.0210 (11) | C6—H6A | 0.9300 |
Cu1—O1W | 2.2167 (11) | C7—C8 | 1.431 (2) |
O1W—H1W1 | 0.7992 | C7—H7A | 0.9300 |
O1W—H2W1 | 0.8250 | C8—C12 | 1.398 (2) |
O1—C13 | 1.2770 (17) | C8—C9 | 1.403 (3) |
O2—C13 | 1.2295 (17) | C9—C10 | 1.366 (2) |
O3—C15 | 1.429 (2) | C9—H9A | 0.9300 |
O3—H1O3 | 0.9002 | C10—C11 | 1.395 (2) |
N1—C2 | 1.3333 (19) | C10—H10A | 0.9300 |
N1—C1 | 1.3545 (19) | C11—H11A | 0.9300 |
N2—C11 | 1.3298 (18) | C13—C14 | 1.5326 (19) |
N2—C12 | 1.3615 (17) | C14—C15 | 1.524 (2) |
N3—C14 | 1.4778 (17) | C14—H14A | 0.9800 |
N3—H1N3 | 0.8636 | C15—C16 | 1.511 (2) |
N3—H2N3 | 0.9420 | C15—H15A | 0.9800 |
C1—C5 | 1.4047 (19) | C16—H16A | 0.9600 |
C1—C12 | 1.435 (2) | C16—H16B | 0.9600 |
C2—C3 | 1.397 (2) | C16—H16C | 0.9600 |
C2—H2A | 0.9300 | O2W—H1W2 | 0.8654 |
C3—C4 | 1.365 (3) | O2W—H2W2 | 0.8422 |
C3—H3A | 0.9300 | O3W—H1W3 | 1.0137 |
C4—C5 | 1.410 (3) | O3W—H2W3 | 0.9153 |
O1—Cu1—N3 | 84.44 (4) | C7—C6—H6A | 119.4 |
O1—Cu1—N1 | 92.20 (5) | C5—C6—H6A | 119.4 |
N3—Cu1—N1 | 173.26 (5) | C6—C7—C8 | 121.40 (15) |
O1—Cu1—N2 | 167.52 (5) | C6—C7—H7A | 119.3 |
N3—Cu1—N2 | 99.88 (5) | C8—C7—H7A | 119.3 |
N1—Cu1—N2 | 82.23 (5) | C12—C8—C9 | 116.68 (14) |
O1—Cu1—O1W | 94.75 (5) | C12—C8—C7 | 118.61 (16) |
N3—Cu1—O1W | 89.99 (5) | C9—C8—C7 | 124.70 (15) |
N1—Cu1—O1W | 96.12 (5) | C10—C9—C8 | 119.91 (14) |
N2—Cu1—O1W | 96.94 (5) | C10—C9—H9A | 120.0 |
Cu1—O1W—H1W1 | 131.4 | C8—C9—H9A | 120.0 |
Cu1—O1W—H2W1 | 121.8 | C9—C10—C11 | 119.74 (15) |
H1W1—O1W—H2W1 | 103.0 | C9—C10—H10A | 120.1 |
C13—O1—Cu1 | 114.26 (9) | C11—C10—H10A | 120.1 |
C15—O3—H1O3 | 108.0 | N2—C11—C10 | 122.16 (14) |
C2—N1—C1 | 118.50 (13) | N2—C11—H11A | 118.9 |
C2—N1—Cu1 | 128.75 (11) | C10—C11—H11A | 118.9 |
C1—N1—Cu1 | 112.69 (9) | N2—C12—C8 | 123.41 (14) |
C11—N2—C12 | 118.07 (12) | N2—C12—C1 | 116.42 (12) |
C11—N2—Cu1 | 129.83 (10) | C8—C12—C1 | 120.17 (13) |
C12—N2—Cu1 | 112.02 (9) | O2—C13—O1 | 123.99 (13) |
C14—N3—Cu1 | 106.69 (8) | O2—C13—C14 | 119.04 (13) |
C14—N3—H1N3 | 113.4 | O1—C13—C14 | 116.91 (11) |
Cu1—N3—H1N3 | 114.4 | N3—C14—C15 | 114.04 (12) |
C14—N3—H2N3 | 105.0 | N3—C14—C13 | 109.43 (11) |
Cu1—N3—H2N3 | 108.9 | C15—C14—C13 | 112.30 (12) |
H1N3—N3—H2N3 | 108.0 | N3—C14—H14A | 106.9 |
N1—C1—C5 | 123.26 (14) | C15—C14—H14A | 106.9 |
N1—C1—C12 | 116.62 (12) | C13—C14—H14A | 106.9 |
C5—C1—C12 | 120.10 (14) | O3—C15—C16 | 107.21 (14) |
N1—C2—C3 | 121.86 (16) | O3—C15—C14 | 110.23 (13) |
N1—C2—H2A | 119.1 | C16—C15—C14 | 112.68 (14) |
C3—C2—H2A | 119.1 | O3—C15—H15A | 108.9 |
C4—C3—C2 | 120.03 (16) | C16—C15—H15A | 108.9 |
C4—C3—H3A | 120.0 | C14—C15—H15A | 108.9 |
C2—C3—H3A | 120.0 | C15—C16—H16A | 109.5 |
C3—C4—C5 | 119.66 (15) | C15—C16—H16B | 109.5 |
C3—C4—H4A | 120.2 | H16A—C16—H16B | 109.5 |
C5—C4—H4A | 120.2 | C15—C16—H16C | 109.5 |
C1—C5—C4 | 116.68 (15) | H16A—C16—H16C | 109.5 |
C1—C5—C6 | 118.46 (15) | H16B—C16—H16C | 109.5 |
C4—C5—C6 | 124.85 (15) | H1W2—O2W—H2W2 | 101.9 |
C7—C6—C5 | 121.24 (15) | H1W3—O3W—H2W3 | 98.8 |
N3—Cu1—O1—C13 | 16.30 (10) | C1—C5—C6—C7 | −1.0 (2) |
N1—Cu1—O1—C13 | −169.56 (10) | C4—C5—C6—C7 | 178.03 (17) |
N2—Cu1—O1—C13 | 127.31 (19) | C5—C6—C7—C8 | 0.1 (3) |
O1W—Cu1—O1—C13 | −73.23 (10) | C6—C7—C8—C12 | 0.9 (2) |
O1—Cu1—N1—C2 | 13.31 (14) | C6—C7—C8—C9 | −177.91 (16) |
N2—Cu1—N1—C2 | −177.92 (14) | C12—C8—C9—C10 | 1.0 (2) |
O1W—Cu1—N1—C2 | −81.72 (14) | C7—C8—C9—C10 | 179.83 (16) |
O1—Cu1—N1—C1 | −169.68 (10) | C8—C9—C10—C11 | 0.2 (3) |
N2—Cu1—N1—C1 | −0.91 (10) | C12—N2—C11—C10 | 0.7 (2) |
O1W—Cu1—N1—C1 | 95.29 (10) | Cu1—N2—C11—C10 | −175.89 (12) |
O1—Cu1—N2—C11 | −117.8 (2) | C9—C10—C11—N2 | −1.1 (3) |
N3—Cu1—N2—C11 | −8.41 (14) | C11—N2—C12—C8 | 0.6 (2) |
N1—Cu1—N2—C11 | 178.06 (14) | Cu1—N2—C12—C8 | 177.78 (11) |
O1W—Cu1—N2—C11 | 82.79 (13) | C11—N2—C12—C1 | −178.71 (13) |
O1—Cu1—N2—C12 | 65.5 (2) | Cu1—N2—C12—C1 | −1.56 (15) |
N3—Cu1—N2—C12 | 174.87 (9) | C9—C8—C12—N2 | −1.4 (2) |
N1—Cu1—N2—C12 | 1.34 (9) | C7—C8—C12—N2 | 179.62 (14) |
O1W—Cu1—N2—C12 | −93.92 (10) | C9—C8—C12—C1 | 177.88 (14) |
O1—Cu1—N3—C14 | −25.06 (9) | C7—C8—C12—C1 | −1.1 (2) |
N2—Cu1—N3—C14 | 166.76 (9) | N1—C1—C12—N2 | 0.85 (19) |
O1W—Cu1—N3—C14 | 69.72 (9) | C5—C1—C12—N2 | 179.55 (13) |
C2—N1—C1—C5 | −1.0 (2) | N1—C1—C12—C8 | −178.52 (13) |
Cu1—N1—C1—C5 | −178.33 (11) | C5—C1—C12—C8 | 0.2 (2) |
C2—N1—C1—C12 | 177.68 (13) | Cu1—O1—C13—O2 | 174.42 (13) |
Cu1—N1—C1—C12 | 0.33 (16) | Cu1—O1—C13—C14 | −2.72 (16) |
C1—N1—C2—C3 | 0.7 (2) | Cu1—N3—C14—C15 | 155.66 (11) |
Cu1—N1—C2—C3 | 177.57 (12) | Cu1—N3—C14—C13 | 28.94 (13) |
N1—C2—C3—C4 | 0.2 (3) | O2—C13—C14—N3 | 164.17 (14) |
C2—C3—C4—C5 | −0.8 (3) | O1—C13—C14—N3 | −18.54 (18) |
N1—C1—C5—C4 | 0.4 (2) | O2—C13—C14—C15 | 36.5 (2) |
C12—C1—C5—C4 | −178.26 (14) | O1—C13—C14—C15 | −146.24 (14) |
N1—C1—C5—C6 | 179.43 (14) | N3—C14—C15—O3 | −55.86 (17) |
C12—C1—C5—C6 | 0.8 (2) | C13—C14—C15—O3 | 69.36 (16) |
C3—C4—C5—C1 | 0.6 (2) | N3—C14—C15—C16 | 63.86 (19) |
C3—C4—C5—C6 | −178.46 (16) | C13—C14—C15—C16 | −170.93 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W1···Cl1 | 0.80 | 2.36 | 3.1411 (13) | 166 |
O1W—H2W1···O2i | 0.82 | 1.90 | 2.7114 (18) | 167 |
O3—H1O3···O1ii | 0.90 | 2.03 | 2.9089 (18) | 164 |
N3—H1N3···Cl1iii | 0.86 | 2.62 | 3.3992 (13) | 151 |
N3—H2N3···O2Wi | 0.94 | 2.07 | 3.0085 (19) | 175 |
O2W—H1W2···Cl1i | 0.87 | 2.35 | 3.2104 (16) | 175 |
O2W—H2W2···Cl1iv | 0.84 | 2.33 | 3.1463 (14) | 162 |
O3W—H1W3···O2W | 1.01 | 1.95 | 2.954 (2) | 170 |
O3W—H2W3···O3ii | 0.91 | 2.03 | 2.901 (2) | 159 |
C7—H7A···O2v | 0.93 | 2.41 | 3.292 (2) | 157 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1; (iii) x+1, y, z; (iv) x, y−1, z+1; (v) x, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C4H8NO3)(C12H8N2)(H2O)]Cl·2H2O |
Mr | 451.36 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 7.1972 (1), 11.9785 (2), 12.2915 (2) |
α, β, γ (°) | 65.664 (1), 78.079 (1), 81.345 (1) |
V (Å3) | 942.15 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.34 |
Crystal size (mm) | 0.34 × 0.20 × 0.07 |
Data collection | |
Diffractometer | Bruker APEXII DUO CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.656, 0.911 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 29845, 8056, 5995 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.802 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.092, 1.04 |
No. of reflections | 8056 |
No. of parameters | 245 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.47, −0.41 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W1···Cl1 | 0.8000 | 2.3600 | 3.1411 (13) | 166.00 |
O1W—H2W1···O2i | 0.8200 | 1.9000 | 2.7114 (18) | 167.00 |
O3—H1O3···O1ii | 0.9000 | 2.0300 | 2.9089 (18) | 164.00 |
N3—H1N3···Cl1iii | 0.8600 | 2.6200 | 3.3992 (13) | 151.00 |
N3—H2N3···O2Wi | 0.9400 | 2.0700 | 3.0085 (19) | 175.00 |
O2W—H1W2···Cl1i | 0.8700 | 2.3500 | 3.2104 (16) | 175.00 |
O2W—H2W2···Cl1iv | 0.8400 | 2.3300 | 3.1463 (14) | 162.00 |
O3W—H1W3···O2W | 1.0100 | 1.9500 | 2.954 (2) | 170.00 |
O3W—H2W3···O3ii | 0.9100 | 2.0300 | 2.901 (2) | 159.00 |
C7—H7A···O2v | 0.9300 | 2.4100 | 3.292 (2) | 157.00 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1; (iii) x+1, y, z; (iv) x, y−1, z+1; (v) x, y, z−1. |
Acknowledgements
The authors thank Universiti Sains Malaysia (USM) for the RU research grant (PKIMIA/815002). HKF and WSL also thank USM for the Research University Golden Goose Grant (1001/PFIZIK/811012). YHT and WSL are grateful for the award of USM fellowships for financial assistance.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19. CSD CrossRef Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Kumar, R. S. & Arunachalam, S. (2007). Polyhedron, 26, 3255–3262. CAS Google Scholar
Lu, L.-P., Zhu, M.-L. & Yang, P. (2004). Acta Cryst. C60, m21–m23. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Patel, R. N., Singh, N., Shukla, K. K., Gundla, V. L. N. & Chauhan, U. K. (2006). Spectrochimica Acta Part A, 63, 21–26. Web of Science CrossRef CAS Google Scholar
Rao, R., Patra, A. K. & Chetana, P. R. (2007). Polyhedron, 26, 5331–5338. Web of Science CSD CrossRef CAS Google Scholar
Rao, R., Patra, A. K. & Chetana, P. R. (2008). Polyhedron, 27, 1343–1352. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vaidyanathan, V. G. & Nair, B. U. (2003). J. Inorg. Biochem. 93, 271–276. Web of Science CrossRef PubMed CAS Google Scholar
Wang, X. L., Chao, H., Peng, B. & Ji, L. N. (2007). Transition Met. Chem. 32, 125–130. Web of Science CrossRef Google Scholar
Zhang, S. C., Zhu, Y. G., Tu, C., Wei, H. Y., Yang, Z., Lin, L. P., Ding, J., Zhang, J. F. & Guo, Z. J. (2004). J. Inorg. Biochem. 98, 2099–210. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The interaction of transition metal complexes with DNA is a vibrant area of research and has long been investigated in relation to the development of new reagents for molecular biology, biotechnology and medicine (Vaidyanathan et al., 2003; Rao et al., 2008; Kumar et al., 2007). Among all the transition metals, copper is the most widely used metals in these studies as it is a bioessential element with +1 and +2 oxidation states (Patel et al., 2006; Wang et al., 2007; Vaidyanathan et al., 2003). Copper(II) complexes have been found to be useful in the treatment of many diseases as well as cancer. Copper(II) complexes of 1,10-phenanthroline and its derivatives exhibit various biological activities such as antimicrobial, antimycobaterial, anticandida and antitumor activities. Copper complexes of amino acids have been reported to exhibit effective antitumor and artificial nuclease activity. Several reports have also shown that these complexes show efficient DNA cleavage activity by either oxidative or hydrolytic pathways (Kumar et al., 2007; Zhang et al., 2004; Rao et al., 2007). In the title compound, aqua(DL-threoninato-κ2N,O)(1,10-phenanthroline)copper(II) chloride dihydrate, DL-threonine has been selected as the ligand for the complex.
The asymmetric unit of the title compound (Fig. 1) consists of one CuII complex cation, one chlorine anion and two water molecules. The CuII ion is coordinated by N1 and N2 atoms from the phenanthroline ligand and N3 and O1 atoms from the threoninato ligand in the basal plane and the O1W water molecule is coordinated in the apical site to form a distorted square-pyramidal geometry. The bond lengths are within normal values (Allen et al., 1987) and are comparable to those observed for a closely related structure (Lu et al., 2004).
In the crystal structure (Fig. 2), intermolecular C7—H7A···O2 hydrogen bonds (Table 1) link the CuII complex cations into chains along the c axis. Intermolecular O1W—H2W1···O2, O3—H1O3···O1, N3—H2N3···O2W, O3W—H2W3···O3, O3W—H1W3···O2W, N3—H1N3···Cl1, O2W—H1W2···Cl1, O2W—H2W2···Cl1 and O1W—H1W1—Cl1 interactions (Table 1) link the molecules into a three-dimensional network.