organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-[(4-Fluoro­benzyl­­idene)amino]-3-[1-(4-iso­butyl­phen­yl)eth­yl]-1-(morpholino­meth­yl)-1H-1,2,4-triazole-5(4H)-thione methanol hemisolvate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 7 April 2010; accepted 26 April 2010; online 30 April 2010)

In the title compound, C26H32FN5OS·0.5CH4O, the methyl group of the methanol solvent mol­ecule is disordered over two sites with equal occupancies and the solvent is further disordered about a crystallographic twofold rotation axis. The organic mol­ecule exists in a trans configuration with respect to the acyclic C=N bond. An intra­molecular C—H⋯S hydrogen bond generates an S(6) ring motif. The morpholine ring adopts a chair conformation. The essentially planar 1,2,4-triazole ring [maximum deviation = 0.013 (2) Å] forms dihedral angles of 11.21 (10) and 67.53 (11)°, respectively, with the fluoro­phenyl unit and the isobutyl-substituted benzene ring. The crystal structure is stabilized by a weak inter­molecular C—H⋯π inter­action.

Related literature

For general background to and applications of 1,2,4-triazole derivatives, see: Calhoun et al. (1995[Calhoun, W., Carlson, R. P., Crossley, R., Datko, L. J., Dietrich, S., Heatherington, K., Marshall, L. A., Meade, P. J., Opalko, A. & Shepherd, R. G. (1995). J. Med. Chem. 38, 1473-1481.]); Pandeya et al. (1999[Pandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). J. Pharm. Sci. 9, 25-31.], 2000[Pandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (2000). Arzneim Forsch. 50, 55-59.]); Sujith et al. (2009[Sujith, K. V., Rao, J. N., Shetty, P. & Kalluraya, B. (2009). Eur. J. Med. Chem. 44, 3697-3702.]). For graph-set descriptions of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For closely related structures, see: Goh et al. (2010a[Goh, J. H., Fun, H.-K., Vinayaka, A. C. & Kalluraya, B. (2010a). Acta Cryst. E66, o83-o84.],b[Goh, J. H., Fun, H.-K., Vinayaka, A. C. & Kalluraya, B. (2010b). Acta Cryst. E66, o89-o90.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C26H32FN5OS·0.5CH4O

  • Mr = 497.65

  • Monoclinic, C 2/c

  • a = 40.186 (3) Å

  • b = 4.7840 (3) Å

  • c = 30.073 (2) Å

  • β = 116.112 (2)°

  • V = 5191.5 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 100 K

  • 0.31 × 0.16 × 0.06 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.951, Tmax = 0.990

  • 24705 measured reflections

  • 5921 independent reflections

  • 4378 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.149

  • S = 1.04

  • 5921 reflections

  • 337 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the 1,2,4-triazole ring (N2/C8/N3/N4/C9).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯S1 0.93 2.51 3.221 (2) 133
C22—H22ACg1i 0.97 2.64 3.492 (2) 146
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used. Despite their large therapeutic applications, they have several undesired, often serious side effects (Calhoun et al., 1995). Therefore, long term administration is not advisable. The need for new anti-inflammatory drugs is obvious and accordingly, there have been renewed interest in anti-inflammatory agents endowed with potent biological activity. In this context, it has been shown that some Mannich bases find applications as anti-inflammatory, analgesic agents (Sujith et al., 2009) and anti-microbial properties (Pandeya et al., 1999, 2000).

The asymmetric unit of the title 1,2,4-triazole compound (Fig. 1) comprises of a (E)-4-[(4-fluorobenzylidene)amino]-3-[1-(4-isobutylphenyl)ethyl] -1-(morpholinomethyl)-1H-1,2,4-triazole-5(4H)-thione molecule and a methanol molecule of crystallization, which is partially occupied with a fixed occupancy of 0.5. The atom C27 of the methanol solvent molecule is disordered over two sites with an equal occupancy of 0.25. Both the disordered components are further disordered over a crystallographic two-fold rotation [symmetry code to generate equivalent atoms: -x, y, -z + 1/2]. The main molecule exists in an E configuration with respect to the acyclic C7N1 double bond [bond length of C7N1 = 1.276 (2) Å and torsion angle of C6–C7–N1–N2 of 176.41 (16)°]. An intramolecular C7—H7A···S1 hydrogen bond generates a six-membered ring, producing an S(6) ring motif (Bernstein et al., 1995). The morpholino unit adopts a chair conformation, with puckering parameters of Q = 0.580 (2) Å, θ = 178.2 (2)° and φ = 126 (6)°. The 1,2,4-triazole ring (N2/C8/N3/N4/C9) is essentially planar, with maximum deviation of -0.013 (2) Å for atom N2. The 1,2,4-triazole ring is inclined at dihedral angles of 11.21 (10) and 67.53 (11)°, respectively, with fluorophenyl group (C1-C6/F1) and isobutyl-substituted benzene ring (C11-C16). The bond lengths and angles are consistent to those observed in closely related structures (Goh et al., 2010a,b).

In the crystal structure, no significant intermolecular hydrogen bonds are observed. The crystal structure is stabilized by a weak intermolecular C22—H22A···Cg1 interactions (Table 1) involving the 1,2,4-triazole ring.

Related literature top

For general background to and applications of 1,2,4-triazole derivatives, see: Calhoun et al. (1995); Pandeya et al. (1999, 2000); Sujith et al. (2009). For graph-set descriptions of hydrogen-bond motifs, see : Bernstein et al. (1995). For closely related structures, see: Goh et al. (2010a,b). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of Schiff base (0.01 mol) and formaldehyde (40 %, 2 ml) in ethanol (15 ml) was taken to this solution morpholine (0.01 mol) was added. The reaction mixture was stirred at room temperature for two days. The solid product obtained was collected by filtration, washed with ethanol and dried. Colourless single crystals suitable for X-ray analysis were obtained from a 1:2 mixture of N,N-dimethylformamide and methanol by slow evaporation.

Refinement top

All hydrogen atoms were placed in their calculated positions, with C—H = 0.93 – 0.98 Å, and refined using a riding model with Uiso = 1.2 or 1.5 Ueq(C). A rotating group model was used for the C19, C20 and C21 methyl groups. The methanol solvent molecule is refined with a fixed occupancy of 0.5. The atom C27 of methanol solvent molecule is disordered over two positions with an equal occupancy of 0.25. Both the disordered components are further disordered over a crystallography two-fold rotation. A short intermolecular H15A···H27E interactions [2.04 Å] is also observed.

Structure description top

Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used. Despite their large therapeutic applications, they have several undesired, often serious side effects (Calhoun et al., 1995). Therefore, long term administration is not advisable. The need for new anti-inflammatory drugs is obvious and accordingly, there have been renewed interest in anti-inflammatory agents endowed with potent biological activity. In this context, it has been shown that some Mannich bases find applications as anti-inflammatory, analgesic agents (Sujith et al., 2009) and anti-microbial properties (Pandeya et al., 1999, 2000).

The asymmetric unit of the title 1,2,4-triazole compound (Fig. 1) comprises of a (E)-4-[(4-fluorobenzylidene)amino]-3-[1-(4-isobutylphenyl)ethyl] -1-(morpholinomethyl)-1H-1,2,4-triazole-5(4H)-thione molecule and a methanol molecule of crystallization, which is partially occupied with a fixed occupancy of 0.5. The atom C27 of the methanol solvent molecule is disordered over two sites with an equal occupancy of 0.25. Both the disordered components are further disordered over a crystallographic two-fold rotation [symmetry code to generate equivalent atoms: -x, y, -z + 1/2]. The main molecule exists in an E configuration with respect to the acyclic C7N1 double bond [bond length of C7N1 = 1.276 (2) Å and torsion angle of C6–C7–N1–N2 of 176.41 (16)°]. An intramolecular C7—H7A···S1 hydrogen bond generates a six-membered ring, producing an S(6) ring motif (Bernstein et al., 1995). The morpholino unit adopts a chair conformation, with puckering parameters of Q = 0.580 (2) Å, θ = 178.2 (2)° and φ = 126 (6)°. The 1,2,4-triazole ring (N2/C8/N3/N4/C9) is essentially planar, with maximum deviation of -0.013 (2) Å for atom N2. The 1,2,4-triazole ring is inclined at dihedral angles of 11.21 (10) and 67.53 (11)°, respectively, with fluorophenyl group (C1-C6/F1) and isobutyl-substituted benzene ring (C11-C16). The bond lengths and angles are consistent to those observed in closely related structures (Goh et al., 2010a,b).

In the crystal structure, no significant intermolecular hydrogen bonds are observed. The crystal structure is stabilized by a weak intermolecular C22—H22A···Cg1 interactions (Table 1) involving the 1,2,4-triazole ring.

For general background to and applications of 1,2,4-triazole derivatives, see: Calhoun et al. (1995); Pandeya et al. (1999, 2000); Sujith et al. (2009). For graph-set descriptions of hydrogen-bond motifs, see : Bernstein et al. (1995). For closely related structures, see: Goh et al. (2010a,b). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. An intramolecular hydrogen bond is shown as dashed line. The open bond in the solvent molecule indicates a disordered component.
(E)-4-[(4-Fluorobenzylidene)amino]-3-[1-(4-isobutylphenyl)ethyl]-1- (morpholinomethyl)-1H-1,2,4-triazole-5(4H)-thione methanol hemisolvate top
Crystal data top
C26H32FN5OS·0.5CH4OF(000) = 2120
Mr = 497.65Dx = 1.273 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4090 reflections
a = 40.186 (3) Åθ = 2.3–29.3°
b = 4.7840 (3) ŵ = 0.16 mm1
c = 30.073 (2) ÅT = 100 K
β = 116.112 (2)°Plate, colourless
V = 5191.5 (6) Å30.31 × 0.16 × 0.06 mm
Z = 8
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
5921 independent reflections
Radiation source: fine-focus sealed tube4378 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
φ and ω scansθmax = 27.5°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 4552
Tmin = 0.951, Tmax = 0.990k = 66
24705 measured reflectionsl = 3936
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0761P)2 + 4.918P]
where P = (Fo2 + 2Fc2)/3
5921 reflections(Δ/σ)max < 0.001
337 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C26H32FN5OS·0.5CH4OV = 5191.5 (6) Å3
Mr = 497.65Z = 8
Monoclinic, C2/cMo Kα radiation
a = 40.186 (3) ŵ = 0.16 mm1
b = 4.7840 (3) ÅT = 100 K
c = 30.073 (2) Å0.31 × 0.16 × 0.06 mm
β = 116.112 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
5921 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4378 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.990Rint = 0.056
24705 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.04Δρmax = 0.63 e Å3
5921 reflectionsΔρmin = 0.22 e Å3
337 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.088287 (13)0.32232 (11)0.024927 (18)0.02279 (15)
F10.03130 (3)1.5045 (3)0.10905 (5)0.0353 (3)
O10.25668 (4)0.2919 (3)0.07215 (6)0.0265 (3)
N10.09867 (4)0.7033 (3)0.12673 (6)0.0176 (3)
N20.12134 (4)0.4899 (3)0.12369 (6)0.0161 (3)
N30.15083 (4)0.1724 (3)0.10553 (6)0.0172 (3)
N40.17235 (4)0.2366 (4)0.15492 (6)0.0188 (4)
N50.19454 (4)0.0176 (3)0.07277 (6)0.0174 (3)
C10.05201 (5)1.1031 (4)0.14003 (8)0.0219 (4)
H1A0.07591.08740.16540.026*
C20.02764 (6)1.2953 (5)0.14380 (8)0.0252 (4)
H2A0.03471.40800.17170.030*
C30.00756 (6)1.3156 (4)0.10502 (8)0.0247 (4)
C40.01956 (6)1.1530 (4)0.06315 (8)0.0242 (4)
H4A0.04331.17300.03760.029*
C50.00502 (5)0.9582 (5)0.06043 (8)0.0228 (4)
H5A0.00260.84240.03280.027*
C60.04086 (5)0.9323 (4)0.09816 (7)0.0187 (4)
C70.06528 (5)0.7189 (4)0.09341 (7)0.0201 (4)
H7A0.05660.59710.06660.024*
C80.11940 (5)0.3259 (4)0.08433 (7)0.0172 (4)
C90.15399 (5)0.4326 (4)0.16470 (7)0.0170 (4)
C100.16652 (5)0.5789 (4)0.21346 (7)0.0176 (4)
H10A0.15520.76500.20690.021*
C110.15292 (5)0.4252 (4)0.24672 (7)0.0189 (4)
C120.17420 (6)0.2223 (5)0.28014 (8)0.0248 (4)
H12A0.19740.17720.28240.030*
C130.16132 (7)0.0854 (5)0.31034 (8)0.0299 (5)
H13A0.17620.04780.33280.036*
C140.12667 (6)0.1438 (4)0.30763 (7)0.0244 (5)
C150.10542 (6)0.3483 (5)0.27433 (7)0.0253 (5)
H15A0.08220.39290.27200.030*
C160.11845 (5)0.4869 (5)0.24448 (7)0.0230 (4)
H16A0.10380.62350.22260.028*
C170.11276 (7)0.0019 (5)0.34084 (8)0.0287 (5)
H17A0.12680.17280.35320.034*
H17B0.08710.05390.32120.034*
C180.11550 (6)0.1720 (5)0.38489 (7)0.0233 (4)
H18A0.10100.34320.37210.028*
C190.09868 (7)0.0110 (5)0.41376 (9)0.0335 (5)
H19A0.07360.03870.39200.050*
H19B0.09900.12580.44010.050*
H19C0.11290.15560.42730.050*
C200.15534 (6)0.2551 (6)0.41852 (8)0.0357 (6)
H20A0.16470.37050.40040.054*
H20B0.17030.09010.42990.054*
H20C0.15610.35700.44650.054*
C210.20863 (5)0.6187 (5)0.23668 (8)0.0245 (5)
H21A0.21490.74490.21670.037*
H21B0.22040.44150.23850.037*
H21C0.21700.69450.26940.037*
C220.16324 (5)0.0479 (4)0.08182 (7)0.0190 (4)
H22A0.16920.21330.10260.023*
H22B0.14260.09540.05040.023*
C230.18987 (6)0.2658 (4)0.04242 (8)0.0224 (4)
H23A0.18920.43120.06060.027*
H23B0.16660.25430.01260.027*
C240.22178 (6)0.2869 (5)0.02871 (8)0.0279 (5)
H24A0.22110.12850.00820.033*
H24B0.21920.45590.00960.033*
C250.26073 (5)0.0439 (5)0.10014 (8)0.0249 (5)
H25A0.28460.04520.12900.030*
H25B0.25990.11760.08020.030*
C260.23025 (5)0.0222 (5)0.11653 (8)0.0230 (4)
H26A0.23330.14720.13570.028*
H26B0.23140.18070.13730.028*
O20.00036 (14)0.8833 (15)0.27352 (18)0.091 (2)0.50
H2OA0.02070.88350.27370.136*0.25
H2OB0.01840.84890.24630.136*0.25
C27A0.0135 (4)1.187 (3)0.2744 (6)0.068 (4)0.25
H27A0.00761.30840.25930.102*0.25
H27B0.02811.24350.30820.102*0.25
H27C0.02821.19930.25660.102*0.25
C27B0.0229 (3)0.616 (2)0.2923 (4)0.039 (2)0.25
H27D0.00650.45960.28600.059*0.25
H27E0.03830.58910.27570.059*0.25
H27F0.03820.63330.32720.059*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0194 (3)0.0310 (3)0.0140 (2)0.0030 (2)0.00371 (19)0.00443 (19)
F10.0279 (7)0.0307 (7)0.0483 (8)0.0099 (5)0.0178 (6)0.0043 (6)
O10.0207 (7)0.0301 (8)0.0299 (8)0.0040 (6)0.0123 (6)0.0000 (6)
N10.0165 (8)0.0198 (8)0.0174 (8)0.0025 (6)0.0083 (6)0.0002 (6)
N20.0150 (7)0.0198 (8)0.0132 (7)0.0009 (6)0.0059 (6)0.0014 (6)
N30.0156 (8)0.0230 (8)0.0142 (8)0.0007 (6)0.0075 (6)0.0014 (6)
N40.0177 (8)0.0250 (9)0.0142 (8)0.0004 (6)0.0075 (6)0.0005 (6)
N50.0161 (8)0.0208 (8)0.0159 (8)0.0013 (6)0.0075 (6)0.0009 (6)
C10.0187 (9)0.0219 (10)0.0233 (10)0.0005 (8)0.0075 (8)0.0008 (8)
C20.0254 (11)0.0245 (10)0.0260 (11)0.0019 (8)0.0115 (9)0.0062 (8)
C30.0215 (10)0.0218 (10)0.0345 (12)0.0057 (8)0.0157 (9)0.0018 (9)
C40.0179 (9)0.0293 (11)0.0231 (10)0.0031 (8)0.0068 (8)0.0049 (8)
C50.0204 (10)0.0277 (11)0.0192 (10)0.0008 (8)0.0078 (8)0.0004 (8)
C60.0172 (9)0.0206 (9)0.0187 (9)0.0018 (7)0.0085 (8)0.0025 (7)
C70.0177 (9)0.0246 (10)0.0176 (9)0.0003 (8)0.0075 (8)0.0021 (8)
C80.0169 (9)0.0190 (9)0.0177 (9)0.0012 (7)0.0095 (7)0.0011 (7)
C90.0149 (9)0.0220 (9)0.0145 (9)0.0005 (7)0.0070 (7)0.0028 (7)
C100.0168 (9)0.0208 (9)0.0139 (9)0.0007 (7)0.0056 (7)0.0001 (7)
C110.0218 (10)0.0217 (9)0.0129 (9)0.0031 (8)0.0074 (7)0.0045 (7)
C120.0277 (11)0.0263 (11)0.0235 (10)0.0067 (8)0.0140 (9)0.0010 (8)
C130.0408 (13)0.0260 (11)0.0250 (11)0.0077 (10)0.0165 (10)0.0055 (9)
C140.0328 (11)0.0226 (10)0.0187 (10)0.0064 (8)0.0121 (9)0.0048 (8)
C150.0216 (10)0.0357 (12)0.0186 (10)0.0042 (9)0.0089 (8)0.0011 (9)
C160.0189 (9)0.0312 (11)0.0154 (9)0.0011 (8)0.0044 (8)0.0009 (8)
C170.0397 (13)0.0253 (11)0.0251 (11)0.0080 (9)0.0179 (10)0.0020 (9)
C180.0251 (10)0.0274 (11)0.0192 (10)0.0006 (8)0.0113 (8)0.0010 (8)
C190.0372 (13)0.0399 (13)0.0294 (12)0.0025 (10)0.0200 (10)0.0032 (10)
C200.0314 (12)0.0520 (16)0.0233 (11)0.0063 (11)0.0117 (10)0.0046 (10)
C210.0172 (10)0.0330 (12)0.0207 (10)0.0027 (8)0.0059 (8)0.0017 (8)
C220.0194 (9)0.0194 (9)0.0195 (9)0.0007 (7)0.0096 (8)0.0033 (7)
C230.0211 (10)0.0268 (11)0.0211 (10)0.0020 (8)0.0108 (8)0.0040 (8)
C240.0252 (11)0.0366 (12)0.0249 (11)0.0015 (9)0.0139 (9)0.0040 (9)
C250.0179 (10)0.0286 (11)0.0272 (11)0.0010 (8)0.0092 (8)0.0008 (9)
C260.0172 (9)0.0282 (11)0.0222 (10)0.0011 (8)0.0073 (8)0.0025 (8)
O20.056 (3)0.165 (6)0.056 (3)0.004 (4)0.031 (3)0.012 (3)
C27A0.056 (8)0.060 (8)0.092 (11)0.010 (6)0.037 (7)0.019 (7)
C27B0.038 (5)0.057 (7)0.030 (5)0.009 (5)0.021 (4)0.003 (5)
Geometric parameters (Å, º) top
S1—C81.6699 (19)C16—H16A0.9300
F1—C31.358 (2)C17—C181.527 (3)
O1—C251.422 (3)C17—H17A0.9700
O1—C241.436 (3)C17—H17B0.9700
N1—C71.276 (2)C18—C201.523 (3)
N1—N21.398 (2)C18—C191.523 (3)
N2—C91.376 (2)C18—H18A0.9800
N2—C81.393 (2)C19—H19A0.9600
N3—C81.354 (2)C19—H19B0.9600
N3—N41.385 (2)C19—H19C0.9600
N3—C221.477 (2)C20—H20A0.9600
N4—C91.304 (3)C20—H20B0.9600
N5—C221.434 (2)C20—H20C0.9600
N5—C231.458 (3)C21—H21A0.9600
N5—C261.459 (2)C21—H21B0.9600
C1—C21.384 (3)C21—H21C0.9600
C1—C61.399 (3)C22—H22A0.9700
C1—H1A0.9300C22—H22B0.9700
C2—C31.385 (3)C23—C241.513 (3)
C2—H2A0.9300C23—H23A0.9700
C3—C41.374 (3)C23—H23B0.9700
C4—C51.387 (3)C24—H24A0.9700
C4—H4A0.9300C24—H24B0.9700
C5—C61.392 (3)C25—C261.512 (3)
C5—H5A0.9300C25—H25A0.9700
C6—C71.466 (3)C25—H25B0.9700
C7—H7A0.9300C26—H26A0.9700
C9—C101.498 (3)C26—H26B0.9700
C10—C111.524 (3)O2—O2i1.402 (10)
C10—C211.532 (3)O2—C27B1.522 (13)
C10—H10A0.9800O2—C27A1.543 (15)
C11—C121.388 (3)O2—H2OA0.8503
C11—C161.389 (3)O2—H2OB0.8499
C12—C131.391 (3)C27A—C27Ai1.39 (3)
C12—H12A0.9300C27A—H27A0.9600
C13—C141.387 (3)C27A—H27B0.9600
C13—H13A0.9300C27A—H27C0.9602
C14—C151.392 (3)C27B—H27D0.9600
C14—C171.513 (3)C27B—H27E0.9602
C15—C161.390 (3)C27B—H27F0.9601
C15—H15A0.9300
C25—O1—C24109.65 (16)C18—C19—H19A109.5
C7—N1—N2118.83 (16)C18—C19—H19B109.5
C9—N2—C8108.91 (15)H19A—C19—H19B109.5
C9—N2—N1118.60 (15)C18—C19—H19C109.5
C8—N2—N1132.25 (15)H19A—C19—H19C109.5
C8—N3—N4113.44 (15)H19B—C19—H19C109.5
C8—N3—C22127.08 (16)C18—C20—H20A109.5
N4—N3—C22119.48 (15)C18—C20—H20B109.5
C9—N4—N3104.66 (15)H20A—C20—H20B109.5
C22—N5—C23114.50 (15)C18—C20—H20C109.5
C22—N5—C26115.40 (16)H20A—C20—H20C109.5
C23—N5—C26110.90 (16)H20B—C20—H20C109.5
C2—C1—C6120.26 (18)C10—C21—H21A109.5
C2—C1—H1A119.9C10—C21—H21B109.5
C6—C1—H1A119.9H21A—C21—H21B109.5
C1—C2—C3118.35 (19)C10—C21—H21C109.5
C1—C2—H2A120.8H21A—C21—H21C109.5
C3—C2—H2A120.8H21B—C21—H21C109.5
F1—C3—C4118.77 (19)N5—C22—N3116.51 (16)
F1—C3—C2117.96 (19)N5—C22—H22A108.2
C4—C3—C2123.26 (19)N3—C22—H22A108.2
C3—C4—C5117.56 (19)N5—C22—H22B108.2
C3—C4—H4A121.2N3—C22—H22B108.2
C5—C4—H4A121.2H22A—C22—H22B107.3
C4—C5—C6121.33 (19)N5—C23—C24109.50 (17)
C4—C5—H5A119.3N5—C23—H23A109.8
C6—C5—H5A119.3C24—C23—H23A109.8
C5—C6—C1119.22 (18)N5—C23—H23B109.8
C5—C6—C7118.64 (18)C24—C23—H23B109.8
C1—C6—C7122.11 (17)H23A—C23—H23B108.2
N1—C7—C6118.84 (18)O1—C24—C23111.04 (17)
N1—C7—H7A120.6O1—C24—H24A109.4
C6—C7—H7A120.6C23—C24—H24A109.4
N3—C8—N2102.32 (15)O1—C24—H24B109.4
N3—C8—S1127.05 (15)C23—C24—H24B109.4
N2—C8—S1130.55 (14)H24A—C24—H24B108.0
N4—C9—N2110.62 (16)O1—C25—C26110.62 (17)
N4—C9—C10125.22 (17)O1—C25—H25A109.5
N2—C9—C10124.16 (17)C26—C25—H25A109.5
C9—C10—C11110.73 (16)O1—C25—H25B109.5
C9—C10—C21109.42 (16)C26—C25—H25B109.5
C11—C10—C21113.83 (16)H25A—C25—H25B108.1
C9—C10—H10A107.5N5—C26—C25108.87 (17)
C11—C10—H10A107.5N5—C26—H26A109.9
C21—C10—H10A107.5C25—C26—H26A109.9
C12—C11—C16117.86 (19)N5—C26—H26B109.9
C12—C11—C10121.88 (18)C25—C26—H26B109.9
C16—C11—C10120.27 (18)H26A—C26—H26B108.3
C11—C12—C13120.9 (2)O2i—O2—C27B96.8 (5)
C11—C12—H12A119.5O2i—O2—C27A82.7 (6)
C13—C12—H12A119.5C27B—O2—C27A129.9 (7)
C14—C13—C12121.3 (2)O2i—O2—H2OA115.4
C14—C13—H13A119.4C27B—O2—H2OA115.5
C12—C13—H13A119.4C27A—O2—H2OA109.4
C13—C14—C15117.8 (2)O2i—O2—H2OB54.0
C13—C14—C17121.4 (2)C27B—O2—H2OB108.9
C15—C14—C17120.7 (2)C27A—O2—H2OB110.6
C16—C15—C14120.9 (2)H2OA—O2—H2OB62.8
C16—C15—H15A119.5C27Ai—C27A—O283.1 (7)
C14—C15—H15A119.5C27Ai—C27A—H27A52.0
C11—C16—C15121.21 (19)O2—C27A—H27A109.7
C11—C16—H16A119.4C27Ai—C27A—H27B161.2
C15—C16—H16A119.4O2—C27A—H27B109.1
C14—C17—C18114.54 (18)H27A—C27A—H27B109.5
C14—C17—H17A108.6C27Ai—C27A—H27C78.2
C18—C17—H17A108.6O2—C27A—H27C109.6
C14—C17—H17B108.6H27A—C27A—H27C109.5
C18—C17—H17B108.6H27B—C27A—H27C109.5
H17A—C17—H17B107.6O2—C27B—H27D109.8
C20—C18—C19110.73 (18)O2—C27B—H27E109.7
C20—C18—C17111.82 (18)H27D—C27B—H27E109.5
C19—C18—C17109.78 (18)O2—C27B—H27F108.9
C20—C18—H18A108.1H27D—C27B—H27F109.5
C19—C18—H18A108.1H27E—C27B—H27F109.4
C17—C18—H18A108.1
C7—N1—N2—C9165.16 (18)N2—C9—C10—C21143.00 (19)
C7—N1—N2—C821.2 (3)C9—C10—C11—C1292.1 (2)
C8—N3—N4—C90.2 (2)C21—C10—C11—C1231.6 (3)
C22—N3—N4—C9179.21 (16)C9—C10—C11—C1688.2 (2)
C6—C1—C2—C30.8 (3)C21—C10—C11—C16148.00 (19)
C1—C2—C3—F1179.92 (19)C16—C11—C12—C130.1 (3)
C1—C2—C3—C40.5 (3)C10—C11—C12—C13179.68 (19)
F1—C3—C4—C5178.78 (19)C11—C12—C13—C140.9 (3)
C2—C3—C4—C50.7 (3)C12—C13—C14—C151.3 (3)
C3—C4—C5—C61.5 (3)C12—C13—C14—C17179.2 (2)
C4—C5—C6—C11.2 (3)C13—C14—C15—C160.6 (3)
C4—C5—C6—C7178.98 (19)C17—C14—C15—C16178.64 (19)
C2—C1—C6—C50.0 (3)C12—C11—C16—C150.7 (3)
C2—C1—C6—C7177.7 (2)C10—C11—C16—C15179.70 (18)
N2—N1—C7—C6176.41 (16)C14—C15—C16—C110.3 (3)
C5—C6—C7—N1176.71 (19)C13—C14—C17—C18101.5 (2)
C1—C6—C7—N15.5 (3)C15—C14—C17—C1876.4 (3)
N4—N3—C8—N21.5 (2)C14—C17—C18—C2060.0 (3)
C22—N3—C8—N2177.79 (17)C14—C17—C18—C19176.70 (19)
N4—N3—C8—S1175.59 (14)C23—N5—C22—N357.1 (2)
C22—N3—C8—S15.1 (3)C26—N5—C22—N373.4 (2)
C9—N2—C8—N32.3 (2)C8—N3—C22—N5109.5 (2)
N1—N2—C8—N3176.42 (18)N4—N3—C22—N571.3 (2)
C9—N2—C8—S1174.70 (16)C22—N5—C23—C24171.03 (17)
N1—N2—C8—S10.6 (3)C26—N5—C23—C2456.2 (2)
N3—N4—C9—N21.3 (2)C25—O1—C24—C2359.4 (2)
N3—N4—C9—C10178.07 (17)N5—C23—C24—O156.9 (2)
C8—N2—C9—N42.4 (2)C24—O1—C25—C2660.8 (2)
N1—N2—C9—N4177.45 (16)C22—N5—C26—C25170.28 (17)
C8—N2—C9—C10177.03 (17)C23—N5—C26—C2557.4 (2)
N1—N2—C9—C102.0 (3)O1—C25—C26—N559.8 (2)
N4—C9—C10—C1189.9 (2)O2i—O2—C27A—C27Ai41.1 (11)
N2—C9—C10—C1190.7 (2)C27B—O2—C27A—C27Ai133.9 (10)
N4—C9—C10—C2136.3 (3)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the 1,2,4-triazole ring (N2/C8/N3/N4/C9).
D—H···AD—HH···AD···AD—H···A
C7—H7A···S10.932.513.221 (2)133
C22—H22A···Cg1ii0.972.643.492 (2)146
Symmetry code: (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC26H32FN5OS·0.5CH4O
Mr497.65
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)40.186 (3), 4.7840 (3), 30.073 (2)
β (°) 116.112 (2)
V3)5191.5 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.31 × 0.16 × 0.06
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.951, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
24705, 5921, 4378
Rint0.056
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.149, 1.04
No. of reflections5921
No. of parameters337
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.22

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the 1,2,4-triazole ring (N2/C8/N3/N4/C9).
D—H···AD—HH···AD···AD—H···A
C7—H7A···S10.93002.51003.221 (2)133.00
C22—H22A···Cg1i0.97002.643.492 (2)146
Symmetry code: (i) x, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: C-7576-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalhoun, W., Carlson, R. P., Crossley, R., Datko, L. J., Dietrich, S., Heatherington, K., Marshall, L. A., Meade, P. J., Opalko, A. & Shepherd, R. G. (1995). J. Med. Chem. 38, 1473–1481.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoh, J. H., Fun, H.-K., Vinayaka, A. C. & Kalluraya, B. (2010a). Acta Cryst. E66, o83–o84.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGoh, J. H., Fun, H.-K., Vinayaka, A. C. & Kalluraya, B. (2010b). Acta Cryst. E66, o89–o90.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). J. Pharm. Sci. 9, 25–31.  CAS Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (2000). Arzneim Forsch. 50, 55–59.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSujith, K. V., Rao, J. N., Shetty, P. & Kalluraya, B. (2009). Eur. J. Med. Chem. 44, 3697–3702.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds