organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2H-Benzotriazol-2-yl)-1-(4-fluoro­phen­yl)propan-1-one

aWeifang Medical University, Weifang 261042, People's Republic of China
*Correspondence e-mail: Weichidu@163.com

(Received 12 April 2010; accepted 15 April 2010; online 21 April 2010)

In the title compound, C15H12FN3O, the benzotriazole ring system is essentially planar, with a maximum deviation from the least-squares plane of 0.016 (3) Å. The dihedral angle between this ring system and the fluoro-substituted benzene ring is 67.97 (2)°. The crystal structure is stabilized by weak inter­molecular C—H⋯N inter­actions.

Related literature

For applications of benzotriazole derivatives, see: Chen & Wu (2005[Chen, Z.-Y. & Wu, M.-J. (2005). Org. Lett. 7, 475-477.]). For standard bond distances, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12FN3O

  • Mr = 269.28

  • Monoclinic, P 21

  • a = 5.7858 (12) Å

  • b = 5.6814 (11) Å

  • c = 19.313 (4) Å

  • β = 90.77 (3)°

  • V = 634.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 3943 measured reflections

  • 1240 independent reflections

  • 1122 reflections with I > 2σ(I)

  • Rint = 0.135

Refinement
  • R[F2 > 2σ(F2)] = 0.081

  • wR(F2) = 0.210

  • S = 1.07

  • 1240 reflections

  • 181 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14B⋯N1i 0.97 2.58 3.511 (3) 161
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1H-Benzotriazole and its derivatives are an important class of compounds because they exhibit a broad spectrum of pharmacological activities such as antifungal, antitumor and antineoplastic activities (Chen & Wu., 2005). 1H and 2H-Benzotriazole are tautomers. We report here the synthesis and structure of the title compound, (I) (Fig. 1), as part of our ongoing studies on new benzotriazole compounds with potential bioactivity. All bond lengths (Allen et al., 1987) and angles in (I) are within normal ranges. The benzotriazole ring system is essentially planar with a maximum deviation from the least squares plane of 0.016 (3)Å. The dihedral angle between this ring system and the fluro substituted benzene ring is 67.97 (2). The crystal structure is stabilized by weak intermolecular C—H···N interactions.

Related literature top

For applications of benzotriazole derivatives, see: Chen & Wu (2005). For standard bond distances, see: Allen et al. (1987).

Experimental top

To a solution of 1-(4-ethylphenyl)-3-(dimethylamino)propan-1-one (12.05 g, 0.05 mol) in water (25 ml) was added benzotriazole (7.1 g, 0.06 mol). The mixture was heated under reflux for 5 h. The solution was filtered,concentrated and purified by flash chromatography (silica gel,using petroleum ether-ethylacetate(4:1 v/v). to afford the title compound. Colourless single crystals suitable for X-ray diffraction study were obtained by slow evaporation of a ethanol solution over a period of 5 d.

Refinement top

In the absence of significant anomalous dispersion effects the Friedel pairs were merged. All H atoms were located in difference Fourier maps and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, and with Uiso(H) = 1.2 Ueq(C) .

Structure description top

1H-Benzotriazole and its derivatives are an important class of compounds because they exhibit a broad spectrum of pharmacological activities such as antifungal, antitumor and antineoplastic activities (Chen & Wu., 2005). 1H and 2H-Benzotriazole are tautomers. We report here the synthesis and structure of the title compound, (I) (Fig. 1), as part of our ongoing studies on new benzotriazole compounds with potential bioactivity. All bond lengths (Allen et al., 1987) and angles in (I) are within normal ranges. The benzotriazole ring system is essentially planar with a maximum deviation from the least squares plane of 0.016 (3)Å. The dihedral angle between this ring system and the fluro substituted benzene ring is 67.97 (2). The crystal structure is stabilized by weak intermolecular C—H···N interactions.

For applications of benzotriazole derivatives, see: Chen & Wu (2005). For standard bond distances, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing hydrogen bonds as dashed lines.
3-(2H-Benzotriazol-2-yl)-1-(4-fluorophenyl)propan-1-one top
Crystal data top
C15H12FN3OF(000) = 280
Mr = 269.28Dx = 1.409 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1874 reflections
a = 5.7858 (12) Åθ = 1.1–25.0°
b = 5.6814 (11) ŵ = 0.10 mm1
c = 19.313 (4) ÅT = 293 K
β = 90.77 (3)°Block, colorless
V = 634.8 (2) Å30.20 × 0.18 × 0.10 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
1122 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.135
Graphite monochromatorθmax = 25.0°, θmin = 1.1°
φ and ω scansh = 66
3943 measured reflectionsk = 66
1240 independent reflectionsl = 2220
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.210H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1432P)2 + 0.1388P]
where P = (Fo2 + 2Fc2)/3
1240 reflections(Δ/σ)max = 0.002
181 parametersΔρmax = 0.30 e Å3
1 restraintΔρmin = 0.34 e Å3
Crystal data top
C15H12FN3OV = 634.8 (2) Å3
Mr = 269.28Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.7858 (12) ŵ = 0.10 mm1
b = 5.6814 (11) ÅT = 293 K
c = 19.313 (4) Å0.20 × 0.18 × 0.10 mm
β = 90.77 (3)°
Data collection top
Bruker SMART CCD
diffractometer
1122 reflections with I > 2σ(I)
3943 measured reflectionsRint = 0.135
1240 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0811 restraint
wR(F2) = 0.210H-atom parameters constrained
S = 1.07Δρmax = 0.30 e Å3
1240 reflectionsΔρmin = 0.34 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F0.0574 (7)1.0117 (7)0.01386 (19)0.0505 (11)
O0.9115 (8)1.3049 (7)0.1980 (2)0.0434 (12)
N11.3671 (7)0.6871 (8)0.3093 (2)0.0278 (10)
N21.0658 (8)0.6958 (8)0.3810 (2)0.0300 (10)
N31.1720 (8)0.7892 (8)0.3293 (2)0.0265 (10)
C91.3499 (10)0.1759 (10)0.4572 (3)0.0316 (13)
H9A1.34020.06090.49130.038*
C150.8110 (10)1.1189 (10)0.1966 (3)0.0300 (13)
C140.8827 (10)0.9205 (9)0.2440 (3)0.0292 (12)
H14A0.92700.78560.21640.035*
H14B0.75240.87460.27200.035*
C121.3905 (9)0.5068 (10)0.3556 (3)0.0274 (12)
C50.6140 (11)1.0790 (10)0.1461 (3)0.0326 (13)
C131.0823 (9)0.9904 (10)0.2907 (3)0.0293 (12)
H13A1.20471.05710.26300.035*
H13B1.03151.11030.32290.035*
C111.2016 (9)0.5119 (10)0.4001 (3)0.0276 (12)
C20.2439 (10)1.0338 (10)0.0570 (3)0.0344 (14)
C60.5609 (10)1.2550 (10)0.0984 (3)0.0315 (13)
H6A0.65281.38910.09660.038*
C101.1818 (10)0.3418 (10)0.4533 (3)0.0285 (12)
H10A1.05950.34380.48410.034*
C81.5400 (10)0.1698 (10)0.4116 (3)0.0336 (13)
H8A1.64980.05120.41640.040*
C30.2883 (12)0.8551 (12)0.1038 (3)0.0416 (15)
H3A0.19450.72230.10500.050*
C40.4757 (11)0.8775 (10)0.1490 (3)0.0356 (14)
H4A0.50900.75940.18090.043*
C71.5654 (10)0.3346 (10)0.3607 (3)0.0309 (12)
H7A1.69100.33320.33110.037*
C10.3754 (11)1.2338 (10)0.0540 (3)0.0376 (15)
H1B0.33951.35260.02260.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F0.048 (2)0.046 (2)0.057 (2)0.0034 (19)0.0271 (17)0.0036 (19)
O0.048 (3)0.026 (2)0.056 (3)0.007 (2)0.019 (2)0.006 (2)
N10.027 (2)0.025 (2)0.031 (3)0.001 (2)0.0019 (17)0.0008 (19)
N20.027 (2)0.021 (2)0.042 (3)0.001 (2)0.0053 (18)0.002 (2)
N30.028 (2)0.020 (2)0.032 (3)0.0000 (18)0.0043 (18)0.0002 (19)
C90.040 (3)0.025 (3)0.029 (3)0.010 (3)0.012 (2)0.006 (2)
C150.030 (3)0.022 (3)0.037 (3)0.001 (2)0.004 (2)0.004 (2)
C140.033 (3)0.023 (3)0.032 (3)0.001 (2)0.000 (2)0.002 (2)
C120.030 (3)0.020 (2)0.032 (3)0.002 (2)0.010 (2)0.004 (2)
C50.038 (3)0.025 (3)0.035 (3)0.002 (2)0.004 (2)0.005 (2)
C130.028 (3)0.020 (2)0.040 (3)0.000 (2)0.011 (2)0.001 (2)
C110.028 (3)0.021 (2)0.034 (3)0.011 (2)0.009 (2)0.002 (2)
C20.032 (3)0.039 (3)0.031 (3)0.011 (3)0.008 (2)0.007 (3)
C60.035 (3)0.026 (3)0.034 (3)0.004 (2)0.005 (2)0.006 (2)
C100.032 (3)0.027 (3)0.026 (3)0.008 (2)0.0030 (19)0.001 (2)
C80.036 (3)0.027 (3)0.038 (3)0.004 (2)0.012 (2)0.001 (3)
C30.044 (4)0.030 (3)0.050 (4)0.007 (3)0.010 (3)0.002 (3)
C40.042 (3)0.030 (3)0.035 (3)0.003 (3)0.007 (2)0.001 (3)
C70.028 (3)0.024 (3)0.040 (3)0.000 (2)0.009 (2)0.006 (2)
C10.043 (4)0.025 (3)0.044 (4)0.010 (3)0.010 (3)0.009 (2)
Geometric parameters (Å, º) top
F—C21.360 (7)C5—C61.390 (8)
O—C151.207 (7)C5—C41.399 (9)
N1—N31.331 (7)C13—H13A0.9700
N1—C121.364 (7)C13—H13B0.9700
N2—N31.293 (7)C11—C101.416 (8)
N2—C111.356 (7)C2—C11.369 (9)
N3—C131.457 (7)C2—C31.381 (9)
C9—C101.356 (8)C6—C11.370 (9)
C9—C81.419 (9)C6—H6A0.9300
C9—H9A0.9300C10—H10A0.9300
C15—C141.506 (7)C8—C71.367 (9)
C15—C51.508 (7)C8—H8A0.9300
C14—C131.510 (7)C3—C41.388 (9)
C14—H14A0.9700C3—H3A0.9300
C14—H14B0.9700C4—H4A0.9300
C12—C111.400 (8)C7—H7A0.9300
C12—C71.410 (8)C1—H1B0.9300
N3—N1—C12102.4 (4)H13A—C13—H13B108.0
N3—N2—C11104.3 (5)N2—C11—C12107.7 (5)
N2—N3—N1117.3 (4)N2—C11—C10132.1 (5)
N2—N3—C13123.2 (5)C12—C11—C10120.2 (5)
N1—N3—C13119.4 (5)F—C2—C1119.2 (5)
C10—C9—C8122.9 (5)F—C2—C3118.2 (5)
C10—C9—H9A118.5C1—C2—C3122.6 (5)
C8—C9—H9A118.5C1—C6—C5121.0 (5)
O—C15—C14120.9 (5)C1—C6—H6A119.5
O—C15—C5120.4 (5)C5—C6—H6A119.5
C14—C15—C5118.7 (5)C9—C10—C11116.7 (5)
C15—C14—C13111.6 (5)C9—C10—H10A121.6
C15—C14—H14A109.3C11—C10—H10A121.6
C13—C14—H14A109.3C7—C8—C9121.5 (5)
C15—C14—H14B109.3C7—C8—H8A119.3
C13—C14—H14B109.3C9—C8—H8A119.3
H14A—C14—H14B108.0C4—C3—C2118.7 (6)
N1—C12—C11108.4 (5)C4—C3—H3A120.6
N1—C12—C7129.2 (5)C2—C3—H3A120.6
C11—C12—C7122.4 (5)C3—C4—C5119.5 (6)
C6—C5—C4119.6 (5)C3—C4—H4A120.2
C6—C5—C15118.6 (5)C5—C4—H4A120.2
C4—C5—C15121.7 (5)C8—C7—C12116.2 (6)
N3—C13—C14111.3 (5)C8—C7—H7A121.9
N3—C13—H13A109.4C12—C7—H7A121.9
C14—C13—H13A109.4C2—C1—C6118.6 (5)
N3—C13—H13B109.4C2—C1—H1B120.7
C14—C13—H13B109.4C6—C1—H1B120.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···N1i0.972.583.511 (3)161
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC15H12FN3O
Mr269.28
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)5.7858 (12), 5.6814 (11), 19.313 (4)
β (°) 90.77 (3)
V3)634.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.18 × 0.10
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3943, 1240, 1122
Rint0.135
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.210, 1.07
No. of reflections1240
No. of parameters181
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.34

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···N1i0.972.583.511 (3)161
Symmetry code: (i) x1, y, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z.-Y. & Wu, M.-J. (2005). Org. Lett. 7, 475–477.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds