organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-Propoxymethyl­­idene-2,3-di­hydro-1H-pyrrolo[2,1-b]quinazolin-9-one monohydrate

aS.Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan
*Correspondence e-mail: burkhon@rambler.ru

(Received 12 April 2010; accepted 19 April 2010; online 30 April 2010)

The title compound, C15H16N2O2·H2O, was synthesized via the alkyl­ation of 3-hydroxy­methyl­idene-2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin-9-one with n-propyl iodide in the presence of sodium hydroxide. The organic mol­ecule and the water mol­ecule both lie on a crystallographic mirror plane. In the crystal structure, inter­molecular O—H⋯O and O—H⋯N hydrogen bonds link the components into extended chains along [100].

Related literature

For the synthesis of the title compound and its derivatives, see: Späth & Platzer, (1935[Späth, E. & Platzer, N. (1935). Ber. Dtsch Chem. Ges. B, 68, 2221-2226.]); Shakhidoyatov et al. (1976[Shakhidoyatov, Kh. M., Irisbaev, A., Yun, L. M., Oripov, E. & Kadyrov, Ch. Sh. (1976). Chem. Heterocycl. Compd. 12, 1286-1291.]); Oripov et al. (1979[Oripov, E., Shakhidoyatov, Kh. M., Kadyrov, Ch. Sh. & Abdullaev, N. D. (1979). Chem. Heterocycl. Compd. 15, 556-564.]); Elmuradov et al. (2006[Elmuradov, B. Zh. & Shakhidoyatov, Kh. M. (2006). The Chemical and Biological Activity of Synthetic and Natural Compounds: Nitrogen-Containing Heterocycles, edited by V. G. Kartsev, Vol. 2, p. 84. Moscow: International Charitable Scientific Partnership Foundation (ICSPF).]); Elmuradov & Shakhidoyatov (2004[Elmuradov, B. Zh. & Shakhidoyatov, Kh. M. (2004). Chem. Nat. Compd. 40, 496-498.]); Jahng et al. (2008[Jahng, K. C., Kim, S. I., Kim, D. H., Seo, C. S., Son, J.-K., Lee, S. H., Lee, E. S. & Jahng, Y. (2008). Chem. Pharm. Bull. 56, 607-609.]). For the physiological activity of the title compound and its derivatives, see: Amin & Mehta (1959[Amin, A. H. & Mehta, D. R. (1959). Nature (London), 183, 1317-1318.]); Chatterjee & Ganguly (1968[Chatterjee, A. & Ganguly, M. G. (1968). Phytochemistry, 7, 307-311.]); Yakhontov et al. (1977[Yakhontov, L. N., Liberman, S. S., Zhikhareva, G. P. & Kuz'mina, K. K. (1977). Pharm. Chem. J. 11, 598-612.]); Yunusov et al. (1978[Yunusov, S. Yu., Tulyaganov, N., Telezhenetskaya, M. V., Sadritdinov, F. & Khashimov, Kh. (1978). USSR Patent No. 605614; `Anticholinesterase agent', Byull. Izobret. p. 17]); Johne (1981[Johne, S. (1981). Pharmazie, 36, 583-596. ]); Shakhidoyatov (1988[Shakhidoyatov, Kh. M. (1988). Quinazol-4-ones and Their Biological Activity, pp. 99-104. Tashkent: Fan.]). For standard bond distances, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16N2O2·H2O

  • Mr = 274.31

  • Monoclinic, P 21 /m

  • a = 9.247 (2) Å

  • b = 6.876 (1) Å

  • c = 10.950 (2) Å

  • β = 97.90 (3)°

  • V = 689.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.75 × 0.53 × 0.20 mm

Data collection
  • Stoe Stadi-4 four-circle diffractometer

  • 1483 measured reflections

  • 1479 independent reflections

  • 1000 reflections with I > 2σ(I)

  • 3 standard reflections every 60 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.144

  • S = 1.15

  • 1479 reflections

  • 128 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1⋯N1 0.85 (7) 2.14 (8) 2.968 (5) 165 (7)
O1w—H2⋯O2i 0.90 (7) 1.95 (7) 2.855 (5) 176 (6)
Symmetry code: (i) x+1, y, z.

Data collection: STADI4 (Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Bruker, 1998[Bruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Tricyclic quinazoline alkaloids are a large group of heterocyclic compounds (Späth & Platzer, 1935; Shakhidoyatov et al., 1976; Oripov et al., 1979; Elmuradov & Shakhidoyatov, 2006; Jahng et al., 2008). These compounds and their derivatives possess different pharmacological activities (Amin & Mehta1959; Chatterjee & Ganguly, 1968; Yakhontov et al., 1977; Yunusov et al., 1978; Johne, 1981; Shakhidoyatov, 1988).

Alkylation of 3- hydroxymethylidene-2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin-9-one with C1—C3 alkyl halides leads to the formation of new C-alkyl (Elmuradov & Shakhidoyatov, 2004) or O-alkyl derivatives (Elmuradov et al., 2006). Using the typical synthesis for O-alkyl derivatives the reaction of 3- hydroxymethylidene-2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin-9-one with n-propyl iodide was carried out by boiling of the initial reagents (1:2 ratio) over 7 hours in ethanol in the presence of sodium hydroxide (Elmuradov et al., 2006) (Figure 1). The compound (3-hydroxymethylidene-2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin- 9-one) is obtained by formylation of 2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin-9-one (alkaloid Deoxyvasicinone, isolated from Peganum Harmala) (Chatterjee & Ganguly, 1968) with Vilsmeier-Haack reagent.

The asymmetric unit contains half molecule of 3-propoxymethylidene-2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin-9- one and a half water molecule (Figure 2). Both molecules of the asymetric unit lay on the crystallographic mirror plane. The water molecule links the N and Oi atoms of title compound molecule by O—H···N and O—H···Oi hydrogen bonds, which form a H-bond chain along [100] (Figure 3). The bond distances (Allen et al., 1987) and angles in molecule are in normal ranges.

Related literature top

For the synthesis of the title compound and its derivatives, see: Späth & Platzer, (1935); Shakhidoyatov et al. (1976); Oripov et al. (1979); Elmuradov et al. (2006); Elmuradov & Shakhidoyatov (2004); Jahng et al. (2008). For the physiological activity of the title compound and its derivatives, see: Amin & Mehta (1959); Chatterjee & Ganguly (1968); Yakhontov et al. (1977); Yunusov et al. (1978); Johne (1981); Shakhidoyatov (1988). For standard bond distances, see: Allen et al. (1987).

Experimental top

Sodium hydroxide (0.08 g, 2 mmol) was dissolved in ethanol (10 ml), and 3-hydroxymethylidene-2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin-9-one (0.214 g, 1 mmol) and propyl iodide (0.34 g, 0.18 ml, d=1.747 g/ml, 2 mmol) were added. The mixture was heated to reflux on a water bath for 7 hours. The solvent was distilled off and the residue was re-crystallized from hexane. The title compound was obtained in 70 % yield (0.18 g). Colorless crystals suitable for X-ray analysis were obtained from hexane by slow evaporation.

Refinement top

Carbon-bound H atoms were positioned geometrically and treated as riding on their C atoms, with C—H distances of 0.93 Å (aromatic) and 0.97 Å (CH2) and 0.96 Å (CH3) and were refined with Uiso(H) =1.2Ueq(C)]. The H atoms of the water molecule involved in the intramolecular hydrogen bonds were located by difference Fourier synthesis and refined freely [O—H = 0.84 (7) and 0.90 (7) Å].

Structure description top

Tricyclic quinazoline alkaloids are a large group of heterocyclic compounds (Späth & Platzer, 1935; Shakhidoyatov et al., 1976; Oripov et al., 1979; Elmuradov & Shakhidoyatov, 2006; Jahng et al., 2008). These compounds and their derivatives possess different pharmacological activities (Amin & Mehta1959; Chatterjee & Ganguly, 1968; Yakhontov et al., 1977; Yunusov et al., 1978; Johne, 1981; Shakhidoyatov, 1988).

Alkylation of 3- hydroxymethylidene-2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin-9-one with C1—C3 alkyl halides leads to the formation of new C-alkyl (Elmuradov & Shakhidoyatov, 2004) or O-alkyl derivatives (Elmuradov et al., 2006). Using the typical synthesis for O-alkyl derivatives the reaction of 3- hydroxymethylidene-2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin-9-one with n-propyl iodide was carried out by boiling of the initial reagents (1:2 ratio) over 7 hours in ethanol in the presence of sodium hydroxide (Elmuradov et al., 2006) (Figure 1). The compound (3-hydroxymethylidene-2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin- 9-one) is obtained by formylation of 2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin-9-one (alkaloid Deoxyvasicinone, isolated from Peganum Harmala) (Chatterjee & Ganguly, 1968) with Vilsmeier-Haack reagent.

The asymmetric unit contains half molecule of 3-propoxymethylidene-2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin-9- one and a half water molecule (Figure 2). Both molecules of the asymetric unit lay on the crystallographic mirror plane. The water molecule links the N and Oi atoms of title compound molecule by O—H···N and O—H···Oi hydrogen bonds, which form a H-bond chain along [100] (Figure 3). The bond distances (Allen et al., 1987) and angles in molecule are in normal ranges.

For the synthesis of the title compound and its derivatives, see: Späth & Platzer, (1935); Shakhidoyatov et al. (1976); Oripov et al. (1979); Elmuradov et al. (2006); Elmuradov & Shakhidoyatov (2004); Jahng et al. (2008). For the physiological activity of the title compound and its derivatives, see: Amin & Mehta (1959); Chatterjee & Ganguly (1968); Yakhontov et al. (1977); Yunusov et al. (1978); Johne (1981); Shakhidoyatov (1988). For standard bond distances, see: Allen et al. (1987).

Computing details top

Data collection: STADI4 (Stoe & Cie, 1997); cell refinement: STADI4 (Stoe & Cie, 1997); data reduction: X-RED (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Bruker, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The reaction scheme.
[Figure 2] Fig. 2. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of hydrogen-bonded (dashed lines) chains along [100].
(E)-3-Propoxymethylidene-2,3-dihydro-1H- pyrrolo[2,1-b]quinazolin-9-one monohydrate top
Crystal data top
C15H16N2O2·H2OF(000) = 292
Mr = 274.31Dx = 1.321 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 15 reflections
a = 9.247 (2) Åθ = 5–10°
b = 6.876 (1) ŵ = 0.09 mm1
c = 10.950 (2) ÅT = 293 K
β = 97.90 (3)°Prism, colourless
V = 689.6 (2) Å30.75 × 0.53 × 0.20 mm
Z = 2
Data collection top
Stoe Stadi-4 four-circle
diffractometer
Rint = 0.000
Radiation source: fine-focus sealed tubeθmax = 26.0°, θmin = 1.9°
Graphite monochromatorh = 1111
Scan width (ω) = 1.56–1.68, scan ratio 2θ:ω = 1.00 I(Net) and σ(I) calculated according to Blessing (1987)
[Blessing, R. H. (1987). Cryst. Rev. 1, 3–58]
k = 08
1483 measured reflectionsl = 013
1479 independent reflections3 standard reflections every 60 min
1000 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.034P)2 + 0.5511P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
1479 reflectionsΔρmax = 0.21 e Å3
128 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.009 (2)
Crystal data top
C15H16N2O2·H2OV = 689.6 (2) Å3
Mr = 274.31Z = 2
Monoclinic, P21/mMo Kα radiation
a = 9.247 (2) ŵ = 0.09 mm1
b = 6.876 (1) ÅT = 293 K
c = 10.950 (2) Å0.75 × 0.53 × 0.20 mm
β = 97.90 (3)°
Data collection top
Stoe Stadi-4 four-circle
diffractometer
Rint = 0.000
1483 measured reflections3 standard reflections every 60 min
1479 independent reflections intensity decay: 2%
1000 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.21 e Å3
1479 reflectionsΔρmin = 0.19 e Å3
128 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.7289 (3)0.25000.2635 (2)0.0522 (8)
O20.1375 (3)0.25000.5696 (3)0.0682 (10)
N10.5853 (3)0.25000.6240 (3)0.0390 (8)
C20.5055 (4)0.25000.5163 (3)0.0349 (9)
N30.3551 (3)0.25000.4988 (3)0.0370 (8)
C40.2711 (4)0.25000.5924 (3)0.0430 (10)
C4A0.3567 (4)0.25000.7153 (3)0.0384 (9)
C50.2880 (4)0.25000.8207 (4)0.0493 (11)
H5A0.18650.25000.81330.059*
C60.3684 (4)0.25000.9343 (4)0.0546 (12)
H6A0.32150.25001.00430.066*
C70.5192 (5)0.25000.9468 (4)0.0531 (11)
H7A0.57310.25001.02510.064*
C80.5901 (4)0.25000.8445 (3)0.0448 (10)
H8A0.69160.25000.85390.054*
C8A0.5102 (4)0.25000.7258 (3)0.0355 (9)
C90.5544 (4)0.25000.3964 (3)0.0384 (9)
C100.4244 (4)0.25000.2975 (3)0.0452 (10)
H10A0.42430.13520.24600.054*0.50
H10B0.42430.36480.24600.054*0.50
C110.2918 (4)0.25000.3684 (3)0.0472 (10)
H11A0.23220.36480.34860.057*0.50
H11B0.23220.13520.34860.057*0.50
C120.6934 (4)0.25000.3777 (3)0.0447 (10)
H12A0.76670.25000.44490.054*
C130.8823 (4)0.25000.2525 (4)0.0586 (13)
H13A0.92910.13540.29160.070*0.50
H13B0.92910.36460.29160.070*0.50
C140.8937 (5)0.25000.1161 (4)0.0673 (14)
H14A0.84380.13610.07880.081*0.50
H14B0.84380.36390.07880.081*0.50
C151.0456 (5)0.25000.0877 (5)0.096 (2)
H15A1.04480.25000.00010.144*
H15B1.09530.13600.12240.144*0.50
H15C1.09530.36400.12240.144*0.50
O1W0.9030 (4)0.25000.7141 (4)0.1047 (17)
H20.975 (8)0.25000.665 (6)0.15 (3)*
H10.816 (8)0.25000.676 (7)0.17 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0461 (16)0.078 (2)0.0357 (15)0.0000.0161 (12)0.000
O20.0307 (15)0.126 (3)0.0479 (17)0.0000.0058 (12)0.000
N10.0308 (16)0.050 (2)0.0367 (17)0.0000.0074 (13)0.000
C20.0345 (18)0.036 (2)0.035 (2)0.0000.0094 (15)0.000
N30.0347 (16)0.045 (2)0.0310 (16)0.0000.0030 (13)0.000
C40.039 (2)0.055 (3)0.037 (2)0.0000.0115 (16)0.000
C4A0.0354 (19)0.045 (2)0.0363 (19)0.0000.0099 (15)0.000
C50.037 (2)0.070 (3)0.043 (2)0.0000.0093 (17)0.000
C60.049 (2)0.082 (3)0.037 (2)0.0000.0172 (18)0.000
C70.055 (3)0.070 (3)0.034 (2)0.0000.0061 (18)0.000
C80.038 (2)0.061 (3)0.036 (2)0.0000.0033 (16)0.000
C8A0.0328 (19)0.039 (2)0.036 (2)0.0000.0093 (15)0.000
C90.043 (2)0.041 (2)0.0321 (19)0.0000.0089 (16)0.000
C100.055 (2)0.048 (3)0.032 (2)0.0000.0055 (17)0.000
C110.043 (2)0.065 (3)0.033 (2)0.0000.0015 (16)0.000
C120.048 (2)0.055 (3)0.031 (2)0.0000.0086 (17)0.000
C130.044 (2)0.087 (4)0.049 (2)0.0000.0206 (19)0.000
C140.054 (3)0.104 (4)0.049 (3)0.0000.022 (2)0.000
C150.063 (3)0.164 (7)0.063 (3)0.0000.020 (3)0.000
O1W0.046 (2)0.204 (5)0.065 (2)0.0000.0116 (19)0.000
Geometric parameters (Å, º) top
O1—C121.336 (4)C9—C121.329 (5)
O1—C131.439 (4)C9—C101.502 (5)
O2—C41.226 (4)C10—C111.539 (5)
N1—C21.302 (4)C10—H10A0.9700
N1—C8A1.391 (4)C10—H10B0.9700
C2—N31.377 (4)C11—H11A0.9700
C2—C91.447 (5)C11—H11B0.9700
N3—C41.369 (4)C12—H12A0.9300
N3—C111.467 (4)C13—C141.512 (5)
C4—C4A1.464 (5)C13—H13A0.9700
C4A—C51.392 (5)C13—H13B0.9700
C4A—C8A1.408 (5)C14—C151.479 (6)
C5—C61.359 (5)C14—H14A0.9700
C5—H5A0.9300C14—H14B0.9700
C6—C71.383 (5)C15—H15A0.9600
C6—H6A0.9300C15—H15B0.9600
C7—C81.374 (5)C15—H15C0.9600
C7—H7A0.9300O1W—H20.91 (7)
C8—C8A1.404 (5)O1W—H10.85 (8)
C8—H8A0.9300
C12—O1—C13116.8 (3)C9—C10—H10A110.8
C2—N1—C8A116.3 (3)C11—C10—H10A110.8
N1—C2—N3124.2 (3)C9—C10—H10B110.8
N1—C2—C9127.8 (3)C11—C10—H10B110.8
N3—C2—C9108.0 (3)H10A—C10—H10B108.9
C4—N3—C2124.2 (3)N3—C11—C10104.6 (3)
C4—N3—C11122.5 (3)N3—C11—H11A110.8
C2—N3—C11113.3 (3)C10—C11—H11A110.8
O2—C4—N3120.4 (4)N3—C11—H11B110.8
O2—C4—C4A126.2 (3)C10—C11—H11B110.8
N3—C4—C4A113.4 (3)H11A—C11—H11B108.9
C5—C4A—C8A120.2 (3)C9—C12—O1120.8 (3)
C5—C4A—C4120.7 (3)C9—C12—H12A119.6
C8A—C4A—C4119.1 (3)O1—C12—H12A119.6
C6—C5—C4A120.3 (4)O1—C13—C14106.6 (3)
C6—C5—H5A119.9O1—C13—H13A110.4
C4A—C5—H5A119.9C14—C13—H13A110.4
C5—C6—C7120.6 (4)O1—C13—H13B110.4
C5—C6—H6A119.7C14—C13—H13B110.4
C7—C6—H6A119.7H13A—C13—H13B108.6
C8—C7—C6120.5 (4)C15—C14—C13113.9 (4)
C8—C7—H7A119.8C15—C14—H14A108.8
C6—C7—H7A119.8C13—C14—H14A108.8
C7—C8—C8A120.4 (4)C15—C14—H14B108.8
C7—C8—H8A119.8C13—C14—H14B108.8
C8A—C8—H8A119.8H14A—C14—H14B107.7
N1—C8A—C8119.0 (3)C14—C15—H15A109.5
N1—C8A—C4A122.9 (3)C14—C15—H15B109.5
C8—C8A—C4A118.2 (3)H15A—C15—H15B109.5
C12—C9—C2124.7 (3)C14—C15—H15C109.5
C12—C9—C10125.7 (3)H15A—C15—H15C109.5
C2—C9—C10109.6 (3)H15B—C15—H15C109.5
C9—C10—C11104.5 (3)H2—O1W—H1115 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1···N10.85 (7)2.14 (8)2.968 (5)165 (7)
O1w—H2···O2i0.90 (7)1.95 (7)2.855 (5)176 (6)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H16N2O2·H2O
Mr274.31
Crystal system, space groupMonoclinic, P21/m
Temperature (K)293
a, b, c (Å)9.247 (2), 6.876 (1), 10.950 (2)
β (°) 97.90 (3)
V3)689.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.75 × 0.53 × 0.20
Data collection
DiffractometerStoe Stadi-4 four-circle
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1483, 1479, 1000
Rint0.000
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.144, 1.15
No. of reflections1479
No. of parameters128
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: STADI4 (Stoe & Cie, 1997), X-RED (Stoe & Cie, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Bruker, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1···N10.85 (7)2.135 (77)2.968 (5)165 (7)
O1w—H2···O2i0.90 (7)1.948 (71)2.855 (5)176 (6)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We thank the Academy of Sciences of the Republic of Uzbekistan for supporting this study (grant FA–F3–T047).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationAmin, A. H. & Mehta, D. R. (1959). Nature (London), 183, 1317–1318.  CrossRef Web of Science Google Scholar
First citationBruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChatterjee, A. & Ganguly, M. G. (1968). Phytochemistry, 7, 307–311.  CrossRef CAS Web of Science Google Scholar
First citationElmuradov, B. Zh. & Shakhidoyatov, Kh. M. (2004). Chem. Nat. Compd. 40, 496–498.  Web of Science CrossRef CAS Google Scholar
First citationElmuradov, B. Zh. & Shakhidoyatov, Kh. M. (2006). The Chemical and Biological Activity of Synthetic and Natural Compounds: Nitrogen-Containing Heterocycles, edited by V. G. Kartsev, Vol. 2, p. 84. Moscow: International Charitable Scientific Partnership Foundation (ICSPF).  Google Scholar
First citationJahng, K. C., Kim, S. I., Kim, D. H., Seo, C. S., Son, J.-K., Lee, S. H., Lee, E. S. & Jahng, Y. (2008). Chem. Pharm. Bull. 56, 607–609.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJohne, S. (1981). Pharmazie, 36, 583–596.   CAS PubMed Web of Science Google Scholar
First citationOripov, E., Shakhidoyatov, Kh. M., Kadyrov, Ch. Sh. & Abdullaev, N. D. (1979). Chem. Heterocycl. Compd. 15, 556–564.  CrossRef Google Scholar
First citationShakhidoyatov, Kh. M. (1988). Quinazol-4-ones and Their Biological Activity, pp. 99–104. Tashkent: Fan.  Google Scholar
First citationShakhidoyatov, Kh. M., Irisbaev, A., Yun, L. M., Oripov, E. & Kadyrov, Ch. Sh. (1976). Chem. Heterocycl. Compd. 12, 1286–1291.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpäth, E. & Platzer, N. (1935). Ber. Dtsch Chem. Ges. B, 68, 2221–2226.  Google Scholar
First citationStoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationYakhontov, L. N., Liberman, S. S., Zhikhareva, G. P. & Kuz'mina, K. K. (1977). Pharm. Chem. J. 11, 598–612.  Google Scholar
First citationYunusov, S. Yu., Tulyaganov, N., Telezhenetskaya, M. V., Sadritdinov, F. & Khashimov, Kh. (1978). USSR Patent No. 605614; `Anticholinesterase agent', Byull. Izobret. p. 17  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds