organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-{[(4Z)-5-Oxo-2-phenyl-4,5-di­hydro-1,3-oxazol-4-yl­­idene]meth­yl}phenyl acetate

aDepartment of Chemistry, M.G. Science Institute, Navrangpura, Ahmedabad, Gujarat 380 009, India, bDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380 001, India, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 20 April 2010; accepted 23 April 2010; online 28 April 2010)

The title mol­ecule, C18H13NO4, shows a dihedral angle between the terminal acetyl group (r.m.s. deviation = 0.0081 Å) and remaining non-H atoms (r.m.s. = 0.0734 Å) of 53.45 (7)°. The configuration about the central olefinic bond is Z and overall the mol­ecule has a U-shaped conformation. Supra­molecular chains along the b-axis direction are found in the crystal structure. These are stabilized by (C=O)⋯π(ring centroid of the 1,3-oxazole ring) inter­actions [3.370 (2) Å].

Related literature

For background to the biological activity of 1,3-oxazole and imidazoles, see: Williams & Fu (2010[Williams, D. R. & Fu, L. (2010). Org. Lett. 12, 808-811.]); Khbnadidah et al. (2003[Khbnadidah, S., Rezaei, Z., Khalafi-Nehad, A., Bahrinajafi, R., Mohamadi, R. & Farrokroz, A. A. (2003). Bioorg. Med. Chem. Lett. 13, 2863-2865.]). For related structures, see: Sun et al. (2007[Sun, Y.-F., Wang, X.-L., Li, J.-K., Zheng, Z.-B. & Wu, R.-T. (2007). Acta Cryst. E63, o4426.]); Jotani & Baldaniya (2008[Jotani, M. M. & Baldaniya, B. B. (2008). Acta Cryst. A64, C398.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13NO4

  • Mr = 307.29

  • Monoclinic, P 21 /c

  • a = 13.3507 (15) Å

  • b = 3.9443 (9) Å

  • c = 28.527 (5) Å

  • β = 98.025 (11)°

  • V = 1487.5 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.81 mm−1

  • T = 293 K

  • 0.40 × 0.20 × 0.15 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.852, Tmax = 0.997

  • 2593 measured reflections

  • 2491 independent reflections

  • 1795 reflections with I > 2σ(I)

  • Rint = 0.054

  • 2 standard reflections every 3600 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.140

  • S = 1.06

  • 2491 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); cell refinement: XCAD4; data reduction: XCAD4; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

The 1,3-oxazole ring is known to have biological activity in its own right (Williams & Fu, 2010) and serves as a useful synthetic intermediate for the synthesis of imidazoles that are also possess a wide spectrum of biological activities, such as herbicides, fungicides, anti-bacterials, etc. (Khbnadidah et al., 2003). In continuation of structural studies of oxazole compounds (Jotani & Baldaniya, 2008), the crystal structure of title compound, (I), is described herein.

The molecule of (I) is twisted around the C3–O2 bond as seen in the C2–O2–C3–C4 torsion angle of 58.2 (3) °. This results in a dihedral angle of 53.45 (7) ° between the acetyl residue [r.m.s. deviation = 0.0081 Å] and the remaining non-hydrogen atoms [r.m.s. = 0.0734 Å]; the dihedral angle formed between the two benzene rings is 5.10 (12) °. The configuration about the C9C10 bond [1.343 (3) Å] is Z, and as the two benzene rings are orientated to the same side of the molecule, the overall molecular conformation is U-shaped. A similar conformation was reported in a di-methoxy derivative of (I), namely 2,6-dimethoxy-4-(5-oxo-2-phenyl-4,5-dihydro-1,3-oxazol-4-ylidenemethyl)- phenyl acetate (Sun et al., 2007).

The crystal packing is dominated by (CO)···π interactions that connect molecules into a linear supramolecular chain along the b axis, Fig. 2. The parameters defining this interaction are C11O3···ring centroid(1,3-oxazole ring)i = 3.370 (2) Å and angle = 85.11 (14) ° for i: x, 1+y, z.

Related literature top

For background to the biological activity of 1,3-oxazole and imidazoles, see: Williams & Fu (2010); Khbnadidah et al. (2003). For related structures, see: Sun et al. (2007); Jotani & Baldaniya (2008).

Experimental top

A mixture of 4-acetoxyoxy benzaldehyde (0.25 mol), benzoyl amino acetic acid (0.25 mol), acetyl acetate (0.30 mol) and anhydrous sodium acetate (0.25 mol) were taken in a 500 ml round bottom flask and heated on an electric hot plate with constant stirring. After the complete liquefaction of the mixture, the flask was transferred to a sand bath and further heated for 2.5 h. Ethanol (100 ml) was added slowly to the flask and the mixture was allowed to stand overnight. The crystalline product obtained was filtered with ice-cold alcohol and then with boiling water. The crude product was crystallised from ethanol (95%) to obtain the final product (78% yield; m.pt. 428 K). The colourless crystals were obtained by slow evaporation from an ethanol solution of (I).

Refinement top

The H atoms were geometrically placed (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Structure description top

The 1,3-oxazole ring is known to have biological activity in its own right (Williams & Fu, 2010) and serves as a useful synthetic intermediate for the synthesis of imidazoles that are also possess a wide spectrum of biological activities, such as herbicides, fungicides, anti-bacterials, etc. (Khbnadidah et al., 2003). In continuation of structural studies of oxazole compounds (Jotani & Baldaniya, 2008), the crystal structure of title compound, (I), is described herein.

The molecule of (I) is twisted around the C3–O2 bond as seen in the C2–O2–C3–C4 torsion angle of 58.2 (3) °. This results in a dihedral angle of 53.45 (7) ° between the acetyl residue [r.m.s. deviation = 0.0081 Å] and the remaining non-hydrogen atoms [r.m.s. = 0.0734 Å]; the dihedral angle formed between the two benzene rings is 5.10 (12) °. The configuration about the C9C10 bond [1.343 (3) Å] is Z, and as the two benzene rings are orientated to the same side of the molecule, the overall molecular conformation is U-shaped. A similar conformation was reported in a di-methoxy derivative of (I), namely 2,6-dimethoxy-4-(5-oxo-2-phenyl-4,5-dihydro-1,3-oxazol-4-ylidenemethyl)- phenyl acetate (Sun et al., 2007).

The crystal packing is dominated by (CO)···π interactions that connect molecules into a linear supramolecular chain along the b axis, Fig. 2. The parameters defining this interaction are C11O3···ring centroid(1,3-oxazole ring)i = 3.370 (2) Å and angle = 85.11 (14) ° for i: x, 1+y, z.

For background to the biological activity of 1,3-oxazole and imidazoles, see: Williams & Fu (2010); Khbnadidah et al. (2003). For related structures, see: Sun et al. (2007); Jotani & Baldaniya (2008).

Computing details top

Data collection: XCAD4 (Harms & Wocadlo, 1996); cell refinement: XCAD4 (Harms & Wocadlo, 1996); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A supramolecular chain aligned along the b axis in (I), mediated by (C O)···π interactions (purple dashed lines). Colour code: O, red; N, blue; C, grey; and H, green.
4-{[(4Z)-5-Oxo-2-phenyl-4,5-dihydro-1,3-oxazol-4-ylidene]methyl}phenyl acetate top
Crystal data top
C18H13NO4F(000) = 640
Mr = 307.29Dx = 1.372 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 13.3507 (15) Åθ = 20.0–30.0°
b = 3.9443 (9) ŵ = 0.81 mm1
c = 28.527 (5) ÅT = 293 K
β = 98.025 (11)°Block, colourless
V = 1487.5 (5) Å30.40 × 0.20 × 0.15 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1795 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
Graphite monochromatorθmax = 64.9°, θmin = 3.1°
2θ scanh = 015
Absorption correction: ψ scan
(North et al., 1968)
k = 04
Tmin = 0.852, Tmax = 0.997l = 3333
2593 measured reflections2 standard reflections every 3600 min
2491 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0834P)2 + 0.1813P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2491 reflectionsΔρmax = 0.23 e Å3
210 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0081 (8)
Crystal data top
C18H13NO4V = 1487.5 (5) Å3
Mr = 307.29Z = 4
Monoclinic, P21/cCu Kα radiation
a = 13.3507 (15) ŵ = 0.81 mm1
b = 3.9443 (9) ÅT = 293 K
c = 28.527 (5) Å0.40 × 0.20 × 0.15 mm
β = 98.025 (11)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1795 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.054
Tmin = 0.852, Tmax = 0.9972 standard reflections every 3600 min
2593 measured reflections intensity decay: none
2491 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.06Δρmax = 0.23 e Å3
2491 reflectionsΔρmin = 0.23 e Å3
210 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.98210 (13)0.0744 (6)0.36427 (7)0.0805 (7)
O20.96858 (10)0.3277 (4)0.43327 (5)0.0501 (4)
O30.36614 (12)0.4187 (5)0.44993 (6)0.0606 (5)
O40.32332 (10)0.1834 (4)0.37774 (5)0.0466 (4)
N10.47109 (13)0.0534 (5)0.36494 (6)0.0430 (5)
C11.12156 (18)0.3904 (7)0.40327 (10)0.0628 (7)
H1A1.13140.52500.37630.094*
H1B1.13040.52970.43110.094*
H1C1.17000.20910.40690.094*
C21.01799 (17)0.2475 (7)0.39635 (9)0.0496 (6)
C30.86835 (15)0.2184 (6)0.43289 (8)0.0425 (5)
C40.79303 (16)0.3064 (6)0.39696 (8)0.0447 (6)
H40.80820.43180.37130.054*
C50.69517 (15)0.2074 (6)0.39935 (7)0.0414 (5)
H50.64420.26600.37510.050*
C60.67139 (15)0.0187 (6)0.43805 (7)0.0388 (5)
C70.74930 (16)0.0581 (6)0.47402 (8)0.0453 (6)
H70.73480.17870.50030.054*
C80.84763 (16)0.0399 (6)0.47180 (7)0.0479 (6)
H80.89900.01380.49620.057*
C90.57088 (15)0.1106 (6)0.44158 (7)0.0406 (5)
H90.56400.21870.46990.049*
C100.48645 (15)0.0971 (6)0.40999 (7)0.0396 (5)
C110.39108 (16)0.2560 (6)0.41824 (8)0.0435 (5)
C120.37851 (15)0.0018 (6)0.34861 (7)0.0410 (5)
C130.32449 (17)0.1052 (6)0.30296 (8)0.0449 (6)
C140.22131 (19)0.0575 (7)0.29152 (9)0.0566 (7)
H140.18490.04840.31290.068*
C150.1725 (2)0.1672 (8)0.24835 (10)0.0686 (8)
H150.10300.13810.24090.082*
C160.2258 (2)0.3186 (7)0.21650 (9)0.0692 (8)
H160.19240.39290.18750.083*
C170.3283 (2)0.3612 (7)0.22719 (9)0.0673 (8)
H170.36440.46030.20510.081*
C180.3783 (2)0.2584 (7)0.27036 (8)0.0567 (7)
H180.44770.29130.27770.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0539 (11)0.1108 (18)0.0780 (13)0.0078 (11)0.0130 (9)0.0395 (13)
O20.0390 (8)0.0609 (11)0.0510 (9)0.0101 (7)0.0086 (7)0.0066 (8)
O30.0503 (10)0.0774 (13)0.0557 (10)0.0091 (9)0.0136 (8)0.0205 (10)
O40.0387 (8)0.0522 (10)0.0487 (9)0.0046 (7)0.0056 (6)0.0073 (8)
N10.0432 (10)0.0431 (11)0.0428 (10)0.0031 (9)0.0060 (8)0.0049 (9)
C10.0478 (14)0.0644 (18)0.0793 (17)0.0082 (13)0.0195 (12)0.0008 (15)
C20.0418 (12)0.0538 (16)0.0533 (13)0.0003 (11)0.0075 (10)0.0007 (12)
C30.0369 (11)0.0450 (13)0.0460 (12)0.0036 (10)0.0069 (9)0.0089 (11)
C40.0455 (12)0.0452 (14)0.0442 (12)0.0020 (11)0.0088 (9)0.0014 (11)
C50.0412 (11)0.0422 (13)0.0401 (11)0.0019 (10)0.0034 (9)0.0006 (10)
C60.0407 (11)0.0385 (13)0.0380 (10)0.0005 (9)0.0085 (9)0.0045 (10)
C70.0442 (12)0.0521 (14)0.0400 (11)0.0002 (11)0.0070 (9)0.0052 (11)
C80.0397 (12)0.0605 (16)0.0423 (12)0.0009 (11)0.0017 (9)0.0023 (11)
C90.0419 (11)0.0411 (13)0.0400 (11)0.0015 (10)0.0096 (9)0.0022 (10)
C100.0402 (11)0.0386 (13)0.0410 (11)0.0010 (10)0.0088 (9)0.0017 (10)
C110.0410 (11)0.0472 (14)0.0430 (11)0.0009 (10)0.0078 (9)0.0021 (11)
C120.0420 (12)0.0377 (12)0.0441 (11)0.0013 (10)0.0088 (9)0.0023 (10)
C130.0534 (13)0.0385 (13)0.0414 (11)0.0013 (10)0.0019 (9)0.0027 (10)
C140.0571 (15)0.0563 (16)0.0531 (14)0.0004 (12)0.0033 (11)0.0013 (13)
C150.0656 (16)0.0642 (19)0.0689 (17)0.0058 (15)0.0158 (14)0.0039 (15)
C160.100 (2)0.0493 (17)0.0513 (15)0.0104 (16)0.0120 (15)0.0002 (13)
C170.095 (2)0.0578 (18)0.0476 (14)0.0008 (15)0.0035 (14)0.0093 (13)
C180.0656 (16)0.0528 (16)0.0512 (14)0.0007 (13)0.0065 (11)0.0057 (12)
Geometric parameters (Å, º) top
O1—C21.188 (3)C6—C91.452 (3)
O2—C21.356 (3)C7—C81.378 (3)
O2—C31.404 (2)C7—H70.9300
O3—C111.193 (3)C8—H80.9300
O4—C121.385 (2)C9—C101.343 (3)
O4—C111.394 (3)C9—H90.9300
N1—C121.277 (3)C10—C111.468 (3)
N1—C101.404 (3)C12—C131.460 (3)
C1—C21.481 (3)C13—C141.384 (3)
C1—H1A0.9600C13—C181.390 (3)
C1—H1B0.9600C14—C151.380 (4)
C1—H1C0.9600C14—H140.9300
C3—C81.375 (3)C15—C161.367 (4)
C3—C41.376 (3)C15—H150.9300
C4—C51.374 (3)C16—C171.371 (4)
C4—H40.9300C16—H160.9300
C5—C61.404 (3)C17—C181.377 (3)
C5—H50.9300C17—H170.9300
C6—C71.389 (3)C18—H180.9300
C2—O2—C3119.26 (17)C10—C9—C6129.6 (2)
C12—O4—C11105.40 (16)C10—C9—H9115.2
C12—N1—C10105.77 (17)C6—C9—H9115.2
C2—C1—H1A109.5C9—C10—N1129.26 (19)
C2—C1—H1B109.5C9—C10—C11122.8 (2)
H1A—C1—H1B109.5N1—C10—C11107.96 (18)
C2—C1—H1C109.5O3—C11—O4121.40 (19)
H1A—C1—H1C109.5O3—C11—C10133.7 (2)
H1B—C1—H1C109.5O4—C11—C10104.85 (18)
O1—C2—O2123.0 (2)N1—C12—O4115.99 (18)
O1—C2—C1126.2 (2)N1—C12—C13127.46 (19)
O2—C2—C1110.7 (2)O4—C12—C13116.54 (18)
C8—C3—C4121.5 (2)C14—C13—C18119.5 (2)
C8—C3—O2116.73 (19)C14—C13—C12121.5 (2)
C4—C3—O2121.6 (2)C18—C13—C12119.0 (2)
C5—C4—C3119.5 (2)C15—C14—C13119.9 (3)
C5—C4—H4120.3C15—C14—H14120.1
C3—C4—H4120.3C13—C14—H14120.1
C4—C5—C6120.7 (2)C16—C15—C14120.3 (3)
C4—C5—H5119.7C16—C15—H15119.8
C6—C5—H5119.7C14—C15—H15119.8
C7—C6—C5117.93 (19)C15—C16—C17120.1 (2)
C7—C6—C9118.43 (19)C15—C16—H16119.9
C5—C6—C9123.59 (19)C17—C16—H16119.9
C8—C7—C6121.6 (2)C16—C17—C18120.5 (3)
C8—C7—H7119.2C16—C17—H17119.8
C6—C7—H7119.2C18—C17—H17119.8
C3—C8—C7118.7 (2)C17—C18—C13119.7 (3)
C3—C8—H8120.6C17—C18—H18120.2
C7—C8—H8120.6C13—C18—H18120.2

Experimental details

Crystal data
Chemical formulaC18H13NO4
Mr307.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.3507 (15), 3.9443 (9), 28.527 (5)
β (°) 98.025 (11)
V3)1487.5 (5)
Z4
Radiation typeCu Kα
µ (mm1)0.81
Crystal size (mm)0.40 × 0.20 × 0.15
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.852, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
2593, 2491, 1795
Rint0.054
(sin θ/λ)max1)0.587
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.140, 1.06
No. of reflections2491
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.23

Computer programs: XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

 

Footnotes

Additional correspondence author, e-mail: mmjotani@rediffmail.com.

Acknowledgements

The authors are thankful to the Department of Science and Technology (DST), and the SAIF, I.I.T. Madras, Chennai, India, for the X-ray data collection. MMJ is grateful to the University Grant Commission (Western Regional Office), India, for a Minor Research Project F. No.47-254/07.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJotani, M. M. & Baldaniya, B. B. (2008). Acta Cryst. A64, C398.  CrossRef IUCr Journals Google Scholar
First citationKhbnadidah, S., Rezaei, Z., Khalafi-Nehad, A., Bahrinajafi, R., Mohamadi, R. & Farrokroz, A. A. (2003). Bioorg. Med. Chem. Lett. 13, 2863–2865.  Web of Science PubMed Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-F., Wang, X.-L., Li, J.-K., Zheng, Z.-B. & Wu, R.-T. (2007). Acta Cryst. E63, o4426.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar
First citationWilliams, D. R. & Fu, L. (2010). Org. Lett. 12, 808–811.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds