inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Potassium zinc borate, KZnB3O6

aKey Laboratory of Functional Crystal and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
*Correspondence e-mail: zjx@mail.ipc.ac.cn

(Received 21 January 2010; accepted 25 April 2010; online 30 April 2010)

The title compound, KZnB3O6 contains a remarkable [B6O12]6− group ([\overline{1}] symmetry) formed by two rings linked by edge-sharing BO4 tetra­hedra, a feature that has only been observed previously under high pressure conditions. These borate groups are connected through distorted ZnO4 tetra­hedra in edge-shared pairs ([\overline{1}] symmetry), forming a three-dimensional network whose cavities are filled by K+ cations.

Related literature

For an independent determination of the title compound, see: Chen et al. (2010[Chen, X. L., Cai, G. M., Wan, W. Y., He, M., Jin, S. F. & Wang, S. C. (2010). Angew Chem. Int. Ed. DOI:10.1002/anie.200907075.]). For related structures, see: Chen et al. (2005[Chen, D.-G., Cheng, W.-D., Wu, D.-S., Zhang, H., Zhang, Y.-C., Gong, Y.-J. & Kan, Z.-G. (2005). Solid State Sci. 7, 179-188.]); Emme & Huppertz (2003[Emme, H. & Huppertz, H. (2003). Chem. Eur. J. 9, 3623-3633.], 2004[Emme, H. & Huppertz, H. (2004). Z. Anorg. Allg. Chem. 630, 2450-2457.], 2005[Emme, H. & Huppertz, H. (2005). Acta Cryst. C61, i29-i31.]); Huppertz (2003[Huppertz, H. (2003). Z. Naturforsch. Teil B, 58, 278-290.]); Huppertz & Emme (2004[Huppertz, H. & Emme, H. (2004). J. Phys. Condens. Matter, 16, S1283-S1290.]); Huppertz & von der Eltz (2002[Huppertz, H. & von der Eltz, B. (2002). J. Am. Chem. Soc. 124, 9376-9377.]); Knyrim et al. (2007[Knyrim, J. S., Roessner, F., Jakob, S., Johrendt, D., Kinski, I., Glaum, R. & Huppertz, H. (2007). Angew. Chem. Int. Ed. 46, 9097-9100.]); Smith et al. (1992[Smith, R. W., Luce, J. L. & Keszler, D. A. (1992). Inorg. Chem. 31, 4679-4682.]).

Experimental

Crystal data
  • KZnB3O6

  • Mr = 232.90

  • Triclinic, [P \overline 1]

  • a = 6.7139 (13) Å

  • b = 6.9301 (14) Å

  • c = 7.0632 (14) Å

  • α = 63.12 (3)°

  • β = 72.02 (3)°

  • γ = 68.99 (3)°

  • V = 269.37 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.29 mm−1

  • T = 93 K

  • 0.50 × 0.30 × 0.20 mm

Data collection
  • Rigaku Saturn 724+ diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.480, Tmax = 1.000

  • 2707 measured reflections

  • 1223 independent reflections

  • 1118 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.050

  • S = 0.94

  • 1223 reflections

  • 100 parameters

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.58 e Å−3

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ATOMS (Dowty, 1998[Dowty, E. (1998). ATOMS. Shape Software, Kingsport, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In efforts to identify new borates as optical materials or catalysts, investigations have been carried out in the K2O–ZnO–B2O3 system, where only one quaternary compound so far, KZn4B3O9, has been structurally characterized (Smith et al., 1992; Chen et al., 2005). Here, we report a new compound, KZnB3O6, with an unusual anion group. It is the first example of a borate prepared at ambient conditions that contains edge-sharing BO4 tetrahedra, a feature that has only been previously found in high-pressure phases (Huppertz & von der Eltz, 2002; Huppertz, 2003; Huppertz & Emme, 2004; Emme & Huppertz, 2003, 2004, 2005; Knyrim et al., 2007).

The structure consists of BO3 triangles, BO4 tetrahedra, and ZnO4 tetrahedra linked to form a three-dimensional framework whose cavities are filled with K+ cations in nine-coordinate environments (Fig. 1). The fundamental building block is a [B6O12]6- anion in which two six-membered rings formed by borate polyhedra are connected through a shared edge between two BO4 tetrahedra (Fig. 2). Within the resulting B2O2 ring, the transannular B–B distance [2.080 (5) Å] is similar to those in HP-NiB2O4 [2.088 (2) Å] and Dy4B6O15 [2.072 (8) Å] (Knyrim et al., 2007; Huppertz & von der Eltz, 2002). The Raman spectrum of KZnB3O6 shows bands at 1319 and 1456 cm-1, which lie in the range (about 1200 to 1450 cm-1) expected for the Raman-active modes of edge-sharing BO4 tetrahedra (Knyrim et al., 2007). Two distorted ZnO4 tetrahedra also share a common edge, similar to the case of Zn3B2O6 (Chen et al., 2005).

Related literature top

For an independent determination of the title compound, see: Chen et al. (2010). For related structures, see: Chen et al. (2005); Emme & Huppertz (2003, 2004, 2005); Huppertz (2003); Huppertz & Emme (2004); Huppertz & von der Eltz (2002); Knyrim et al. (2007); Smith et al. (1992).

Experimental top

A mixture of 7 mmol K2CO3, 10 mmol ZnO, and 43 mmol H3BO3 (all from Beijing Chemical Reagents Company) was heated to 1173 K in a platinum crucible. The transparent melt was cooled slowly from 1173 K to 1053 K at 1 K h-1. Upon further cooling to room temperature, column-shaped colorless crystals were obtained.

Refinement top

(type here to add refinement details)

Structure description top

In efforts to identify new borates as optical materials or catalysts, investigations have been carried out in the K2O–ZnO–B2O3 system, where only one quaternary compound so far, KZn4B3O9, has been structurally characterized (Smith et al., 1992; Chen et al., 2005). Here, we report a new compound, KZnB3O6, with an unusual anion group. It is the first example of a borate prepared at ambient conditions that contains edge-sharing BO4 tetrahedra, a feature that has only been previously found in high-pressure phases (Huppertz & von der Eltz, 2002; Huppertz, 2003; Huppertz & Emme, 2004; Emme & Huppertz, 2003, 2004, 2005; Knyrim et al., 2007).

The structure consists of BO3 triangles, BO4 tetrahedra, and ZnO4 tetrahedra linked to form a three-dimensional framework whose cavities are filled with K+ cations in nine-coordinate environments (Fig. 1). The fundamental building block is a [B6O12]6- anion in which two six-membered rings formed by borate polyhedra are connected through a shared edge between two BO4 tetrahedra (Fig. 2). Within the resulting B2O2 ring, the transannular B–B distance [2.080 (5) Å] is similar to those in HP-NiB2O4 [2.088 (2) Å] and Dy4B6O15 [2.072 (8) Å] (Knyrim et al., 2007; Huppertz & von der Eltz, 2002). The Raman spectrum of KZnB3O6 shows bands at 1319 and 1456 cm-1, which lie in the range (about 1200 to 1450 cm-1) expected for the Raman-active modes of edge-sharing BO4 tetrahedra (Knyrim et al., 2007). Two distorted ZnO4 tetrahedra also share a common edge, similar to the case of Zn3B2O6 (Chen et al., 2005).

For an independent determination of the title compound, see: Chen et al. (2010). For related structures, see: Chen et al. (2005); Emme & Huppertz (2003, 2004, 2005); Huppertz (2003); Huppertz & Emme (2004); Huppertz & von der Eltz (2002); Knyrim et al. (2007); Smith et al. (1992).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. KZnB3O6 viewed along b axis showing ZnO4 tetrahedra (magenta) linked by BO3 triangles and BO4 tetrahedra, with K+ cations (blue) located within the three-dimensional framework.
[Figure 2] Fig. 2. [B6O12]6- anion, with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) -x, -y, -z.]
potassium zinc triborate top
Crystal data top
KZnB3O6Z = 2
Mr = 232.90F(000) = 224
Triclinic, P1Dx = 2.871 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7139 (13) ÅCell parameters from 1009 reflections
b = 6.9301 (14) Åθ = 3.3–27.5°
c = 7.0632 (14) ŵ = 5.29 mm1
α = 63.12 (3)°T = 93 K
β = 72.02 (3)°Prism, colorless
γ = 68.99 (3)°0.50 × 0.30 × 0.20 mm
V = 269.37 (12) Å3
Data collection top
Rigaku Saturn 724+
diffractometer
1223 independent reflections
Radiation source: fine-focus sealed tube1118 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 78
Tmin = 0.480, Tmax = 1.000k = 89
2707 measured reflectionsl = 98
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.020Secondary atom site location: difference Fourier map
wR(F2) = 0.050 w = 1/[σ2(Fo2) + (0.030P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max = 0.001
1223 reflectionsΔρmax = 0.38 e Å3
100 parametersΔρmin = 0.58 e Å3
Crystal data top
KZnB3O6γ = 68.99 (3)°
Mr = 232.90V = 269.37 (12) Å3
Triclinic, P1Z = 2
a = 6.7139 (13) ÅMo Kα radiation
b = 6.9301 (14) ŵ = 5.29 mm1
c = 7.0632 (14) ÅT = 93 K
α = 63.12 (3)°0.50 × 0.30 × 0.20 mm
β = 72.02 (3)°
Data collection top
Rigaku Saturn 724+
diffractometer
1223 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1118 reflections with I > 2σ(I)
Tmin = 0.480, Tmax = 1.000Rint = 0.023
2707 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.020100 parameters
wR(F2) = 0.0500 restraints
S = 0.94Δρmax = 0.38 e Å3
1223 reflectionsΔρmin = 0.58 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K0.25708 (8)0.29494 (8)0.57923 (7)0.00606 (12)
Zn0.67490 (4)0.35335 (4)0.12712 (4)0.00346 (9)
B10.0964 (4)0.9933 (4)0.0944 (4)0.0048 (5)
B20.2441 (4)0.8171 (4)0.4350 (4)0.0050 (5)
B30.2977 (4)0.1817 (4)0.1685 (4)0.0052 (5)
O10.8584 (2)0.0829 (3)0.0849 (2)0.0046 (3)
O20.3702 (3)0.3605 (3)0.1211 (2)0.0054 (3)
O30.1393 (3)0.8112 (3)0.2984 (2)0.0055 (3)
O40.7213 (3)0.3533 (3)0.3794 (2)0.0065 (3)
O50.1989 (3)0.1716 (3)0.0323 (2)0.0056 (3)
O60.3232 (3)0.0056 (3)0.3678 (2)0.0058 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K0.0064 (3)0.0064 (2)0.0060 (2)0.00214 (19)0.00063 (19)0.00281 (19)
Zn0.00389 (15)0.00353 (14)0.00324 (14)0.00047 (10)0.00134 (10)0.00143 (10)
B10.0042 (12)0.0045 (12)0.0061 (11)0.0002 (10)0.0021 (9)0.0027 (9)
B20.0038 (12)0.0070 (12)0.0047 (11)0.0002 (10)0.0002 (9)0.0041 (9)
B30.0027 (12)0.0052 (12)0.0061 (11)0.0011 (10)0.0001 (9)0.0030 (9)
O10.0036 (8)0.0068 (8)0.0046 (7)0.0004 (6)0.0018 (6)0.0032 (6)
O20.0048 (8)0.0056 (8)0.0062 (7)0.0020 (6)0.0024 (6)0.0013 (6)
O30.0058 (8)0.0053 (8)0.0055 (7)0.0013 (6)0.0030 (6)0.0008 (6)
O40.0096 (9)0.0056 (8)0.0050 (7)0.0022 (7)0.0034 (6)0.0013 (6)
O50.0074 (8)0.0052 (7)0.0044 (7)0.0024 (6)0.0019 (6)0.0008 (6)
O60.0071 (8)0.0059 (8)0.0056 (7)0.0022 (7)0.0035 (6)0.0013 (6)
Geometric parameters (Å, º) top
K—O4i2.6404 (16)B1—B1viii2.080 (5)
K—O3ii2.7890 (18)B1—Kii3.286 (3)
K—O1iii2.791 (2)B1—Kix3.330 (3)
K—O62.8476 (17)B2—O4i1.326 (3)
K—O5iv2.8491 (17)B2—O31.380 (3)
K—O6iii2.856 (2)B2—O6vi1.412 (3)
K—O22.9418 (17)B2—Ki3.135 (3)
K—O43.0888 (19)B3—O21.357 (3)
K—B2i3.135 (3)B3—O51.363 (3)
K—O33.144 (2)B3—O61.395 (3)
K—B33.244 (3)O1—B1v1.492 (3)
K—B23.261 (3)O1—B1x1.503 (3)
Zn—O41.9013 (15)O1—Kiii2.791 (2)
Zn—O11.9347 (17)O2—Znv1.9628 (18)
Zn—O2v1.9628 (18)O3—Kii2.7890 (18)
Zn—O22.0414 (16)O4—B2i1.326 (3)
Zn—Znv2.9584 (14)O4—Ki2.6404 (16)
B1—O31.450 (3)O5—B1xi1.458 (3)
B1—O5vi1.458 (3)O5—Kxii2.8491 (17)
B1—O1v1.492 (3)O6—B2xi1.412 (3)
B1—O1vii1.503 (3)O6—Kiii2.856 (2)
O4i—K—O3ii119.60 (6)O1—Zn—Kiii41.67 (5)
O4i—K—O1iii125.80 (5)O2v—Zn—Kiii153.56 (5)
O3ii—K—O1iii52.15 (6)O2—Zn—Kiii83.72 (6)
O4i—K—O6156.86 (5)Znv—Zn—Kiii121.23 (3)
O3ii—K—O676.47 (5)K—Zn—Kiii75.71 (4)
O1iii—K—O676.88 (5)O4—Zn—Ki32.09 (5)
O4i—K—O5iv75.13 (5)O1—Zn—Ki131.51 (5)
O3ii—K—O5iv81.16 (6)O2v—Zn—Ki85.63 (5)
O1iii—K—O5iv51.22 (5)O2—Zn—Ki118.91 (5)
O6—K—O5iv126.26 (5)Znv—Zn—Ki106.44 (3)
O4i—K—O6iii103.77 (5)K—Zn—Ki75.22 (3)
O3ii—K—O6iii127.90 (5)Kiii—Zn—Ki120.74 (2)
O1iii—K—O6iii79.99 (6)O3—B1—O5vi113.83 (19)
O6—K—O6iii73.35 (6)O3—B1—O1v113.47 (18)
O5iv—K—O6iii83.76 (6)O5vi—B1—O1v111.49 (18)
O4i—K—O2109.74 (5)O3—B1—O1vii112.28 (18)
O3ii—K—O2101.75 (6)O5vi—B1—O1vii111.87 (19)
O1iii—K—O2124.46 (5)O1v—B1—O1vii92.02 (17)
O6—K—O247.88 (5)O3—B1—B1viii124.0 (2)
O5iv—K—O2171.41 (5)O5vi—B1—B1viii122.1 (2)
O6iii—K—O288.14 (6)O1v—B1—B1viii46.22 (12)
O4i—K—O472.24 (6)O1vii—B1—B1viii45.79 (12)
O3ii—K—O4167.20 (5)O3—B1—Kii57.50 (11)
O1iii—K—O4126.59 (6)O5vi—B1—Kii150.31 (15)
O6—K—O490.79 (5)O1v—B1—Kii97.21 (12)
O5iv—K—O4107.95 (5)O1vii—B1—Kii57.78 (10)
O6iii—K—O446.94 (5)B1viii—B1—Kii72.83 (13)
O2—K—O467.96 (5)O3—B1—Kix151.61 (16)
O4i—K—B2i79.31 (7)O5vi—B1—Kix58.34 (11)
O3ii—K—B2i154.09 (6)O1v—B1—Kix56.22 (10)
O1iii—K—B2i103.00 (7)O1vii—B1—Kix95.19 (13)
O6—K—B2i91.80 (6)B1viii—B1—Kix70.52 (13)
O5iv—K—B2i87.75 (7)Kii—B1—Kix143.35 (9)
O6iii—K—B2i26.75 (5)O4i—B2—O3121.2 (2)
O2—K—B2i86.28 (7)O4i—B2—O6vi120.5 (2)
O4—K—B2i24.59 (6)O3—B2—O6vi118.2 (2)
O4i—K—O347.12 (4)O4i—B2—Ki75.76 (14)
O3ii—K—O3102.99 (5)O3—B2—Ki128.91 (16)
O1iii—K—O3150.43 (5)O6vi—B2—Ki65.55 (12)
O6—K—O3116.19 (5)O4i—B2—K51.19 (11)
O5iv—K—O3116.19 (5)O3—B2—K72.85 (12)
O6iii—K—O3128.27 (5)O6vi—B2—K158.31 (17)
O2—K—O371.27 (5)Ki—B2—K92.88 (8)
O4—K—O381.38 (6)O2—B3—O5122.7 (2)
B2i—K—O3102.92 (7)O2—B3—O6117.3 (2)
O4i—K—B3133.81 (6)O5—B3—O6119.95 (19)
O3ii—K—B382.79 (6)O2—B3—K65.06 (11)
O1iii—K—B3100.12 (6)O5—B3—K149.00 (16)
O6—K—B325.42 (5)O6—B3—K61.19 (11)
O5iv—K—B3151.06 (6)B1v—O1—B1x87.98 (17)
O6iii—K—B387.36 (6)B1v—O1—Zn132.19 (14)
O2—K—B324.73 (5)B1x—O1—Zn125.03 (13)
O4—K—B385.14 (6)B1v—O1—Kiii97.40 (12)
B2i—K—B396.54 (7)B1x—O1—Kiii95.11 (12)
O3—K—B390.81 (6)Zn—O1—Kiii110.89 (7)
O4i—K—B223.03 (5)B3—O2—Znv126.73 (15)
O3ii—K—B2117.32 (7)B3—O2—Zn126.50 (16)
O1iii—K—B2145.28 (6)Znv—O2—Zn95.24 (7)
O6—K—B2136.67 (6)B3—O2—K90.21 (13)
O5iv—K—B297.00 (6)Znv—O2—K126.87 (7)
O6iii—K—B2113.85 (6)Zn—O2—K87.73 (6)
O2—K—B288.87 (6)B2—O3—B1123.45 (18)
O4—K—B271.34 (6)B2—O3—Kii124.93 (14)
B2i—K—B287.12 (8)B1—O3—Kii96.48 (13)
O3—K—B224.79 (5)B2—O3—K82.36 (13)
B3—K—B2111.77 (7)B1—O3—K149.76 (13)
O4—Zn—O1109.34 (7)Kii—O3—K77.01 (5)
O4—Zn—O2v117.70 (7)B2i—O4—Zn128.77 (15)
O1—Zn—O2v120.18 (7)B2i—O4—Ki105.78 (13)
O4—Zn—O2117.57 (7)Zn—O4—Ki125.42 (8)
O1—Zn—O2104.70 (7)B2i—O4—K79.65 (13)
O2v—Zn—O284.76 (7)Zn—O4—K86.04 (6)
O4—Zn—Znv128.89 (6)Ki—O4—K107.76 (6)
O1—Zn—Znv120.57 (5)B3—O5—B1xi122.58 (18)
O2v—Zn—Znv43.41 (5)B3—O5—Kxii136.44 (13)
O2—Zn—Znv41.35 (5)B1xi—O5—Kxii95.84 (12)
O4—Zn—K61.28 (5)B3—O6—B2xi121.34 (18)
O1—Zn—K117.35 (6)B3—O6—K93.39 (12)
O2v—Zn—K116.70 (6)B2xi—O6—K130.47 (13)
O2—Zn—K56.78 (5)B3—O6—Kiii118.51 (14)
Znv—Zn—K85.42 (3)B2xi—O6—Kiii87.70 (14)
O4—Zn—Kiii88.71 (6)K—O6—Kiii106.65 (6)
O4i—K—Zn—O450.46 (9)Kiii—Zn—O2—Znv156.16 (5)
O3ii—K—Zn—O4170.08 (8)Ki—Zn—O2—Znv82.07 (6)
O1iii—K—Zn—O495.13 (8)O4—Zn—O2—K8.22 (8)
O6—K—Zn—O4137.47 (7)O1—Zn—O2—K113.32 (6)
O5iv—K—Zn—O419.56 (8)O2v—Zn—O2—K126.83 (7)
O6iii—K—Zn—O453.81 (7)Znv—Zn—O2—K126.83 (7)
O2—K—Zn—O4171.69 (8)Kiii—Zn—O2—K77.02 (5)
B2i—K—Zn—O423.73 (8)Ki—Zn—O2—K44.76 (6)
O3—K—Zn—O495.11 (7)O4i—K—O2—B3168.31 (13)
B3—K—Zn—O4163.59 (8)O3ii—K—O2—B340.67 (14)
B2—K—Zn—O470.13 (8)O1iii—K—O2—B311.21 (15)
O4i—K—Zn—O1148.61 (6)O6—K—O2—B318.64 (13)
O3ii—K—Zn—O171.93 (8)O6iii—K—O2—B387.72 (14)
O1iii—K—Zn—O13.02 (9)O4—K—O2—B3131.35 (14)
O6—K—Zn—O139.32 (6)B2i—K—O2—B3114.45 (14)
O5iv—K—Zn—O178.59 (8)O3—K—O2—B3140.57 (14)
O6iii—K—Zn—O144.34 (6)B2—K—O2—B3158.37 (14)
O2—K—Zn—O190.16 (8)O4i—K—O2—Znv29.68 (10)
O4—K—Zn—O198.15 (8)O3ii—K—O2—Znv97.96 (9)
B2i—K—Zn—O174.42 (8)O1iii—K—O2—Znv149.85 (8)
O3—K—Zn—O1166.75 (6)O6—K—O2—Znv157.27 (11)
B3—K—Zn—O165.44 (8)O6iii—K—O2—Znv133.65 (9)
B2—K—Zn—O1168.27 (7)O4—K—O2—Znv90.02 (9)
O4i—K—Zn—O2v58.07 (6)B2i—K—O2—Znv106.92 (10)
O3ii—K—Zn—O2v81.39 (8)O3—K—O2—Znv1.94 (7)
O1iii—K—Zn—O2v156.34 (7)B3—K—O2—Znv138.63 (18)
O6—K—Zn—O2v114.00 (6)B2—K—O2—Znv19.73 (9)
O5iv—K—Zn—O2v128.09 (7)O4i—K—O2—Zn65.17 (7)
O6iii—K—Zn—O2v162.34 (6)O3ii—K—O2—Zn167.19 (5)
O2—K—Zn—O2v63.16 (9)O1iii—K—O2—Zn115.30 (6)
O4—K—Zn—O2v108.53 (8)O6—K—O2—Zn107.88 (8)
B2i—K—Zn—O2v132.26 (8)O6iii—K—O2—Zn38.80 (5)
O3—K—Zn—O2v13.42 (6)O4—K—O2—Zn4.83 (5)
B3—K—Zn—O2v87.88 (8)B2i—K—O2—Zn12.07 (6)
B2—K—Zn—O2v38.41 (7)O3—K—O2—Zn92.91 (6)
O4i—K—Zn—O2121.23 (7)B3—K—O2—Zn126.52 (15)
O3ii—K—Zn—O218.23 (7)B2—K—O2—Zn75.12 (7)
O1iii—K—Zn—O293.19 (8)O4i—B2—O3—B1179.7 (2)
O6—K—Zn—O250.85 (7)O6vi—B2—O3—B13.2 (3)
O5iv—K—Zn—O2168.75 (8)Ki—B2—O3—B183.4 (3)
O6iii—K—Zn—O2134.50 (6)K—B2—O3—B1162.96 (19)
O4—K—Zn—O2171.69 (8)O4i—B2—O3—Kii50.9 (3)
B2i—K—Zn—O2164.58 (8)O6vi—B2—O3—Kii132.00 (17)
O3—K—Zn—O276.58 (7)Ki—B2—O3—Kii147.80 (11)
B3—K—Zn—O224.72 (8)K—B2—O3—Kii68.26 (12)
B2—K—Zn—O2101.56 (8)O4i—B2—O3—K17.4 (2)
O4i—K—Zn—Znv89.18 (4)O6vi—B2—O3—K159.7 (2)
O3ii—K—Zn—Znv50.27 (6)Ki—B2—O3—K79.54 (16)
O1iii—K—Zn—Znv125.23 (5)O5vi—B1—O3—B27.7 (3)
O6—K—Zn—Znv82.89 (4)O1v—B1—O3—B2136.6 (2)
O5iv—K—Zn—Znv159.20 (5)O1vii—B1—O3—B2120.7 (2)
O6iii—K—Zn—Znv166.54 (4)B1viii—B1—O3—B2171.5 (2)
O2—K—Zn—Znv32.04 (5)Kii—B1—O3—B2140.0 (2)
O4—K—Zn—Znv139.64 (6)Kix—B1—O3—B274.7 (4)
B2i—K—Zn—Znv163.37 (6)O5vi—B1—O3—Kii147.63 (16)
O3—K—Zn—Znv44.54 (4)O1v—B1—O3—Kii83.43 (18)
B3—K—Zn—Znv56.77 (6)O1vii—B1—O3—Kii19.24 (17)
B2—K—Zn—Znv69.52 (6)B1viii—B1—O3—Kii31.5 (3)
O4i—K—Zn—Kiii146.95 (4)Kix—B1—O3—Kii145.3 (3)
O3ii—K—Zn—Kiii73.59 (6)O5vi—B1—O3—K137.1 (2)
O1iii—K—Zn—Kiii1.37 (4)O1v—B1—O3—K8.2 (4)
O6—K—Zn—Kiii40.97 (4)O1vii—B1—O3—K94.5 (3)
O5iv—K—Zn—Kiii76.93 (6)B1viii—B1—O3—K43.7 (4)
O6iii—K—Zn—Kiii42.68 (4)Kii—B1—O3—K75.3 (2)
O2—K—Zn—Kiii91.82 (6)Kix—B1—O3—K70.0 (4)
O4—K—Zn—Kiii96.49 (6)O4i—K—O3—B210.06 (12)
B2i—K—Zn—Kiii72.76 (7)O3ii—K—O3—B2128.59 (13)
O3—K—Zn—Kiii168.40 (3)O1iii—K—O3—B298.98 (15)
B3—K—Zn—Kiii67.10 (6)O6—K—O3—B2150.28 (12)
B2—K—Zn—Kiii166.62 (5)O5iv—K—O3—B242.17 (13)
O4i—K—Zn—Ki19.17 (4)O6iii—K—O3—B261.35 (14)
O3ii—K—Zn—Ki158.63 (6)O2—K—O3—B2133.21 (13)
O1iii—K—Zn—Ki126.42 (5)O4—K—O3—B263.66 (13)
O6—K—Zn—Ki168.76 (4)B2i—K—O3—B251.73 (16)
O5iv—K—Zn—Ki50.85 (5)B3—K—O3—B2148.62 (13)
O6iii—K—Zn—Ki85.10 (4)O4i—K—O3—B1161.0 (3)
O2—K—Zn—Ki140.40 (6)O3ii—K—O3—B180.5 (3)
O4—K—Zn—Ki31.29 (6)O1iii—K—O3—B1110.1 (3)
B2i—K—Zn—Ki55.02 (6)O6—K—O3—B10.7 (3)
O3—K—Zn—Ki63.81 (4)O5iv—K—O3—B1166.9 (3)
B3—K—Zn—Ki165.12 (6)O6iii—K—O3—B189.6 (3)
B2—K—Zn—Ki38.83 (5)O2—K—O3—B117.7 (3)
O3ii—K—B2—O4i101.89 (15)O4—K—O3—B187.3 (3)
O1iii—K—B2—O4i39.7 (2)B2i—K—O3—B199.2 (3)
O6—K—B2—O4i158.69 (12)B3—K—O3—B12.3 (3)
O5iv—K—B2—O4i18.26 (15)B2—K—O3—B1150.9 (3)
O6iii—K—B2—O4i67.98 (15)O4i—K—O3—Kii118.53 (7)
O2—K—B2—O4i155.45 (14)O3ii—K—O3—Kii0.0
O4—K—B2—O4i88.37 (15)O1iii—K—O3—Kii29.61 (10)
B2i—K—B2—O4i69.11 (14)O6—K—O3—Kii81.13 (6)
O3—K—B2—O4i160.9 (2)O5iv—K—O3—Kii86.42 (6)
B3—K—B2—O4i165.01 (14)O6iii—K—O3—Kii170.06 (5)
O4i—K—B2—O3160.9 (2)O2—K—O3—Kii98.19 (5)
O3ii—K—B2—O359.00 (14)O4—K—O3—Kii167.74 (5)
O1iii—K—B2—O3121.16 (12)B2i—K—O3—Kii179.68 (6)
O6—K—B2—O340.42 (16)B3—K—O3—Kii82.79 (6)
O5iv—K—B2—O3142.63 (12)B2—K—O3—Kii128.59 (13)
O6iii—K—B2—O3131.12 (12)O1—Zn—O4—B2i37.9 (2)
O2—K—B2—O343.66 (12)O2v—Zn—O4—B2i179.73 (18)
O4—K—B2—O3110.73 (13)O2—Zn—O4—B2i81.2 (2)
B2i—K—B2—O3129.99 (15)Znv—Zn—O4—B2i129.37 (18)
B3—K—B2—O334.10 (14)K—Zn—O4—B2i73.35 (19)
O4i—K—B2—O6vi74.8 (4)Kiii—Zn—O4—B2i1.03 (19)
O3ii—K—B2—O6vi176.7 (4)Ki—Zn—O4—B2i177.6 (3)
O1iii—K—B2—O6vi114.5 (4)O1—Zn—O4—Ki139.70 (9)
O6—K—B2—O6vi83.9 (4)O2v—Zn—O4—Ki2.11 (12)
O5iv—K—B2—O6vi93.0 (4)O2—Zn—O4—Ki101.18 (10)
O6iii—K—B2—O6vi6.8 (4)Znv—Zn—O4—Ki53.01 (11)
O2—K—B2—O6vi80.7 (4)K—Zn—O4—Ki109.03 (10)
O4—K—B2—O6vi13.6 (4)Kiii—Zn—O4—Ki176.59 (8)
B2i—K—B2—O6vi5.7 (4)O1—Zn—O4—K111.28 (6)
O3—K—B2—O6vi124.3 (5)O2v—Zn—O4—K106.92 (7)
B3—K—B2—O6vi90.2 (4)O2—Zn—O4—K7.84 (7)
O4i—K—B2—Ki69.11 (14)Znv—Zn—O4—K56.02 (6)
O3ii—K—B2—Ki171.01 (5)Kiii—Zn—O4—K74.39 (5)
O1iii—K—B2—Ki108.85 (10)Ki—Zn—O4—K109.03 (10)
O6—K—B2—Ki89.57 (9)O4i—K—O4—B2i103.40 (14)
O5iv—K—B2—Ki87.38 (7)O3ii—K—O4—B2i98.0 (2)
O6iii—K—B2—Ki1.13 (7)O1iii—K—O4—B2i18.42 (14)
O2—K—B2—Ki86.33 (7)O6—K—O4—B2i92.60 (13)
O4—K—B2—Ki19.26 (4)O5iv—K—O4—B2i36.17 (14)
B2i—K—B2—Ki0.0O6iii—K—O4—B2i26.49 (12)
O3—K—B2—Ki129.99 (15)O2—K—O4—B2i135.79 (14)
B3—K—B2—Ki95.89 (8)O3—K—O4—B2i151.02 (13)
O4i—K—B3—O215.32 (17)B3—K—O4—B2i117.42 (14)
O3ii—K—B3—O2139.97 (14)B2—K—O4—B2i127.65 (12)
O1iii—K—B3—O2170.63 (12)O4i—K—O4—Zn126.01 (9)
O6—K—B3—O2146.5 (2)O3ii—K—O4—Zn32.6 (2)
O5iv—K—B3—O2163.33 (11)O1iii—K—O4—Zn112.17 (6)
O6iii—K—B3—O291.29 (13)O6—K—O4—Zn37.99 (6)
O4—K—B3—O244.29 (13)O5iv—K—O4—Zn166.76 (5)
B2i—K—B3—O266.12 (14)O6iii—K—O4—Zn104.10 (8)
O3—K—B3—O236.98 (13)O2—K—O4—Zn5.20 (5)
B2—K—B3—O223.39 (15)B2i—K—O4—Zn130.59 (15)
O4i—K—B3—O597.2 (3)O3—K—O4—Zn78.39 (6)
O3ii—K—B3—O527.5 (3)B3—K—O4—Zn13.17 (6)
O1iii—K—B3—O576.9 (3)B2—K—O4—Zn101.76 (8)
O6—K—B3—O5101.0 (3)O4i—K—O4—Ki0.0
O5iv—K—B3—O584.2 (3)O3ii—K—O4—Ki158.64 (19)
O6iii—K—B3—O5156.2 (3)O1iii—K—O4—Ki121.82 (6)
O2—K—B3—O5112.5 (4)O6—K—O4—Ki164.00 (6)
O4—K—B3—O5156.8 (3)O5iv—K—O4—Ki67.23 (7)
B2i—K—B3—O5178.6 (3)O6iii—K—O4—Ki129.90 (8)
O3—K—B3—O575.5 (3)O2—K—O4—Ki120.81 (7)
B2—K—B3—O589.1 (3)B2i—K—O4—Ki103.40 (14)
O4i—K—B3—O6161.80 (11)O3—K—O4—Ki47.62 (5)
O3ii—K—B3—O673.54 (13)B3—K—O4—Ki139.18 (7)
O1iii—K—B3—O624.14 (13)B2—K—O4—Ki24.25 (6)
O5iv—K—B3—O616.8 (2)O2—B3—O5—B1xi171.9 (2)
O6iii—K—B3—O655.19 (13)O6—B3—O5—B1xi6.6 (3)
O2—K—B3—O6146.5 (2)K—B3—O5—B1xi76.4 (4)
O4—K—B3—O6102.19 (13)O2—B3—O5—Kxii40.2 (3)
B2i—K—B3—O680.36 (14)O6—B3—O5—Kxii141.28 (16)
O3—K—B3—O6176.54 (12)K—B3—O5—Kxii135.7 (2)
B2—K—B3—O6169.87 (12)O2—B3—O6—B2xi177.2 (2)
O4—Zn—O1—B1v173.34 (17)O5—B3—O6—B2xi1.4 (3)
O2v—Zn—O1—B1v32.6 (2)K—B3—O6—B2xi142.9 (2)
O2—Zn—O1—B1v59.85 (19)O2—B3—O6—K34.3 (2)
Znv—Zn—O1—B1v18.13 (19)O5—B3—O6—K144.30 (19)
K—Zn—O1—B1v119.73 (17)O2—B3—O6—Kiii76.7 (2)
Kiii—Zn—O1—B1v122.1 (2)O5—B3—O6—Kiii104.7 (2)
Ki—Zn—O1—B1v146.02 (16)K—B3—O6—Kiii111.02 (10)
O4—Zn—O1—B1x48.07 (17)O4i—K—O6—B335.0 (2)
O2v—Zn—O1—B1x92.65 (16)O3ii—K—O6—B3101.87 (13)
O2—Zn—O1—B1x174.87 (15)O1iii—K—O6—B3155.58 (13)
Znv—Zn—O1—B1x143.40 (14)O5iv—K—O6—B3169.98 (12)
K—Zn—O1—B1x115.00 (15)O6iii—K—O6—B3121.12 (14)
Kiii—Zn—O1—B1x112.59 (17)O2—K—O6—B318.14 (12)
Ki—Zn—O1—B1x20.75 (18)O4—K—O6—B376.92 (13)
O4—Zn—O1—Kiii64.52 (8)B2i—K—O6—B3101.49 (14)
O2v—Zn—O1—Kiii154.77 (6)O3—K—O6—B33.86 (14)
O2—Zn—O1—Kiii62.29 (8)B2—K—O6—B313.77 (16)
Znv—Zn—O1—Kiii104.01 (6)O4i—K—O6—B2xi172.34 (18)
K—Zn—O1—Kiii2.41 (8)O3ii—K—O6—B2xi35.48 (19)
Ki—Zn—O1—Kiii91.84 (7)O1iii—K—O6—B2xi18.23 (19)
O5—B3—O2—Znv6.8 (3)O5iv—K—O6—B2xi32.6 (2)
O6—B3—O2—Znv171.72 (14)O6iii—K—O6—B2xi101.5 (2)
K—B3—O2—Znv138.72 (16)O2—K—O6—B2xi155.5 (2)
O5—B3—O2—Zn127.1 (2)O4—K—O6—B2xi145.74 (19)
O6—B3—O2—Zn54.3 (3)B2i—K—O6—B2xi121.17 (17)
K—B3—O2—Zn87.33 (13)O3—K—O6—B2xi133.48 (18)
O5—B3—O2—K145.6 (2)B3—K—O6—B2xi137.3 (3)
O6—B3—O2—K33.0 (2)B2—K—O6—B2xi151.1 (2)
O4—Zn—O2—B396.81 (18)O4i—K—O6—Kiii86.13 (14)
O1—Zn—O2—B324.73 (18)O3ii—K—O6—Kiii137.01 (6)
O2v—Zn—O2—B3144.6 (2)O1iii—K—O6—Kiii83.30 (6)
Znv—Zn—O2—B3144.6 (2)O5iv—K—O6—Kiii68.90 (8)
K—Zn—O2—B388.59 (17)O6iii—K—O6—Kiii0.0
Kiii—Zn—O2—B311.57 (16)O2—K—O6—Kiii102.98 (8)
Ki—Zn—O2—B3133.34 (16)O4—K—O6—Kiii44.20 (5)
O4—Zn—O2—Znv118.60 (7)B2i—K—O6—Kiii19.63 (6)
O1—Zn—O2—Znv119.85 (7)O3—K—O6—Kiii124.98 (6)
O2v—Zn—O2—Znv0.0B3—K—O6—Kiii121.12 (14)
K—Zn—O2—Znv126.83 (7)B2—K—O6—Kiii107.35 (9)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+1, y, z+1; (iv) x, y, z+1; (v) x+1, y+1, z; (vi) x, y+1, z; (vii) x1, y+1, z; (viii) x, y+2, z; (ix) x, y+1, z1; (x) x+1, y1, z; (xi) x, y1, z; (xii) x, y, z1.

Experimental details

Crystal data
Chemical formulaKZnB3O6
Mr232.90
Crystal system, space groupTriclinic, P1
Temperature (K)93
a, b, c (Å)6.7139 (13), 6.9301 (14), 7.0632 (14)
α, β, γ (°)63.12 (3), 72.02 (3), 68.99 (3)
V3)269.37 (12)
Z2
Radiation typeMo Kα
µ (mm1)5.29
Crystal size (mm)0.50 × 0.30 × 0.20
Data collection
DiffractometerRigaku Saturn 724+
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.480, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
2707, 1223, 1118
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.050, 0.94
No. of reflections1223
No. of parameters100
Δρmax, Δρmin (e Å3)0.38, 0.58

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ATOMS (Dowty, 1998).

 

Footnotes

Current address: Graduate University of the Chinese Academy of Sciences, Beijing 100039, People's Republic of China.

Acknowledgements

The authors thank Professor Kaibei Yu, the State Key Laboratory of Explosion Science and Technology of Beijing Institute of Technology, for collecting the single crystal X-ray diffraction data. This work was supported by the National Natural Science Foundation of China (grant No. 90922036).

References

First citationChen, X. L., Cai, G. M., Wan, W. Y., He, M., Jin, S. F. & Wang, S. C. (2010). Angew Chem. Int. Ed. DOI:10.1002/anie.200907075.  Google Scholar
First citationChen, D.-G., Cheng, W.-D., Wu, D.-S., Zhang, H., Zhang, Y.-C., Gong, Y.-J. & Kan, Z.-G. (2005). Solid State Sci. 7, 179–188.  Web of Science CrossRef CAS Google Scholar
First citationDowty, E. (1998). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationEmme, H. & Huppertz, H. (2003). Chem. Eur. J. 9, 3623–3633.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEmme, H. & Huppertz, H. (2004). Z. Anorg. Allg. Chem. 630, 2450–2457.  Web of Science CrossRef CAS Google Scholar
First citationEmme, H. & Huppertz, H. (2005). Acta Cryst. C61, i29–i31.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHuppertz, H. (2003). Z. Naturforsch. Teil B, 58, 278–290.  CAS Google Scholar
First citationHuppertz, H. & Emme, H. (2004). J. Phys. Condens. Matter, 16, S1283–S1290.  Web of Science CrossRef CAS Google Scholar
First citationHuppertz, H. & von der Eltz, B. (2002). J. Am. Chem. Soc. 124, 9376–9377.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKnyrim, J. S., Roessner, F., Jakob, S., Johrendt, D., Kinski, I., Glaum, R. & Huppertz, H. (2007). Angew. Chem. Int. Ed. 46, 9097–9100.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, R. W., Luce, J. L. & Keszler, D. A. (1992). Inorg. Chem. 31, 4679–4682.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds