inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Lanthanum ruthenium indide, La21Ru9+xIn5-x (x = 1.2)

aDepartment of Chemistry, Moscow State University, Leninskie Gory 1/3, 119 992 Moscow, Russian Federation, and bLaboratoire de Chimie du Solide et Matériaux, UMR6226 CNRS-Université de Rennes 1, Avenue du Général Leclerc, 30542 Rennes, France
*Correspondence e-mail: vladimir@struct.chem.msu.ru

(Received 26 March 2010; accepted 20 April 2010; online 24 April 2010)

La21Ru9+xIn5-x (Pearson symbol tI140) is isotypic to the filled Y3Rh2-type structure, from which it can be derived through an ordered substitution at two sites. One of the square-prismatic sites (site symmetry ..m) is occupied by a mixture of Ru and In atoms and one of the square-antiprismatic sites (4/m..) is fully occupied by In atoms.

Related literature

For related structures, see: Zaremba et al. (2007[Zaremba, R., Rodewald, U. Ch., Zaremba, V. I. & Pöttgen, R. (2007). Z. Naturforsch. Teil B, 62, 1397-1406.]); Moreau et al. (1976[Moreau, J.-M., Paccard, D. & Parthé, E. (1976). Acta Cryst. B32, 1767-1771.]). For standardization of crystal structures, see: Gelato & Parthé (1987[Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.]).

Experimental

Crystal data
  • La21Ru10.16In3.84

  • Mr = 4384.89

  • Tetragonal, I 4/m c m

  • a = 12.1298 (3) Å

  • c = 25.9820 (7) Å

  • V = 3822.79 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 28.98 mm−1

  • T = 293 K

  • 0.06 × 0.05 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: for a sphere (WinGX; Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) Tmin = 0.243, Tmax = 0.261

  • 22423 measured reflections

  • 1202 independent reflections

  • 927 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.062

  • S = 1.12

  • 1202 reflections

  • 53 parameters

  • Δρmax = 2.00 e Å−3

  • Δρmin = −2.74 e Å−3

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

New rare-earth metal-rich indium compounds RE3T2-xInx (RE = Gd, Tb, Dy, Ho, Er, Tm; T = Rh, Pd, Ir) have been recently synthesized (Zaremba et al., 2007). They can be regarded as extensions of the parent binaries RE3T2 with either the Y3Rh2- (T = Rh, Ir) or U3Si2-type (T = Pd) structures into the ternary RE–T–In systems. In contrast, La21Ru9+xIn5-x, presented here, is strictly a ternary compound with no corresponding La-Ru binary of the same stoichiometry.

In the Y3Rh2–type structure, six crystallographically independent transition metal sites are available with trigonal prismatic, square prismatic, and square antiprismatic coordination environments (Moreau et al., 1976). The structure of La21Ru9+xIn5-x is derived through an ordered substitution at two sites, with the square prismatic site (16l) occupied by a mixture of Ru and In atoms and one of the square antiprismatic sites (4c) occupied fully by In atoms (Fig. 1). This suggests the existence of a solid solution, as confirmed by EDX measurements which revealed a homogeneity range of ca. 3 at.% in La21Ru9+xIn5-x.

Related literature top

For related structures, see: Zaremba et al. (2007); Moreau et al. (1976). For standardization of crystal structures, see: Gelato & Parthé (1987).

Experimental top

The title compound was prepared by arc-melting of the constituent elements (La, 99.8%; Ru, 99.9%, In, 99.999%) under a high purity argon atmosphere on a water-cooled cooper hearth. The arc-melted button, with nominal composition La59.26Ru29.63In11.11, was turned over and remelted to ensure its homogeneity. The weight loss was less than 1%. The sample was annealed in an evacuated quartz ampoule at 870 K for 600 h and quenched in cold water. The single crystal was selected from the crushed sample.

EDX analysis of the majority phase in a number of samples revealed that the composition of the new compound ranges from La58.8Ru26.2In15.0 to La61.1Ru28.3In10.7 with an uncertainty of about 1 at.% for each element. Thus the homogeneity range of the title compound is approximately 3 at.% at 870 K.

Refinement top

The atomic parameters were standardized with the program STRUCTURE TIDY (Gelato & Parthé, 1987). The highest peak and the deepest hole in the final difference map are located 0.69 Å from La2 and 0.82 Å, respectively, from Ru1.

Structure description top

New rare-earth metal-rich indium compounds RE3T2-xInx (RE = Gd, Tb, Dy, Ho, Er, Tm; T = Rh, Pd, Ir) have been recently synthesized (Zaremba et al., 2007). They can be regarded as extensions of the parent binaries RE3T2 with either the Y3Rh2- (T = Rh, Ir) or U3Si2-type (T = Pd) structures into the ternary RE–T–In systems. In contrast, La21Ru9+xIn5-x, presented here, is strictly a ternary compound with no corresponding La-Ru binary of the same stoichiometry.

In the Y3Rh2–type structure, six crystallographically independent transition metal sites are available with trigonal prismatic, square prismatic, and square antiprismatic coordination environments (Moreau et al., 1976). The structure of La21Ru9+xIn5-x is derived through an ordered substitution at two sites, with the square prismatic site (16l) occupied by a mixture of Ru and In atoms and one of the square antiprismatic sites (4c) occupied fully by In atoms (Fig. 1). This suggests the existence of a solid solution, as confirmed by EDX measurements which revealed a homogeneity range of ca. 3 at.% in La21Ru9+xIn5-x.

For related structures, see: Zaremba et al. (2007); Moreau et al. (1976). For standardization of crystal structures, see: Gelato & Parthé (1987).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure of the title compound emphasizing the coordination polyhedra, with atom labelling shown and displacement ellipsoids drawn at the 50% probability level.
lanthanum ruthenium indium (21/10.2/3.8) top
Crystal data top
La21Ru10.16In3.84Dx = 7.619 Mg m3
Mr = 4384.89Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4/mcmCell parameters from 12585 reflections
Hall symbol: -I 4 2cθ = 2.9–27.5°
a = 12.1298 (3) ŵ = 28.98 mm1
c = 25.9820 (7) ÅT = 293 K
V = 3822.79 (17) Å3Prism, metallic-dark-grey
Z = 40.06 × 0.05 × 0.05 mm
F(000) = 7329
Data collection top
Nonius KappaCCD
diffractometer
1202 independent reflections
Radiation source: fine-focus sealed tube927 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
φ and ω scansθmax = 27.5°, θmin = 3.7°
Absorption correction: for a sphere
(WinGX; Farrugia, 1999)
h = 1515
Tmin = 0.243, Tmax = 0.261k = 1515
22423 measured reflectionsl = 3332
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.036Secondary atom site location: difference Fourier map
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0131P)2 + 224.3566P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
1202 reflectionsΔρmax = 2.00 e Å3
53 parametersΔρmin = 2.74 e Å3
Crystal data top
La21Ru10.16In3.84Z = 4
Mr = 4384.89Mo Kα radiation
Tetragonal, I4/mcmµ = 28.98 mm1
a = 12.1298 (3) ÅT = 293 K
c = 25.9820 (7) Å0.06 × 0.05 × 0.05 mm
V = 3822.79 (17) Å3
Data collection top
Nonius KappaCCD
diffractometer
1202 independent reflections
Absorption correction: for a sphere
(WinGX; Farrugia, 1999)
927 reflections with I > 2σ(I)
Tmin = 0.243, Tmax = 0.261Rint = 0.087
22423 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0131P)2 + 224.3566P]
where P = (Fo2 + 2Fc2)/3
S = 1.12Δρmax = 2.00 e Å3
1202 reflectionsΔρmin = 2.74 e Å3
53 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
La10.07818 (5)0.20842 (5)0.07297 (2)0.01886 (15)
La20.20391 (6)0.07950 (6)0.19170 (2)0.02653 (17)
La30.85106 (8)0.35106 (8)0.00000.0208 (3)
La40.00000.50000.10584 (5)0.0255 (3)
La50.00000.50000.25000.0615 (8)
Ru10.81308 (11)0.31308 (11)0.10986 (6)0.0429 (4)
Ru20.65628 (8)0.15628 (8)0.18661 (5)0.0287 (4)0.29 (4)
Ru30.59671 (12)0.09671 (12)0.00000.0247 (4)
Ru40.00000.00000.12798 (6)0.0207 (4)
Ru50.00000.00000.25000.0213 (5)
In10.65628 (8)0.15628 (8)0.18661 (5)0.0287 (4)0.71 (4)
In20.00000.00000.00000.0200 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.0226 (3)0.0185 (3)0.0154 (3)0.0006 (3)0.0001 (2)0.0002 (2)
La20.0305 (4)0.0311 (4)0.0180 (3)0.0036 (3)0.0003 (3)0.0001 (3)
La30.0218 (4)0.0218 (4)0.0188 (6)0.0021 (6)0.0000.000
La40.0260 (4)0.0260 (4)0.0247 (7)0.0035 (6)0.0000.000
La50.0793 (13)0.0793 (13)0.0258 (12)0.0000.0000.000
Ru10.0471 (6)0.0471 (6)0.0345 (8)0.0213 (8)0.0168 (6)0.0168 (6)
Ru20.0244 (5)0.0244 (5)0.0372 (8)0.0073 (5)0.0070 (4)0.0070 (4)
Ru30.0270 (6)0.0270 (6)0.0202 (9)0.0055 (8)0.0000.000
Ru40.0195 (5)0.0195 (5)0.0232 (9)0.0000.0000.000
Ru50.0199 (8)0.0199 (8)0.0241 (12)0.0000.0000.000
In10.0244 (5)0.0244 (5)0.0372 (8)0.0073 (5)0.0070 (4)0.0070 (4)
In20.0206 (7)0.0206 (7)0.0190 (10)0.0000.0000.000
Geometric parameters (Å, º) top
La1—Ru1i3.0174 (15)La4—La2i4.3365 (10)
La1—Ru3ii3.0385 (12)La5—In1xxix3.1464 (14)
La1—Ru43.0550 (10)La5—Ru2xxix3.1464 (14)
La1—In23.2992 (6)La5—In1xii3.1464 (14)
La1—In1i3.5084 (13)La5—Ru2xii3.1464 (14)
La1—Ru2i3.5084 (13)La5—In1i3.1464 (14)
La1—Ru1iii3.5875 (11)La5—In1xxv3.1464 (14)
La1—La2iv3.6299 (9)La5—Ru2i3.1464 (14)
La1—La1v3.6607 (13)La5—Ru2xxv3.1464 (14)
La1—La43.7600 (7)La5—La4xxx3.7457 (13)
La1—La3iii3.7653 (7)La5—La2i4.0154 (7)
La1—La23.7798 (9)La5—La2iv4.0154 (7)
La1—La1vi3.7919 (11)La5—La2xxxi4.0154 (7)
La1—La1iv3.8185 (9)La5—La2xii4.0154 (7)
La1—La1vii3.8185 (9)La5—La2xxviii4.0154 (7)
La1—La3ii3.8822 (12)La5—La2xxv4.0154 (7)
La2—Ru1i2.8235 (14)La5—La2xxix4.0154 (7)
La2—Ru53.0565 (7)La5—La2x4.0154 (7)
La2—Ru43.1286 (11)Ru1—La2xxiii2.8235 (14)
La2—In1i3.2592 (13)Ru1—La2xxii2.8235 (14)
La2—Ru2i3.2592 (13)Ru1—La1xxii3.0174 (15)
La2—In1viii3.3276 (8)Ru1—La1xxiii3.0174 (15)
La2—Ru2viii3.3276 (8)Ru1—La4xvi3.2082 (19)
La2—La2ix3.5915 (13)Ru1—La1xvi3.5875 (11)
La2—La1vii3.6299 (9)Ru1—La1xx3.5875 (11)
La2—La2x3.7060 (13)Ru2—La5xii3.1464 (14)
La2—In1xi3.7068 (12)Ru2—La2xxii3.2592 (13)
La2—Ru2xi3.7068 (12)Ru2—La2xxiii3.2592 (13)
La2—La2v3.7154 (14)Ru2—La2v3.3276 (8)
La2—La2vii3.7544 (10)Ru2—La2viii3.3276 (8)
La2—La2iv3.7544 (10)Ru2—La4xiii3.4047 (15)
La2—La5xii4.0154 (7)Ru2—La1xxii3.5084 (13)
La2—La4xiii4.3365 (10)Ru2—La1xxiii3.5084 (13)
La3—Ru1vi2.9278 (17)Ru2—La2xxxii3.7068 (12)
La3—Ru12.9278 (17)Ru2—La2xi3.7068 (12)
La3—Ru3xiv3.0463 (16)Ru3—La1xiv3.0385 (12)
La3—Ru3xv3.0463 (16)Ru3—La1xxii3.0385 (12)
La3—La4xvi3.7536 (13)Ru3—La1xxiii3.0385 (12)
La3—La4xvii3.7536 (13)Ru3—La1xxi3.0385 (12)
La3—La1xvi3.7653 (7)Ru3—La3ii3.0463 (16)
La3—La1xviii3.7653 (7)Ru3—La3xxxiii3.0463 (16)
La3—La1xix3.7653 (7)Ru3—La4xiv3.2115 (15)
La3—La1xx3.7653 (7)Ru3—La4xiii3.2115 (15)
La3—La1xiv3.8822 (12)Ru4—La1xxxiv3.0550 (10)
La3—La1xxi3.8822 (12)Ru4—La1iv3.0550 (10)
La3—La1xxii3.8822 (12)Ru4—La1vii3.0550 (10)
La3—La1xxiii3.8822 (12)Ru4—La2iv3.1286 (11)
La4—Ru1xxiv3.2082 (19)Ru4—La2xxxiv3.1286 (11)
La4—Ru1iii3.2082 (19)Ru4—La2vii3.1286 (11)
La4—Ru3xxv3.2115 (15)Ru5—La2x3.0565 (7)
La4—Ru3ii3.2115 (15)Ru5—La2xxxiv3.0565 (7)
La4—In1i3.4047 (15)Ru5—La2vii3.0565 (7)
La4—In1xxv3.4047 (15)Ru5—La2ix3.0565 (7)
La4—Ru2i3.4047 (15)Ru5—La2xxxv3.0565 (7)
La4—Ru2xxv3.4047 (15)Ru5—La2xxxvi3.0565 (7)
La4—La53.7457 (13)Ru5—La2iv3.0565 (7)
La4—La3iii3.7536 (13)In2—La1xxxvii3.2992 (6)
La4—La3xvii3.7536 (13)In2—La1iv3.2992 (6)
La4—La1v3.7600 (7)In2—La1xxxiv3.2992 (6)
La4—La1xxvi3.7600 (7)In2—La1vii3.2992 (6)
La4—La1xxvii3.7600 (7)In2—La1xxxviii3.2992 (6)
La4—La2xxviii4.3365 (10)In2—La1vi3.2992 (6)
La4—La2xxv4.3365 (10)In2—La1xxxix3.2992 (6)
La4—La2iv4.3365 (10)
Ru1i—La1—Ru3ii101.28 (4)Ru2xxv—La4—La1v143.53 (3)
Ru1i—La1—Ru494.19 (3)La5—La4—La1v103.13 (2)
Ru3ii—La1—Ru4163.46 (3)La3iii—La4—La1v99.50 (3)
Ru1i—La1—In2112.81 (4)La3xvii—La4—La1v60.151 (15)
Ru3ii—La1—In2104.998 (19)La1—La4—La1v58.26 (2)
Ru4—La1—In262.97 (3)Ru1xxiv—La4—La1xxvi119.600 (14)
Ru1i—La1—In1i61.19 (4)Ru1iii—La4—La1xxvi61.370 (13)
Ru3ii—La1—In1i98.12 (2)Ru3xxv—La4—La1xxvi50.94 (3)
Ru4—La1—In1i94.43 (3)Ru3ii—La4—La1xxvi103.96 (4)
In2—La1—In1i156.88 (2)In1i—La4—La1xxvi143.53 (3)
Ru1i—La1—Ru2i61.19 (4)In1xxv—La4—La1xxvi58.39 (2)
Ru3ii—La1—Ru2i98.12 (2)Ru2i—La4—La1xxvi143.53 (3)
Ru4—La1—Ru2i94.43 (3)Ru2xxv—La4—La1xxvi58.39 (2)
In2—La1—Ru2i156.88 (2)La5—La4—La1xxvi103.13 (2)
In1i—La1—Ru2i0.00 (2)La3iii—La4—La1xxvi60.151 (15)
Ru1i—La1—Ru1iii142.38 (5)La3xvii—La4—La1xxvi99.50 (3)
Ru3ii—La1—Ru1iii87.58 (5)La1—La4—La1xxvi115.02 (2)
Ru4—La1—Ru1iii83.66 (3)La1v—La4—La1xxvi153.75 (4)
In2—La1—Ru1iii99.62 (3)Ru1xxiv—La4—La1xxvii61.370 (13)
In1i—La1—Ru1iii81.47 (3)Ru1iii—La4—La1xxvii119.600 (14)
Ru2i—La1—Ru1iii81.47 (3)Ru3xxv—La4—La1xxvii50.94 (3)
Ru1i—La1—La2iv103.08 (4)Ru3ii—La4—La1xxvii103.96 (4)
Ru3ii—La1—La2iv125.52 (4)In1i—La4—La1xxvii143.53 (3)
Ru4—La1—La2iv55.00 (3)In1xxv—La4—La1xxvii58.39 (2)
In2—La1—La2iv108.99 (2)Ru2i—La4—La1xxvii143.53 (3)
In1i—La1—La2iv55.539 (19)Ru2xxv—La4—La1xxvii58.39 (2)
Ru2i—La1—La2iv55.539 (19)La5—La4—La1xxvii103.13 (2)
Ru1iii—La1—La2iv46.06 (3)La3iii—La4—La1xxvii99.50 (3)
Ru1i—La1—La1v52.66 (2)La3xvii—La4—La1xxvii60.151 (15)
Ru3ii—La1—La1v52.959 (19)La1—La4—La1xxvii153.75 (4)
Ru4—La1—La1v143.57 (2)La1v—La4—La1xxvii115.02 (2)
In2—La1—La1v138.165 (11)La1xxvi—La4—La1xxvii58.26 (2)
In1i—La1—La1v58.553 (15)Ru1xxiv—La4—La2xxviii40.60 (3)
Ru2i—La1—La1v58.553 (15)Ru1iii—La4—La2xxviii136.53 (4)
Ru1iii—La1—La1v112.56 (3)Ru3xxv—La4—La2xxviii102.66 (2)
La2iv—La1—La1v112.533 (15)Ru3ii—La4—La2xxviii131.435 (17)
Ru1i—La1—La4104.32 (3)In1i—La4—La2xxviii91.16 (3)
Ru3ii—La1—La455.15 (3)In1xxv—La4—La2xxviii49.124 (14)
Ru4—La1—La4126.43 (3)Ru2i—La4—La2xxviii91.16 (3)
In2—La1—La4141.15 (2)Ru2xxv—La4—La2xxviii49.124 (14)
In1i—La1—La455.73 (3)La5—La4—La2xxviii59.041 (17)
Ru2i—La1—La455.73 (3)La3iii—La4—La2xxviii151.947 (19)
Ru1iii—La1—La451.71 (3)La3xvii—La4—La2xxviii82.601 (16)
La2iv—La1—La471.84 (2)La1—La4—La2xxviii147.12 (2)
La1v—La1—La460.869 (10)La1v—La4—La2xxviii96.692 (16)
Ru1i—La1—La3iii152.94 (3)La1xxvi—La4—La2xxviii96.726 (16)
Ru3ii—La1—La3iii51.86 (3)La1xxvii—La4—La2xxviii52.689 (13)
Ru4—La1—La3iii112.87 (3)Ru1xxiv—La4—La2xxv40.60 (3)
In2—La1—La3iii81.52 (2)Ru1iii—La4—La2xxv136.53 (4)
In1i—La1—La3iii113.98 (3)Ru3xxv—La4—La2xxv131.435 (17)
Ru2i—La1—La3iii113.98 (3)Ru3ii—La4—La2xxv102.66 (2)
Ru1iii—La1—La3iii46.85 (3)In1i—La4—La2xxv49.124 (14)
La2iv—La1—La3iii92.826 (19)In1xxv—La4—La2xxv91.16 (3)
La1v—La1—La3iii101.09 (2)Ru2i—La4—La2xxv49.124 (14)
La4—La1—La3iii59.84 (2)Ru2xxv—La4—La2xxv91.16 (3)
Ru1i—La1—La247.47 (3)La5—La4—La2xxv59.041 (17)
Ru3ii—La1—La2143.25 (3)La3iii—La4—La2xxv151.947 (19)
Ru4—La1—La253.21 (3)La3xvii—La4—La2xxv82.601 (16)
In2—La1—La2105.542 (19)La1—La4—La2xxv96.726 (16)
In1i—La1—La252.97 (2)La1v—La4—La2xxv52.689 (13)
Ru2i—La1—La252.97 (2)La1xxvi—La4—La2xxv147.12 (2)
Ru1iii—La1—La2106.86 (3)La1xxvii—La4—La2xxv96.692 (16)
La2iv—La1—La260.85 (2)La2xxviii—La4—La2xxv50.73 (2)
La1v—La1—La290.414 (15)Ru1xxiv—La4—La2iv136.53 (4)
La4—La1—La2107.79 (3)Ru1iii—La4—La2iv40.60 (3)
La3iii—La1—La2153.67 (2)Ru3xxv—La4—La2iv131.435 (17)
Ru1i—La1—La1vi108.52 (3)Ru3ii—La4—La2iv102.66 (2)
Ru3ii—La1—La1vi51.393 (19)In1i—La4—La2iv49.124 (14)
Ru4—La1—La1vi117.89 (3)In1xxv—La4—La2iv91.16 (3)
In2—La1—La1vi54.924 (10)Ru2i—La4—La2iv49.124 (14)
In1i—La1—La1vi147.308 (15)Ru2xxv—La4—La2iv91.16 (3)
Ru2i—La1—La1vi147.308 (15)La5—La4—La2iv59.041 (17)
Ru1iii—La1—La1vi105.49 (3)La3iii—La4—La2iv82.601 (16)
La2iv—La1—La1vi148.189 (14)La3xvii—La4—La2iv151.947 (19)
La1v—La1—La1vi90.0La1—La4—La2iv52.689 (13)
La4—La1—La1vi103.13 (2)La1v—La4—La2iv96.726 (16)
La3iii—La1—La1vi59.766 (9)La1xxvi—La4—La2iv96.692 (16)
La2—La1—La1vi144.697 (13)La1xxvii—La4—La2iv147.12 (2)
Ru1i—La1—La1iv145.48 (3)La2xxviii—La4—La2iv118.08 (3)
Ru3ii—La1—La1iv112.90 (3)La2xxv—La4—La2iv95.95 (3)
Ru4—La1—La1iv51.321 (13)Ru1xxiv—La4—La2i136.53 (4)
In2—La1—La1iv54.641 (5)Ru1iii—La4—La2i40.60 (3)
In1i—La1—La1iv116.06 (2)Ru3xxv—La4—La2i102.66 (2)
Ru2i—La1—La1iv116.06 (2)Ru3ii—La4—La2i131.435 (17)
Ru1iii—La1—La1iv47.96 (3)In1i—La4—La2i91.16 (3)
La2iv—La1—La1iv60.927 (16)In1xxv—La4—La2i49.124 (14)
La1v—La1—La1iv159.439 (14)Ru2i—La4—La2i91.16 (3)
La4—La1—La1iv99.18 (2)Ru2xxv—La4—La2i49.124 (14)
La3iii—La1—La1iv61.58 (3)La5—La4—La2i59.041 (17)
La2—La1—La1iv101.314 (14)La3iii—La4—La2i82.601 (16)
La1vi—La1—La1iv90.0La3xvii—La4—La2i151.947 (19)
Ru1i—La1—La1vii62.01 (3)La1—La4—La2i96.692 (16)
Ru3ii—La1—La1vii132.66 (4)La1v—La4—La2i147.12 (2)
Ru4—La1—La1vii51.321 (13)La1xxvi—La4—La2i52.689 (13)
In2—La1—La1vii54.641 (5)La1xxvii—La4—La2i96.726 (16)
In1i—La1—La1vii108.31 (3)La2xxviii—La4—La2i95.95 (3)
Ru2i—La1—La1vii108.31 (3)La2xxv—La4—La2i118.08 (3)
Ru1iii—La1—La1vii133.87 (3)La2iv—La4—La2i50.73 (2)
La2iv—La1—La1vii101.787 (14)In1xxix—La5—Ru2xxix0.00 (5)
La1v—La1—La1vii110.561 (14)In1xxix—La5—In1xii116.87 (4)
La4—La1—La1vii163.89 (2)Ru2xxix—La5—In1xii116.87 (4)
La3iii—La1—La1vii136.140 (19)In1xxix—La5—Ru2xii116.87 (4)
La2—La1—La1vii57.072 (15)Ru2xxix—La5—Ru2xii116.87 (4)
La1vi—La1—La1vii90.0In1xii—La5—Ru2xii0.00 (5)
La1iv—La1—La1vii90.0In1xxix—La5—In1i105.90 (2)
Ru1i—La1—La3ii48.24 (4)Ru2xxix—La5—In1i105.90 (2)
Ru3ii—La1—La3ii77.10 (4)In1xii—La5—In1i105.90 (2)
Ru4—La1—La3ii109.84 (2)Ru2xii—La5—In1i105.90 (2)
In2—La1—La3ii79.748 (13)In1xxix—La5—In1xxv105.90 (2)
In1i—La1—La3ii105.53 (2)Ru2xxix—La5—In1xxv105.90 (2)
Ru2i—La1—La3ii105.53 (2)In1xii—La5—In1xxv105.90 (2)
Ru1iii—La1—La3ii163.83 (3)Ru2xii—La5—In1xxv105.90 (2)
La2iv—La1—La3ii149.48 (2)In1i—La5—In1xxv116.87 (4)
La1v—La1—La3ii61.869 (12)In1xxix—La5—Ru2i105.90 (2)
La4—La1—La3ii120.05 (2)Ru2xxix—La5—Ru2i105.90 (2)
La3iii—La1—La3ii117.600 (15)In1xii—La5—Ru2i105.90 (2)
La2—La1—La3ii88.72 (2)Ru2xii—La5—Ru2i105.90 (2)
La1vi—La1—La3ii60.766 (12)In1i—La5—Ru2i0.00 (5)
La1iv—La1—La3ii134.374 (13)In1xxv—La5—Ru2i116.87 (4)
La1vii—La1—La3ii58.54 (2)In1xxix—La5—Ru2xxv105.90 (2)
Ru1i—La2—Ru5153.94 (4)Ru2xxix—La5—Ru2xxv105.90 (2)
Ru1i—La2—Ru496.58 (4)In1xii—La5—Ru2xxv105.90 (2)
Ru5—La2—Ru461.66 (3)Ru2xii—La5—Ru2xxv105.90 (2)
Ru1i—La2—In1i66.35 (5)In1i—La5—Ru2xxv116.87 (4)
Ru5—La2—In1i100.77 (3)In1xxv—La5—Ru2xxv0.00 (5)
Ru4—La2—In1i98.14 (2)Ru2i—La5—Ru2xxv116.87 (4)
Ru1i—La2—Ru2i66.35 (5)In1xxix—La5—La4xxx58.44 (2)
Ru5—La2—Ru2i100.77 (3)Ru2xxix—La5—La4xxx58.44 (2)
Ru4—La2—Ru2i98.14 (2)In1xii—La5—La4xxx58.44 (2)
In1i—La2—Ru2i0.00 (5)Ru2xii—La5—La4xxx58.44 (2)
Ru1i—La2—In1viii97.34 (5)In1i—La5—La4xxx121.56 (2)
Ru5—La2—In1viii99.26 (3)In1xxv—La5—La4xxx121.56 (2)
Ru4—La2—In1viii96.72 (3)Ru2i—La5—La4xxx121.56 (2)
In1i—La2—In1viii159.05 (3)Ru2xxv—La5—La4xxx121.56 (2)
Ru2i—La2—In1viii159.05 (3)In1xxix—La5—La4121.56 (2)
Ru1i—La2—Ru2viii97.34 (5)Ru2xxix—La5—La4121.56 (2)
Ru5—La2—Ru2viii99.26 (3)In1xii—La5—La4121.56 (2)
Ru4—La2—Ru2viii96.72 (3)Ru2xii—La5—La4121.56 (2)
In1i—La2—Ru2viii159.05 (3)In1i—La5—La458.44 (2)
Ru2i—La2—Ru2viii159.05 (3)In1xxv—La5—La458.44 (2)
In1viii—La2—Ru2viii0.00 (5)Ru2i—La5—La458.44 (2)
Ru1i—La2—La2ix152.02 (3)Ru2xxv—La5—La458.44 (2)
Ru5—La2—La2ix54.020 (13)La4xxx—La5—La4180.0
Ru4—La2—La2ix106.31 (3)In1xxix—La5—La2i151.770 (11)
In1i—La2—La2ix124.21 (4)Ru2xxix—La5—La2i151.770 (11)
Ru2i—La2—La2ix124.21 (4)In1xii—La5—La2i60.91 (2)
In1viii—La2—La2ix64.66 (3)Ru2xii—La5—La2i60.91 (2)
Ru2viii—La2—La2ix64.66 (3)In1i—La5—La2i101.346 (16)
Ru1i—La2—La1vii66.18 (3)In1xxv—La5—La2i53.724 (10)
Ru5—La2—La1vii105.49 (2)Ru2i—La5—La2i101.346 (16)
Ru4—La2—La1vii53.12 (3)Ru2xxv—La5—La2i53.724 (10)
In1i—La2—La1vii119.10 (3)La4xxx—La5—La2i112.164 (9)
Ru2i—La2—La1vii119.10 (3)La4—La5—La2i67.836 (9)
In1viii—La2—La1vii60.38 (3)In1xxix—La5—La2iv151.770 (11)
Ru2viii—La2—La1vii60.38 (3)Ru2xxix—La5—La2iv151.770 (11)
La2ix—La2—La1vii115.72 (3)In1xii—La5—La2iv60.91 (2)
Ru1i—La2—La2x128.22 (4)Ru2xii—La5—La2iv60.91 (2)
Ru5—La2—La2x52.682 (13)In1i—La5—La2iv53.724 (10)
Ru4—La2—La2x103.66 (3)In1xxv—La5—La2iv101.346 (16)
In1i—La2—La2x63.93 (3)Ru2i—La5—La2iv53.724 (10)
Ru2i—La2—La2x63.93 (3)Ru2xxv—La5—La2iv101.346 (16)
In1viii—La2—La2x126.15 (4)La4xxx—La5—La2iv112.164 (9)
Ru2viii—La2—La2x126.15 (4)La4—La5—La2iv67.836 (9)
La2ix—La2—La2x61.90 (2)La2i—La5—La2iv55.12 (2)
La1vii—La2—La2x156.27 (2)In1xxix—La5—La2xxxi53.724 (10)
Ru1i—La2—In1xi108.17 (3)Ru2xxix—La5—La2xxxi53.724 (10)
Ru5—La2—In1xi91.53 (2)In1xii—La5—La2xxxi101.346 (16)
Ru4—La2—In1xi152.93 (4)Ru2xii—La5—La2xxxi101.346 (16)
In1i—La2—In1xi82.45 (3)In1i—La5—La2xxxi151.770 (11)
Ru2i—La2—In1xi82.45 (3)In1xxv—La5—La2xxxi60.91 (2)
In1viii—La2—In1xi90.96 (4)Ru2i—La5—La2xxxi151.770 (11)
Ru2viii—La2—In1xi90.96 (4)Ru2xxv—La5—La2xxxi60.91 (2)
La2ix—La2—In1xi54.223 (18)La4xxx—La5—La2xxxi67.836 (9)
La1vii—La2—In1xi148.25 (3)La4—La5—La2xxxi112.164 (9)
La2x—La2—In1xi52.17 (2)La2i—La5—La2xxxi98.183 (7)
Ru1i—La2—Ru2xi108.17 (3)La2iv—La5—La2xxxi152.21 (2)
Ru5—La2—Ru2xi91.53 (2)In1xxix—La5—La2xii53.724 (10)
Ru4—La2—Ru2xi152.93 (4)Ru2xxix—La5—La2xii53.724 (10)
In1i—La2—Ru2xi82.45 (3)In1xii—La5—La2xii101.346 (16)
Ru2i—La2—Ru2xi82.45 (3)Ru2xii—La5—La2xii101.346 (16)
In1viii—La2—Ru2xi90.96 (4)In1i—La5—La2xii60.91 (2)
Ru2viii—La2—Ru2xi90.96 (4)In1xxv—La5—La2xii151.770 (11)
La2ix—La2—Ru2xi54.223 (18)Ru2i—La5—La2xii60.91 (2)
La1vii—La2—Ru2xi148.25 (3)Ru2xxv—La5—La2xii151.770 (11)
La2x—La2—Ru2xi52.17 (2)La4xxx—La5—La2xii67.836 (9)
In1xi—La2—Ru2xi0.00 (2)La4—La5—La2xii112.164 (9)
Ru1i—La2—La2v48.86 (3)La2i—La5—La2xii152.21 (2)
Ru5—La2—La2v142.682 (13)La2iv—La5—La2xii98.183 (7)
Ru4—La2—La2v140.98 (2)La2xxxi—La5—La2xii106.69 (2)
In1i—La2—La2v55.251 (18)In1xxix—La5—La2xxviii60.91 (2)
Ru2i—La2—La2v55.251 (18)Ru2xxix—La5—La2xxviii60.91 (2)
In1viii—La2—La2v104.32 (2)In1xii—La5—La2xxviii151.770 (11)
Ru2viii—La2—La2v104.32 (2)Ru2xii—La5—La2xxviii151.770 (11)
La2ix—La2—La2v112.316 (14)In1i—La5—La2xxviii101.346 (16)
La1vii—La2—La2v111.218 (15)In1xxv—La5—La2xxviii53.724 (10)
La2x—La2—La2v90.0Ru2i—La5—La2xxviii101.346 (16)
In1xi—La2—La2v59.923 (14)Ru2xxv—La5—La2xxviii53.724 (10)
Ru2xi—La2—La2v59.923 (14)La4xxx—La5—La2xxviii112.164 (9)
Ru1i—La2—La2vii127.67 (3)La4—La5—La2xxviii67.836 (9)
Ru5—La2—La2vii52.110 (5)La2i—La5—La2xxviii106.69 (2)
Ru4—La2—La2vii53.130 (14)La2iv—La5—La2xxviii135.671 (18)
In1i—La2—La2vii146.01 (3)La2xxxi—La5—La2xxviii53.130 (19)
Ru2i—La2—La2vii146.01 (3)La2xii—La5—La2xxviii98.183 (7)
In1viii—La2—La2vii54.40 (3)In1xxix—La5—La2xxv60.91 (2)
Ru2viii—La2—La2vii54.40 (3)Ru2xxix—La5—La2xxv60.91 (2)
La2ix—La2—La2vii60.55 (2)In1xii—La5—La2xxv151.770 (11)
La1vii—La2—La2vii61.549 (16)Ru2xii—La5—La2xxv151.770 (11)
La2x—La2—La2vii102.075 (5)In1i—La5—La2xxv53.724 (10)
In1xi—La2—La2vii114.454 (19)In1xxv—La5—La2xxv101.346 (16)
Ru2xi—La2—La2vii114.454 (19)Ru2i—La5—La2xxv53.724 (10)
La2v—La2—La2vii158.701 (16)Ru2xxv—La5—La2xxv101.346 (16)
Ru1i—La2—La2iv104.12 (4)La4xxx—La5—La2xxv112.164 (9)
Ru5—La2—La2iv52.110 (5)La4—La5—La2xxv67.836 (9)
Ru4—La2—La2iv53.130 (14)La2i—La5—La2xxv135.671 (18)
In1i—La2—La2iv56.11 (3)La2iv—La5—La2xxv106.69 (2)
Ru2i—La2—La2iv56.11 (3)La2xxxi—La5—La2xxv98.183 (7)
In1viii—La2—La2iv144.30 (3)La2xii—La5—La2xxv53.130 (19)
Ru2viii—La2—La2iv144.30 (3)La2xxviii—La5—La2xxv55.12 (2)
La2ix—La2—La2iv102.465 (5)In1xxix—La5—La2xxix101.346 (16)
La1vii—La2—La2iv103.037 (14)Ru2xxix—La5—La2xxix101.346 (16)
La2x—La2—La2iv57.55 (2)In1xii—La5—La2xxix53.724 (10)
In1xi—La2—La2iv108.54 (3)Ru2xii—La5—La2xxix53.724 (10)
Ru2xi—La2—La2iv108.54 (3)In1i—La5—La2xxix151.770 (11)
La2v—La2—La2iv111.299 (16)In1xxv—La5—La2xxix60.91 (2)
La2vii—La2—La2iv90.0Ru2i—La5—La2xxix151.770 (11)
Ru1i—La2—La151.96 (3)Ru2xxv—La5—La2xxix60.91 (2)
Ru5—La2—La1102.03 (2)La4xxx—La5—La2xxix67.836 (9)
Ru4—La2—La151.44 (2)La4—La5—La2xxix112.164 (9)
In1i—La2—La159.24 (3)La2i—La5—La2xxix53.130 (19)
Ru2i—La2—La159.24 (3)La2iv—La5—La2xxix98.183 (7)
In1viii—La2—La1121.93 (3)La2xxxi—La5—La2xxix55.12 (2)
Ru2viii—La2—La1121.93 (3)La2xii—La5—La2xxix135.671 (18)
La2ix—La2—La1155.591 (17)La2xxviii—La5—La2xxix98.183 (7)
La1vii—La2—La162.001 (19)La2xxv—La5—La2xxix152.21 (2)
La2x—La2—La1109.54 (3)In1xxix—La5—La2x101.346 (16)
In1xi—La2—La1140.96 (3)Ru2xxix—La5—La2x101.346 (16)
Ru2xi—La2—La1140.96 (3)In1xii—La5—La2x53.724 (10)
La2v—La2—La189.586 (15)Ru2xii—La5—La2x53.724 (10)
La2vii—La2—La1102.512 (13)In1i—La5—La2x60.91 (2)
La2iv—La2—La157.604 (16)In1xxv—La5—La2x151.770 (11)
Ru1i—La2—La5xii88.59 (4)Ru2i—La5—La2x60.91 (2)
Ru5—La2—La5xii117.455 (19)Ru2xxv—La5—La2x151.770 (11)
Ru4—La2—La5xii146.38 (2)La4xxx—La5—La2x67.836 (9)
In1i—La2—La5xii114.20 (2)La4—La5—La2x112.164 (9)
Ru2i—La2—La5xii114.20 (2)La2i—La5—La2x98.183 (7)
In1viii—La2—La5xii49.67 (2)La2iv—La5—La2x53.130 (19)
Ru2viii—La2—La5xii49.67 (2)La2xxxi—La5—La2x135.671 (18)
La2ix—La2—La5xii63.435 (9)La2xii—La5—La2x55.12 (2)
La1vii—La2—La5xii100.404 (19)La2xxviii—La5—La2x152.21 (2)
La2x—La2—La5xii98.84 (2)La2xxv—La5—La2x98.183 (7)
In1xi—La2—La5xii47.88 (2)La2xxix—La5—La2x106.69 (2)
Ru2xi—La2—La5xii47.88 (2)La2xxiii—Ru1—La2xxii82.28 (5)
La2v—La2—La5xii62.442 (10)La2xxiii—Ru1—La3137.34 (3)
La2vii—La2—La5xii98.03 (2)La2xxii—Ru1—La3137.34 (3)
La2iv—La2—La5xii156.280 (13)La2xxiii—Ru1—La1xxii129.38 (7)
La1—La2—La5xii140.19 (2)La2xxii—Ru1—La1xxii80.57 (3)
Ru1i—La2—La4xiii47.69 (4)La3—Ru1—La1xxii81.52 (4)
Ru5—La2—La4xiii148.76 (2)La2xxiii—Ru1—La1xxiii80.57 (3)
Ru4—La2—La4xiii108.30 (3)La2xxii—Ru1—La1xxiii129.38 (7)
In1i—La2—La4xiii110.16 (3)La3—Ru1—La1xxiii81.52 (4)
Ru2i—La2—La4xiii110.16 (3)La1xxii—Ru1—La1xxiii74.69 (5)
In1viii—La2—La4xiii50.68 (2)La2xxiii—Ru1—La4xvi91.71 (5)
Ru2viii—La2—La4xiii50.68 (2)La2xxii—Ru1—La4xvi91.71 (5)
La2ix—La2—La4xiii108.33 (2)La3—Ru1—La4xvi75.27 (6)
La1vii—La2—La4xiii55.473 (19)La1xxii—Ru1—La4xvi135.90 (4)
La2x—La2—La4xiii148.03 (2)La1xxiii—Ru1—La4xvi135.90 (4)
In1xi—La2—La4xiii96.65 (3)La2xxiii—Ru1—La1xvi67.76 (2)
Ru2xi—La2—La4xiii96.65 (3)La2xxii—Ru1—La1xvi141.71 (5)
La2v—La2—La4xiii64.635 (10)La3—Ru1—La1xvi69.77 (3)
La2vii—La2—La4xiii97.43 (2)La1xxii—Ru1—La1xvi136.97 (5)
La2iv—La2—La4xiii147.966 (18)La1xxiii—Ru1—La1xvi70.03 (2)
La1—La2—La4xiii90.36 (2)La4xvi—Ru1—La1xvi66.92 (3)
La5xii—La2—La4xiii53.123 (17)La2xxiii—Ru1—La1xx141.71 (5)
Ru1vi—La3—Ru1154.28 (9)La2xxii—Ru1—La1xx67.76 (2)
Ru1vi—La3—Ru3xiv100.76 (4)La3—Ru1—La1xx69.77 (3)
Ru1—La3—Ru3xiv100.76 (4)La1xxii—Ru1—La1xx70.03 (2)
Ru1vi—La3—Ru3xv100.76 (4)La1xxiii—Ru1—La1xx136.97 (5)
Ru1—La3—Ru3xv100.76 (4)La4xvi—Ru1—La1xx66.92 (3)
Ru3xiv—La3—Ru3xv65.99 (7)La1xvi—Ru1—La1xx124.26 (6)
Ru1vi—La3—La4xvi149.96 (5)La5xii—Ru2—La2xxii132.69 (3)
Ru1—La3—La4xvi55.75 (4)La5xii—Ru2—La2xxiii132.69 (3)
Ru3xiv—La3—La4xvi55.19 (2)La2xxii—Ru2—La2xxiii69.50 (4)
Ru3xv—La3—La4xvi55.19 (2)La5xii—Ru2—La2v76.61 (3)
Ru1vi—La3—La4xvii55.75 (4)La2xxii—Ru2—La2v69.49 (3)
Ru1—La3—La4xvii149.96 (5)La2xxiii—Ru2—La2v138.87 (3)
Ru3xiv—La3—La4xvii55.19 (2)La5xii—Ru2—La2viii76.61 (3)
Ru3xv—La3—La4xvii55.19 (2)La2xxii—Ru2—La2viii138.87 (3)
La4xvi—La3—La4xvii94.21 (4)La2xxiii—Ru2—La2viii69.49 (3)
Ru1vi—La3—La1xvi122.257 (9)La2v—Ru2—La2viii150.98 (5)
Ru1—La3—La1xvi63.380 (15)La5xii—Ru2—La4xiii69.62 (3)
Ru3xiv—La3—La1xvi51.68 (3)La2xxii—Ru2—La4xiii132.16 (3)
Ru3xv—La3—La1xvi107.30 (4)La2xxiii—Ru2—La4xiii132.16 (3)
La4xvi—La3—La1xvi60.009 (14)La2v—Ru2—La4xiii80.19 (2)
La4xvii—La3—La1xvi103.76 (3)La2viii—Ru2—La4xiii80.19 (2)
Ru1vi—La3—La1xviii63.380 (15)La5xii—Ru2—La1xxii124.03 (3)
Ru1—La3—La1xviii122.257 (9)La2xxii—Ru2—La1xxii67.79 (3)
Ru3xiv—La3—La1xviii107.30 (4)La2xxiii—Ru2—La1xxii102.52 (4)
Ru3xv—La3—La1xviii51.68 (3)La2v—Ru2—La1xxii64.082 (19)
La4xvi—La3—La1xviii103.76 (3)La2viii—Ru2—La1xxii124.96 (4)
La4xvii—La3—La1xviii60.009 (14)La4xiii—Ru2—La1xxii65.88 (3)
La1xvi—La3—La1xviii157.81 (4)La5xii—Ru2—La1xxiii124.03 (3)
Ru1vi—La3—La1xix63.380 (15)La2xxii—Ru2—La1xxiii102.52 (4)
Ru1—La3—La1xix122.257 (9)La2xxiii—Ru2—La1xxiii67.79 (3)
Ru3xiv—La3—La1xix51.68 (3)La2v—Ru2—La1xxiii124.96 (4)
Ru3xv—La3—La1xix107.30 (4)La2viii—Ru2—La1xxiii64.082 (19)
La4xvi—La3—La1xix103.76 (3)La4xiii—Ru2—La1xxiii65.88 (3)
La4xvii—La3—La1xix60.009 (14)La1xxii—Ru2—La1xxiii62.89 (3)
La1xvi—La3—La1xix60.467 (19)La5xii—Ru2—La2xxxii71.20 (3)
La1xviii—La3—La1xix114.76 (2)La2xxii—Ru2—La2xxxii63.90 (3)
Ru1vi—La3—La1xx122.257 (9)La2xxiii—Ru2—La2xxxii97.55 (3)
Ru1—La3—La1xx63.380 (15)La2v—Ru2—La2xxxii61.12 (2)
Ru3xiv—La3—La1xx107.30 (4)La2viii—Ru2—La2xxxii119.17 (4)
Ru3xv—La3—La1xx51.68 (3)La4xiii—Ru2—La2xxxii129.84 (4)
La4xvi—La3—La1xx60.009 (14)La1xxii—Ru2—La2xxxii115.849 (17)
La4xvii—La3—La1xx103.76 (3)La1xxiii—Ru2—La2xxxii163.52 (4)
La1xvi—La3—La1xx114.76 (2)La5xii—Ru2—La2xi71.20 (3)
La1xviii—La3—La1xx60.467 (19)La2xxii—Ru2—La2xi97.55 (3)
La1xix—La3—La1xx157.81 (4)La2xxiii—Ru2—La2xi63.90 (3)
Ru1vi—La3—La1xiv50.24 (3)La2v—Ru2—La2xi119.17 (4)
Ru1—La3—La1xiv108.22 (4)La2viii—Ru2—La2xi61.12 (2)
Ru3xiv—La3—La1xiv150.765 (12)La4xiii—Ru2—La2xi129.84 (4)
Ru3xv—La3—La1xiv111.05 (3)La1xxii—Ru2—La2xi163.52 (4)
La4xvi—La3—La1xiv149.047 (11)La1xxiii—Ru2—La2xi115.849 (17)
La4xvii—La3—La1xiv98.166 (15)La2xxxii—Ru2—La2xi60.15 (3)
La1xvi—La3—La1xiv141.66 (3)La1xiv—Ru3—La1xxii77.21 (4)
La1xviii—La3—La1xiv59.886 (19)La1xiv—Ru3—La1xxiii120.29 (7)
La1xix—La3—La1xiv107.008 (19)La1xxii—Ru3—La1xxiii74.08 (4)
La1xx—La3—La1xiv89.43 (2)La1xiv—Ru3—La1xxi74.08 (4)
Ru1vi—La3—La1xxi50.24 (3)La1xxii—Ru3—La1xxi120.29 (7)
Ru1—La3—La1xxi108.22 (4)La1xxiii—Ru3—La1xxi77.21 (4)
Ru3xiv—La3—La1xxi111.04 (3)La1xiv—Ru3—La3ii76.459 (16)
Ru3xv—La3—La1xxi150.765 (12)La1xxii—Ru3—La3ii76.459 (16)
La4xvi—La3—La1xxi149.047 (11)La1xxiii—Ru3—La3ii140.924 (12)
La4xvii—La3—La1xxi98.166 (15)La1xxi—Ru3—La3ii140.924 (12)
La1xvi—La3—La1xxi89.43 (2)La1xiv—Ru3—La3xxxiii140.924 (12)
La1xviii—La3—La1xxi107.008 (19)La1xxii—Ru3—La3xxxiii140.924 (12)
La1xix—La3—La1xxi59.886 (19)La1xxiii—Ru3—La3xxxiii76.459 (16)
La1xx—La3—La1xxi141.66 (3)La1xxi—Ru3—La3xxxiii76.459 (16)
La1xiv—La3—La1xxi56.26 (2)La3ii—Ru3—La3xxxiii114.01 (7)
Ru1vi—La3—La1xxii108.22 (4)La1xiv—Ru3—La4xiv73.911 (15)
Ru1—La3—La1xxii50.24 (3)La1xxii—Ru3—La4xiv142.318 (12)
Ru3xiv—La3—La1xxii150.765 (12)La1xxiii—Ru3—La4xiv142.317 (12)
Ru3xv—La3—La1xxii111.05 (3)La1xxi—Ru3—La4xiv73.911 (15)
La4xvi—La3—La1xxii98.166 (15)La3ii—Ru3—La4xiv73.66 (3)
La4xvii—La3—La1xxii149.047 (11)La3xxxiii—Ru3—La4xiv73.66 (3)
La1xvi—La3—La1xxii107.008 (19)La1xiv—Ru3—La4xiii142.317 (12)
La1xviii—La3—La1xxii89.43 (2)La1xxii—Ru3—La4xiii73.911 (15)
La1xix—La3—La1xxii141.66 (3)La1xxiii—Ru3—La4xiii73.911 (15)
La1xx—La3—La1xxii59.886 (19)La1xxi—Ru3—La4xiii142.318 (12)
La1xiv—La3—La1xxii58.47 (2)La3ii—Ru3—La4xiii73.66 (3)
La1xxi—La3—La1xxii85.50 (3)La3xxxiii—Ru3—La4xiii73.66 (3)
Ru1vi—La3—La1xxiii108.22 (4)La4xiv—Ru3—La4xiii117.80 (7)
Ru1—La3—La1xxiii50.24 (3)La1xxxiv—Ru4—La1iv77.36 (3)
Ru3xiv—La3—La1xxiii111.04 (3)La1xxxiv—Ru4—La1124.21 (6)
Ru3xv—La3—La1xxiii150.765 (12)La1iv—Ru4—La177.36 (3)
La4xvi—La3—La1xxiii98.166 (15)La1xxxiv—Ru4—La1vii77.36 (3)
La4xvii—La3—La1xxiii149.047 (11)La1iv—Ru4—La1vii124.21 (6)
La1xvi—La3—La1xxiii59.886 (19)La1—Ru4—La1vii77.36 (3)
La1xviii—La3—La1xxiii141.66 (3)La1xxxiv—Ru4—La2138.418 (17)
La1xix—La3—La1xxiii89.43 (2)La1iv—Ru4—La2143.716 (18)
La1xx—La3—La1xxiii107.008 (19)La1—Ru4—La275.350 (16)
La1xiv—La3—La1xxiii85.50 (3)La1vii—Ru4—La271.881 (16)
La1xxi—La3—La1xxiii58.47 (2)La1xxxiv—Ru4—La2iv143.716 (18)
La1xxii—La3—La1xxiii56.26 (2)La1iv—Ru4—La2iv75.350 (16)
Ru1xxiv—La4—Ru1iii176.27 (8)La1—Ru4—La2iv71.881 (16)
Ru1xxiv—La4—Ru3xxv91.60 (3)La1vii—Ru4—La2iv138.418 (17)
Ru1iii—La4—Ru3xxv91.60 (3)La2—Ru4—La2iv73.74 (3)
Ru1xxiv—La4—Ru3ii91.60 (3)La1xxxiv—Ru4—La2xxxiv75.350 (16)
Ru1iii—La4—Ru3ii91.60 (3)La1iv—Ru4—La2xxxiv71.881 (16)
Ru3xxv—La4—Ru3ii62.20 (7)La1—Ru4—La2xxxiv138.418 (17)
Ru1xxiv—La4—In1i88.85 (2)La1vii—Ru4—La2xxxiv143.716 (18)
Ru1iii—La4—In1i88.85 (2)La2—Ru4—La2xxxiv116.11 (6)
Ru3xxv—La4—In1i159.16 (5)La2iv—Ru4—La2xxxiv73.74 (3)
Ru3ii—La4—In1i96.95 (4)La1xxxiv—Ru4—La2vii71.881 (16)
Ru1xxiv—La4—In1xxv88.85 (2)La1iv—Ru4—La2vii138.418 (17)
Ru1iii—La4—In1xxv88.85 (2)La1—Ru4—La2vii143.716 (18)
Ru3xxv—La4—In1xxv96.95 (4)La1vii—Ru4—La2vii75.350 (16)
Ru3ii—La4—In1xxv159.16 (5)La2—Ru4—La2vii73.74 (3)
In1i—La4—In1xxv103.89 (6)La2iv—Ru4—La2vii116.11 (6)
Ru1xxiv—La4—Ru2i88.85 (2)La2xxxiv—Ru4—La2vii73.74 (3)
Ru1iii—La4—Ru2i88.85 (2)La2x—Ru5—La2xxxiv139.13 (3)
Ru3xxv—La4—Ru2i159.16 (5)La2x—Ru5—La2vii143.22 (3)
Ru3ii—La4—Ru2i96.95 (4)La2xxxiv—Ru5—La2vii75.781 (11)
In1i—La4—Ru2i0.00 (4)La2x—Ru5—La2ix75.781 (11)
In1xxv—La4—Ru2i103.89 (6)La2xxxiv—Ru5—La2ix143.22 (3)
Ru1xxiv—La4—Ru2xxv88.85 (2)La2vii—Ru5—La2ix74.64 (3)
Ru1iii—La4—Ru2xxv88.85 (2)La2x—Ru5—La2xxxv120.58 (2)
Ru3xxv—La4—Ru2xxv96.95 (4)La2xxxiv—Ru5—La2xxxv74.64 (3)
Ru3ii—La4—Ru2xxv159.16 (5)La2vii—Ru5—La2xxxv71.96 (3)
In1i—La4—Ru2xxv103.89 (6)La2ix—Ru5—La2xxxv75.781 (11)
In1xxv—La4—Ru2xxv0.00 (4)La2x—Ru5—La274.64 (3)
Ru2i—La4—Ru2xxv103.89 (6)La2xxxiv—Ru5—La2120.58 (2)
Ru1xxiv—La4—La588.13 (4)La2vii—Ru5—La275.781 (11)
Ru1iii—La4—La588.13 (4)La2ix—Ru5—La271.96 (3)
Ru3xxv—La4—La5148.90 (3)La2xxxv—Ru5—La2139.13 (3)
Ru3ii—La4—La5148.90 (3)La2x—Ru5—La2xxxvi75.781 (11)
In1i—La4—La551.94 (3)La2xxxiv—Ru5—La2xxxvi71.96 (3)
In1xxv—La4—La551.94 (3)La2vii—Ru5—La2xxxvi139.13 (3)
Ru2i—La4—La551.94 (3)La2ix—Ru5—La2xxxvi120.58 (2)
Ru2xxv—La4—La551.94 (3)La2xxxv—Ru5—La2xxxvi75.781 (11)
Ru1xxiv—La4—La3iii134.76 (5)La2—Ru5—La2xxxvi143.22 (3)
Ru1iii—La4—La3iii48.97 (3)La2x—Ru5—La2iv71.96 (3)
Ru3xxv—La4—La3iii51.15 (3)La2xxxiv—Ru5—La2iv75.781 (11)
Ru3ii—La4—La3iii51.15 (3)La2vii—Ru5—La2iv120.58 (2)
In1i—La4—La3iii116.846 (17)La2ix—Ru5—La2iv139.13 (3)
In1xxv—La4—La3iii116.845 (17)La2xxxv—Ru5—La2iv143.22 (3)
Ru2i—La4—La3iii116.846 (17)La2—Ru5—La2iv75.781 (11)
Ru2xxv—La4—La3iii116.845 (17)La2xxxvi—Ru5—La2iv74.64 (3)
La5—La4—La3iii137.10 (2)La1—In2—La1xxxvii180.00 (3)
Ru1xxiv—La4—La3xvii48.97 (3)La1—In2—La1iv70.717 (10)
Ru1iii—La4—La3xvii134.76 (5)La1xxxvii—In2—La1iv109.283 (10)
Ru3xxv—La4—La3xvii51.15 (3)La1—In2—La1xxxiv109.85 (2)
Ru3ii—La4—La3xvii51.15 (3)La1xxxvii—In2—La1xxxiv70.15 (2)
In1i—La4—La3xvii116.845 (17)La1iv—In2—La1xxxiv70.717 (10)
In1xxv—La4—La3xvii116.845 (17)La1—In2—La1vii70.717 (10)
Ru2i—La4—La3xvii116.845 (17)La1xxxvii—In2—La1vii109.283 (10)
Ru2xxv—La4—La3xvii116.845 (17)La1iv—In2—La1vii109.85 (2)
La5—La4—La3xvii137.10 (2)La1xxxiv—In2—La1vii70.717 (10)
La3iii—La4—La3xvii85.79 (4)La1—In2—La1xxxviii109.283 (10)
Ru1xxiv—La4—La1119.600 (14)La1xxxvii—In2—La1xxxviii70.717 (10)
Ru1iii—La4—La161.370 (13)La1iv—In2—La1xxxviii70.15 (2)
Ru3xxv—La4—La1103.96 (4)La1xxxiv—In2—La1xxxviii109.283 (10)
Ru3ii—La4—La150.94 (3)La1vii—In2—La1xxxviii180.00 (3)
In1i—La4—La158.39 (2)La1—In2—La1vi70.15 (2)
In1xxv—La4—La1143.53 (3)La1xxxvii—In2—La1vi109.85 (2)
Ru2i—La4—La158.39 (2)La1iv—In2—La1vi109.283 (10)
Ru2xxv—La4—La1143.53 (3)La1xxxiv—In2—La1vi180.00 (2)
La5—La4—La1103.13 (2)La1vii—In2—La1vi109.283 (10)
La3iii—La4—La160.151 (15)La1xxxviii—In2—La1vi70.717 (10)
La3xvii—La4—La199.50 (3)La1—In2—La1xxxix109.283 (10)
Ru1xxiv—La4—La1v61.370 (13)La1xxxvii—In2—La1xxxix70.717 (10)
Ru1iii—La4—La1v119.600 (14)La1iv—In2—La1xxxix180.00 (2)
Ru3xxv—La4—La1v103.96 (4)La1xxxiv—In2—La1xxxix109.283 (10)
Ru3ii—La4—La1v50.94 (3)La1vii—In2—La1xxxix70.15 (2)
In1i—La4—La1v58.39 (2)La1xxxviii—In2—La1xxxix109.85 (2)
In1xxv—La4—La1v143.53 (3)La1vi—In2—La1xxxix70.717 (10)
Ru2i—La4—La1v58.39 (2)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x1/2, y+1/2, z; (iii) x1, y, z; (iv) y, x, z; (v) y+1/2, x+1/2, z; (vi) x, y, z; (vii) y, x, z; (viii) x+1, y, z; (ix) x, y, z+1/2; (x) y, x, z+1/2; (xi) x+1, y, z+1/2; (xii) x+1/2, y+1/2, z+1/2; (xiii) x+1/2, y1/2, z; (xiv) x+1/2, y+1/2, z; (xv) x+3/2, y+1/2, z; (xvi) x+1, y, z; (xvii) x+1, y+1, z; (xviii) y+1/2, x+1/2, z; (xix) x+1, y, z; (xx) y+1/2, x+1/2, z; (xxi) y+1, x, z; (xxii) x+1/2, y+1/2, z; (xxiii) y+1, x, z; (xxiv) x+1, y+1, z; (xxv) x+1/2, y+1/2, z; (xxvi) y1/2, x+1/2, z; (xxvii) x, y+1, z; (xxviii) y, x+1, z; (xxix) x1/2, y+1/2, z+1/2; (xxx) x, y+1, z+1/2; (xxxi) y, x+1, z+1/2; (xxxii) y+1/2, x+1/2, z+1/2; (xxxiii) x+3/2, y1/2, z; (xxxiv) x, y, z; (xxxv) y, x, z+1/2; (xxxvi) x, y, z+1/2; (xxxvii) x, y, z; (xxxviii) y, x, z; (xxxix) y, x, z.

Experimental details

Crystal data
Chemical formulaLa21Ru10.16In3.84
Mr4384.89
Crystal system, space groupTetragonal, I4/mcm
Temperature (K)293
a, c (Å)12.1298 (3), 25.9820 (7)
V3)3822.79 (17)
Z4
Radiation typeMo Kα
µ (mm1)28.98
Crystal size (mm)0.06 × 0.05 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionFor a sphere
(WinGX; Farrugia, 1999)
Tmin, Tmax0.243, 0.261
No. of measured, independent and
observed [I > 2σ(I)] reflections
22423, 1202, 927
Rint0.087
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.062, 1.12
No. of reflections1202
No. of parameters53
w = 1/[σ2(Fo2) + (0.0131P)2 + 224.3566P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.00, 2.74

Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

 

Acknowledgements

This work was supported by the RFBR project 080300702a.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143.  CrossRef Web of Science IUCr Journals Google Scholar
First citationMoreau, J.-M., Paccard, D. & Parthé, E. (1976). Acta Cryst. B32, 1767–1771.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaremba, R., Rodewald, U. Ch., Zaremba, V. I. & Pöttgen, R. (2007). Z. Naturforsch. Teil B, 62, 1397–1406.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds