inorganic compounds
Lanthanum ruthenium indide, La21Ru9+xIn5-x (x = 1.2)
aDepartment of Chemistry, Moscow State University, Leninskie Gory 1/3, 119 992 Moscow, Russian Federation, and bLaboratoire de Chimie du Solide et Matériaux, UMR6226 CNRS-Université de Rennes 1, Avenue du Général Leclerc, 30542 Rennes, France
*Correspondence e-mail: vladimir@struct.chem.msu.ru
La21Ru9+xIn5-x (Pearson symbol tI140) is isotypic to the filled Y3Rh2-type structure, from which it can be derived through an ordered substitution at two sites. One of the square-prismatic sites (site symmetry ..m) is occupied by a mixture of Ru and In atoms and one of the square-antiprismatic sites (4/m..) is fully occupied by In atoms.
Related literature
For related structures, see: Zaremba et al. (2007); Moreau et al. (1976). For standardization of crystal structures, see: Gelato & Parthé (1987).
Experimental
Crystal data
|
Data collection: COLLECT (Nonius, 1998); cell DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810014509/mg2098sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810014509/mg2098Isup2.hkl
The title compound was prepared by arc-melting of the constituent elements (La, 99.8%; Ru, 99.9%, In, 99.999%) under a high purity argon atmosphere on a water-cooled cooper hearth. The arc-melted button, with nominal composition La59.26Ru29.63In11.11, was turned over and remelted to ensure its
The weight loss was less than 1%. The sample was annealed in an evacuated quartz ampoule at 870 K for 600 h and quenched in cold water. The single crystal was selected from the crushed sample.EDX analysis of the majority phase in a number of samples revealed that the composition of the new compound ranges from La58.8Ru26.2In15.0 to La61.1Ru28.3In10.7 with an uncertainty of about 1 at.% for each element. Thus the
range of the title compound is approximately 3 at.% at 870 K.The atomic parameters were standardized with the program STRUCTURE TIDY (Gelato & Parthé, 1987). The highest peak and the deepest hole in the final difference map are located 0.69 Å from La2 and 0.82 Å, respectively, from Ru1.
New rare-earth metal-rich indium compounds RE3T2-xInx (RE = Gd, Tb, Dy, Ho, Er, Tm; T = Rh, Pd, Ir) have been recently synthesized (Zaremba et al., 2007). They can be regarded as extensions of the parent binaries RE3T2 with either the Y3Rh2- (T = Rh, Ir) or U3Si2-type (T = Pd) structures into the ternary RE–T–In systems. In contrast, La21Ru9+xIn5-x, presented here, is strictly a ternary compound with no corresponding La-Ru binary of the same stoichiometry.
In the Y3Rh2–type structure, six crystallographically independent transition metal sites are available with trigonal prismatic, square prismatic, and square antiprismatic coordination environments (Moreau et al., 1976). The structure of La21Ru9+xIn5-x is derived through an ordered substitution at two sites, with the square prismatic site (16l) occupied by a mixture of Ru and In atoms and one of the square antiprismatic sites (4c) occupied fully by In atoms (Fig. 1). This suggests the existence of a
as confirmed by EDX measurements which revealed a range of ca. 3 at.% in La21Ru9+xIn5-x.For related structures, see: Zaremba et al. (2007); Moreau et al. (1976). For standardization of crystal structures, see: Gelato & Parthé (1987).
Data collection: COLLECT (Nonius, 1998); cell
DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Structure of the title compound emphasizing the coordination polyhedra, with atom labelling shown and displacement ellipsoids drawn at the 50% probability level. |
La21Ru10.16In3.84 | Dx = 7.619 Mg m−3 |
Mr = 4384.89 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, I4/mcm | Cell parameters from 12585 reflections |
Hall symbol: -I 4 2c | θ = 2.9–27.5° |
a = 12.1298 (3) Å | µ = 28.98 mm−1 |
c = 25.9820 (7) Å | T = 293 K |
V = 3822.79 (17) Å3 | Prism, metallic-dark-grey |
Z = 4 | 0.06 × 0.05 × 0.05 mm |
F(000) = 7329 |
Nonius KappaCCD diffractometer | 1202 independent reflections |
Radiation source: fine-focus sealed tube | 927 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.087 |
φ and ω scans | θmax = 27.5°, θmin = 3.7° |
Absorption correction: for a sphere (WinGX; Farrugia, 1999) | h = −15→15 |
Tmin = 0.243, Tmax = 0.261 | k = −15→15 |
22423 measured reflections | l = −33→32 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.036 | Secondary atom site location: difference Fourier map |
wR(F2) = 0.062 | w = 1/[σ2(Fo2) + (0.0131P)2 + 224.3566P] where P = (Fo2 + 2Fc2)/3 |
S = 1.12 | (Δ/σ)max < 0.001 |
1202 reflections | Δρmax = 2.00 e Å−3 |
53 parameters | Δρmin = −2.74 e Å−3 |
La21Ru10.16In3.84 | Z = 4 |
Mr = 4384.89 | Mo Kα radiation |
Tetragonal, I4/mcm | µ = 28.98 mm−1 |
a = 12.1298 (3) Å | T = 293 K |
c = 25.9820 (7) Å | 0.06 × 0.05 × 0.05 mm |
V = 3822.79 (17) Å3 |
Nonius KappaCCD diffractometer | 1202 independent reflections |
Absorption correction: for a sphere (WinGX; Farrugia, 1999) | 927 reflections with I > 2σ(I) |
Tmin = 0.243, Tmax = 0.261 | Rint = 0.087 |
22423 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.062 | w = 1/[σ2(Fo2) + (0.0131P)2 + 224.3566P] where P = (Fo2 + 2Fc2)/3 |
S = 1.12 | Δρmax = 2.00 e Å−3 |
1202 reflections | Δρmin = −2.74 e Å−3 |
53 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
La1 | 0.07818 (5) | 0.20842 (5) | 0.07297 (2) | 0.01886 (15) | |
La2 | 0.20391 (6) | 0.07950 (6) | 0.19170 (2) | 0.02653 (17) | |
La3 | 0.85106 (8) | 0.35106 (8) | 0.0000 | 0.0208 (3) | |
La4 | 0.0000 | 0.5000 | 0.10584 (5) | 0.0255 (3) | |
La5 | 0.0000 | 0.5000 | 0.2500 | 0.0615 (8) | |
Ru1 | 0.81308 (11) | 0.31308 (11) | 0.10986 (6) | 0.0429 (4) | |
Ru2 | 0.65628 (8) | 0.15628 (8) | 0.18661 (5) | 0.0287 (4) | 0.29 (4) |
Ru3 | 0.59671 (12) | 0.09671 (12) | 0.0000 | 0.0247 (4) | |
Ru4 | 0.0000 | 0.0000 | 0.12798 (6) | 0.0207 (4) | |
Ru5 | 0.0000 | 0.0000 | 0.2500 | 0.0213 (5) | |
In1 | 0.65628 (8) | 0.15628 (8) | 0.18661 (5) | 0.0287 (4) | 0.71 (4) |
In2 | 0.0000 | 0.0000 | 0.0000 | 0.0200 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
La1 | 0.0226 (3) | 0.0185 (3) | 0.0154 (3) | −0.0006 (3) | 0.0001 (2) | 0.0002 (2) |
La2 | 0.0305 (4) | 0.0311 (4) | 0.0180 (3) | −0.0036 (3) | 0.0003 (3) | −0.0001 (3) |
La3 | 0.0218 (4) | 0.0218 (4) | 0.0188 (6) | 0.0021 (6) | 0.000 | 0.000 |
La4 | 0.0260 (4) | 0.0260 (4) | 0.0247 (7) | 0.0035 (6) | 0.000 | 0.000 |
La5 | 0.0793 (13) | 0.0793 (13) | 0.0258 (12) | 0.000 | 0.000 | 0.000 |
Ru1 | 0.0471 (6) | 0.0471 (6) | 0.0345 (8) | 0.0213 (8) | −0.0168 (6) | −0.0168 (6) |
Ru2 | 0.0244 (5) | 0.0244 (5) | 0.0372 (8) | 0.0073 (5) | −0.0070 (4) | −0.0070 (4) |
Ru3 | 0.0270 (6) | 0.0270 (6) | 0.0202 (9) | 0.0055 (8) | 0.000 | 0.000 |
Ru4 | 0.0195 (5) | 0.0195 (5) | 0.0232 (9) | 0.000 | 0.000 | 0.000 |
Ru5 | 0.0199 (8) | 0.0199 (8) | 0.0241 (12) | 0.000 | 0.000 | 0.000 |
In1 | 0.0244 (5) | 0.0244 (5) | 0.0372 (8) | 0.0073 (5) | −0.0070 (4) | −0.0070 (4) |
In2 | 0.0206 (7) | 0.0206 (7) | 0.0190 (10) | 0.000 | 0.000 | 0.000 |
La1—Ru1i | 3.0174 (15) | La4—La2i | 4.3365 (10) |
La1—Ru3ii | 3.0385 (12) | La5—In1xxix | 3.1464 (14) |
La1—Ru4 | 3.0550 (10) | La5—Ru2xxix | 3.1464 (14) |
La1—In2 | 3.2992 (6) | La5—In1xii | 3.1464 (14) |
La1—In1i | 3.5084 (13) | La5—Ru2xii | 3.1464 (14) |
La1—Ru2i | 3.5084 (13) | La5—In1i | 3.1464 (14) |
La1—Ru1iii | 3.5875 (11) | La5—In1xxv | 3.1464 (14) |
La1—La2iv | 3.6299 (9) | La5—Ru2i | 3.1464 (14) |
La1—La1v | 3.6607 (13) | La5—Ru2xxv | 3.1464 (14) |
La1—La4 | 3.7600 (7) | La5—La4xxx | 3.7457 (13) |
La1—La3iii | 3.7653 (7) | La5—La2i | 4.0154 (7) |
La1—La2 | 3.7798 (9) | La5—La2iv | 4.0154 (7) |
La1—La1vi | 3.7919 (11) | La5—La2xxxi | 4.0154 (7) |
La1—La1iv | 3.8185 (9) | La5—La2xii | 4.0154 (7) |
La1—La1vii | 3.8185 (9) | La5—La2xxviii | 4.0154 (7) |
La1—La3ii | 3.8822 (12) | La5—La2xxv | 4.0154 (7) |
La2—Ru1i | 2.8235 (14) | La5—La2xxix | 4.0154 (7) |
La2—Ru5 | 3.0565 (7) | La5—La2x | 4.0154 (7) |
La2—Ru4 | 3.1286 (11) | Ru1—La2xxiii | 2.8235 (14) |
La2—In1i | 3.2592 (13) | Ru1—La2xxii | 2.8235 (14) |
La2—Ru2i | 3.2592 (13) | Ru1—La1xxii | 3.0174 (15) |
La2—In1viii | 3.3276 (8) | Ru1—La1xxiii | 3.0174 (15) |
La2—Ru2viii | 3.3276 (8) | Ru1—La4xvi | 3.2082 (19) |
La2—La2ix | 3.5915 (13) | Ru1—La1xvi | 3.5875 (11) |
La2—La1vii | 3.6299 (9) | Ru1—La1xx | 3.5875 (11) |
La2—La2x | 3.7060 (13) | Ru2—La5xii | 3.1464 (14) |
La2—In1xi | 3.7068 (12) | Ru2—La2xxii | 3.2592 (13) |
La2—Ru2xi | 3.7068 (12) | Ru2—La2xxiii | 3.2592 (13) |
La2—La2v | 3.7154 (14) | Ru2—La2v | 3.3276 (8) |
La2—La2vii | 3.7544 (10) | Ru2—La2viii | 3.3276 (8) |
La2—La2iv | 3.7544 (10) | Ru2—La4xiii | 3.4047 (15) |
La2—La5xii | 4.0154 (7) | Ru2—La1xxii | 3.5084 (13) |
La2—La4xiii | 4.3365 (10) | Ru2—La1xxiii | 3.5084 (13) |
La3—Ru1vi | 2.9278 (17) | Ru2—La2xxxii | 3.7068 (12) |
La3—Ru1 | 2.9278 (17) | Ru2—La2xi | 3.7068 (12) |
La3—Ru3xiv | 3.0463 (16) | Ru3—La1xiv | 3.0385 (12) |
La3—Ru3xv | 3.0463 (16) | Ru3—La1xxii | 3.0385 (12) |
La3—La4xvi | 3.7536 (13) | Ru3—La1xxiii | 3.0385 (12) |
La3—La4xvii | 3.7536 (13) | Ru3—La1xxi | 3.0385 (12) |
La3—La1xvi | 3.7653 (7) | Ru3—La3ii | 3.0463 (16) |
La3—La1xviii | 3.7653 (7) | Ru3—La3xxxiii | 3.0463 (16) |
La3—La1xix | 3.7653 (7) | Ru3—La4xiv | 3.2115 (15) |
La3—La1xx | 3.7653 (7) | Ru3—La4xiii | 3.2115 (15) |
La3—La1xiv | 3.8822 (12) | Ru4—La1xxxiv | 3.0550 (10) |
La3—La1xxi | 3.8822 (12) | Ru4—La1iv | 3.0550 (10) |
La3—La1xxii | 3.8822 (12) | Ru4—La1vii | 3.0550 (10) |
La3—La1xxiii | 3.8822 (12) | Ru4—La2iv | 3.1286 (11) |
La4—Ru1xxiv | 3.2082 (19) | Ru4—La2xxxiv | 3.1286 (11) |
La4—Ru1iii | 3.2082 (19) | Ru4—La2vii | 3.1286 (11) |
La4—Ru3xxv | 3.2115 (15) | Ru5—La2x | 3.0565 (7) |
La4—Ru3ii | 3.2115 (15) | Ru5—La2xxxiv | 3.0565 (7) |
La4—In1i | 3.4047 (15) | Ru5—La2vii | 3.0565 (7) |
La4—In1xxv | 3.4047 (15) | Ru5—La2ix | 3.0565 (7) |
La4—Ru2i | 3.4047 (15) | Ru5—La2xxxv | 3.0565 (7) |
La4—Ru2xxv | 3.4047 (15) | Ru5—La2xxxvi | 3.0565 (7) |
La4—La5 | 3.7457 (13) | Ru5—La2iv | 3.0565 (7) |
La4—La3iii | 3.7536 (13) | In2—La1xxxvii | 3.2992 (6) |
La4—La3xvii | 3.7536 (13) | In2—La1iv | 3.2992 (6) |
La4—La1v | 3.7600 (7) | In2—La1xxxiv | 3.2992 (6) |
La4—La1xxvi | 3.7600 (7) | In2—La1vii | 3.2992 (6) |
La4—La1xxvii | 3.7600 (7) | In2—La1xxxviii | 3.2992 (6) |
La4—La2xxviii | 4.3365 (10) | In2—La1vi | 3.2992 (6) |
La4—La2xxv | 4.3365 (10) | In2—La1xxxix | 3.2992 (6) |
La4—La2iv | 4.3365 (10) | ||
Ru1i—La1—Ru3ii | 101.28 (4) | Ru2xxv—La4—La1v | 143.53 (3) |
Ru1i—La1—Ru4 | 94.19 (3) | La5—La4—La1v | 103.13 (2) |
Ru3ii—La1—Ru4 | 163.46 (3) | La3iii—La4—La1v | 99.50 (3) |
Ru1i—La1—In2 | 112.81 (4) | La3xvii—La4—La1v | 60.151 (15) |
Ru3ii—La1—In2 | 104.998 (19) | La1—La4—La1v | 58.26 (2) |
Ru4—La1—In2 | 62.97 (3) | Ru1xxiv—La4—La1xxvi | 119.600 (14) |
Ru1i—La1—In1i | 61.19 (4) | Ru1iii—La4—La1xxvi | 61.370 (13) |
Ru3ii—La1—In1i | 98.12 (2) | Ru3xxv—La4—La1xxvi | 50.94 (3) |
Ru4—La1—In1i | 94.43 (3) | Ru3ii—La4—La1xxvi | 103.96 (4) |
In2—La1—In1i | 156.88 (2) | In1i—La4—La1xxvi | 143.53 (3) |
Ru1i—La1—Ru2i | 61.19 (4) | In1xxv—La4—La1xxvi | 58.39 (2) |
Ru3ii—La1—Ru2i | 98.12 (2) | Ru2i—La4—La1xxvi | 143.53 (3) |
Ru4—La1—Ru2i | 94.43 (3) | Ru2xxv—La4—La1xxvi | 58.39 (2) |
In2—La1—Ru2i | 156.88 (2) | La5—La4—La1xxvi | 103.13 (2) |
In1i—La1—Ru2i | 0.00 (2) | La3iii—La4—La1xxvi | 60.151 (15) |
Ru1i—La1—Ru1iii | 142.38 (5) | La3xvii—La4—La1xxvi | 99.50 (3) |
Ru3ii—La1—Ru1iii | 87.58 (5) | La1—La4—La1xxvi | 115.02 (2) |
Ru4—La1—Ru1iii | 83.66 (3) | La1v—La4—La1xxvi | 153.75 (4) |
In2—La1—Ru1iii | 99.62 (3) | Ru1xxiv—La4—La1xxvii | 61.370 (13) |
In1i—La1—Ru1iii | 81.47 (3) | Ru1iii—La4—La1xxvii | 119.600 (14) |
Ru2i—La1—Ru1iii | 81.47 (3) | Ru3xxv—La4—La1xxvii | 50.94 (3) |
Ru1i—La1—La2iv | 103.08 (4) | Ru3ii—La4—La1xxvii | 103.96 (4) |
Ru3ii—La1—La2iv | 125.52 (4) | In1i—La4—La1xxvii | 143.53 (3) |
Ru4—La1—La2iv | 55.00 (3) | In1xxv—La4—La1xxvii | 58.39 (2) |
In2—La1—La2iv | 108.99 (2) | Ru2i—La4—La1xxvii | 143.53 (3) |
In1i—La1—La2iv | 55.539 (19) | Ru2xxv—La4—La1xxvii | 58.39 (2) |
Ru2i—La1—La2iv | 55.539 (19) | La5—La4—La1xxvii | 103.13 (2) |
Ru1iii—La1—La2iv | 46.06 (3) | La3iii—La4—La1xxvii | 99.50 (3) |
Ru1i—La1—La1v | 52.66 (2) | La3xvii—La4—La1xxvii | 60.151 (15) |
Ru3ii—La1—La1v | 52.959 (19) | La1—La4—La1xxvii | 153.75 (4) |
Ru4—La1—La1v | 143.57 (2) | La1v—La4—La1xxvii | 115.02 (2) |
In2—La1—La1v | 138.165 (11) | La1xxvi—La4—La1xxvii | 58.26 (2) |
In1i—La1—La1v | 58.553 (15) | Ru1xxiv—La4—La2xxviii | 40.60 (3) |
Ru2i—La1—La1v | 58.553 (15) | Ru1iii—La4—La2xxviii | 136.53 (4) |
Ru1iii—La1—La1v | 112.56 (3) | Ru3xxv—La4—La2xxviii | 102.66 (2) |
La2iv—La1—La1v | 112.533 (15) | Ru3ii—La4—La2xxviii | 131.435 (17) |
Ru1i—La1—La4 | 104.32 (3) | In1i—La4—La2xxviii | 91.16 (3) |
Ru3ii—La1—La4 | 55.15 (3) | In1xxv—La4—La2xxviii | 49.124 (14) |
Ru4—La1—La4 | 126.43 (3) | Ru2i—La4—La2xxviii | 91.16 (3) |
In2—La1—La4 | 141.15 (2) | Ru2xxv—La4—La2xxviii | 49.124 (14) |
In1i—La1—La4 | 55.73 (3) | La5—La4—La2xxviii | 59.041 (17) |
Ru2i—La1—La4 | 55.73 (3) | La3iii—La4—La2xxviii | 151.947 (19) |
Ru1iii—La1—La4 | 51.71 (3) | La3xvii—La4—La2xxviii | 82.601 (16) |
La2iv—La1—La4 | 71.84 (2) | La1—La4—La2xxviii | 147.12 (2) |
La1v—La1—La4 | 60.869 (10) | La1v—La4—La2xxviii | 96.692 (16) |
Ru1i—La1—La3iii | 152.94 (3) | La1xxvi—La4—La2xxviii | 96.726 (16) |
Ru3ii—La1—La3iii | 51.86 (3) | La1xxvii—La4—La2xxviii | 52.689 (13) |
Ru4—La1—La3iii | 112.87 (3) | Ru1xxiv—La4—La2xxv | 40.60 (3) |
In2—La1—La3iii | 81.52 (2) | Ru1iii—La4—La2xxv | 136.53 (4) |
In1i—La1—La3iii | 113.98 (3) | Ru3xxv—La4—La2xxv | 131.435 (17) |
Ru2i—La1—La3iii | 113.98 (3) | Ru3ii—La4—La2xxv | 102.66 (2) |
Ru1iii—La1—La3iii | 46.85 (3) | In1i—La4—La2xxv | 49.124 (14) |
La2iv—La1—La3iii | 92.826 (19) | In1xxv—La4—La2xxv | 91.16 (3) |
La1v—La1—La3iii | 101.09 (2) | Ru2i—La4—La2xxv | 49.124 (14) |
La4—La1—La3iii | 59.84 (2) | Ru2xxv—La4—La2xxv | 91.16 (3) |
Ru1i—La1—La2 | 47.47 (3) | La5—La4—La2xxv | 59.041 (17) |
Ru3ii—La1—La2 | 143.25 (3) | La3iii—La4—La2xxv | 151.947 (19) |
Ru4—La1—La2 | 53.21 (3) | La3xvii—La4—La2xxv | 82.601 (16) |
In2—La1—La2 | 105.542 (19) | La1—La4—La2xxv | 96.726 (16) |
In1i—La1—La2 | 52.97 (2) | La1v—La4—La2xxv | 52.689 (13) |
Ru2i—La1—La2 | 52.97 (2) | La1xxvi—La4—La2xxv | 147.12 (2) |
Ru1iii—La1—La2 | 106.86 (3) | La1xxvii—La4—La2xxv | 96.692 (16) |
La2iv—La1—La2 | 60.85 (2) | La2xxviii—La4—La2xxv | 50.73 (2) |
La1v—La1—La2 | 90.414 (15) | Ru1xxiv—La4—La2iv | 136.53 (4) |
La4—La1—La2 | 107.79 (3) | Ru1iii—La4—La2iv | 40.60 (3) |
La3iii—La1—La2 | 153.67 (2) | Ru3xxv—La4—La2iv | 131.435 (17) |
Ru1i—La1—La1vi | 108.52 (3) | Ru3ii—La4—La2iv | 102.66 (2) |
Ru3ii—La1—La1vi | 51.393 (19) | In1i—La4—La2iv | 49.124 (14) |
Ru4—La1—La1vi | 117.89 (3) | In1xxv—La4—La2iv | 91.16 (3) |
In2—La1—La1vi | 54.924 (10) | Ru2i—La4—La2iv | 49.124 (14) |
In1i—La1—La1vi | 147.308 (15) | Ru2xxv—La4—La2iv | 91.16 (3) |
Ru2i—La1—La1vi | 147.308 (15) | La5—La4—La2iv | 59.041 (17) |
Ru1iii—La1—La1vi | 105.49 (3) | La3iii—La4—La2iv | 82.601 (16) |
La2iv—La1—La1vi | 148.189 (14) | La3xvii—La4—La2iv | 151.947 (19) |
La1v—La1—La1vi | 90.0 | La1—La4—La2iv | 52.689 (13) |
La4—La1—La1vi | 103.13 (2) | La1v—La4—La2iv | 96.726 (16) |
La3iii—La1—La1vi | 59.766 (9) | La1xxvi—La4—La2iv | 96.692 (16) |
La2—La1—La1vi | 144.697 (13) | La1xxvii—La4—La2iv | 147.12 (2) |
Ru1i—La1—La1iv | 145.48 (3) | La2xxviii—La4—La2iv | 118.08 (3) |
Ru3ii—La1—La1iv | 112.90 (3) | La2xxv—La4—La2iv | 95.95 (3) |
Ru4—La1—La1iv | 51.321 (13) | Ru1xxiv—La4—La2i | 136.53 (4) |
In2—La1—La1iv | 54.641 (5) | Ru1iii—La4—La2i | 40.60 (3) |
In1i—La1—La1iv | 116.06 (2) | Ru3xxv—La4—La2i | 102.66 (2) |
Ru2i—La1—La1iv | 116.06 (2) | Ru3ii—La4—La2i | 131.435 (17) |
Ru1iii—La1—La1iv | 47.96 (3) | In1i—La4—La2i | 91.16 (3) |
La2iv—La1—La1iv | 60.927 (16) | In1xxv—La4—La2i | 49.124 (14) |
La1v—La1—La1iv | 159.439 (14) | Ru2i—La4—La2i | 91.16 (3) |
La4—La1—La1iv | 99.18 (2) | Ru2xxv—La4—La2i | 49.124 (14) |
La3iii—La1—La1iv | 61.58 (3) | La5—La4—La2i | 59.041 (17) |
La2—La1—La1iv | 101.314 (14) | La3iii—La4—La2i | 82.601 (16) |
La1vi—La1—La1iv | 90.0 | La3xvii—La4—La2i | 151.947 (19) |
Ru1i—La1—La1vii | 62.01 (3) | La1—La4—La2i | 96.692 (16) |
Ru3ii—La1—La1vii | 132.66 (4) | La1v—La4—La2i | 147.12 (2) |
Ru4—La1—La1vii | 51.321 (13) | La1xxvi—La4—La2i | 52.689 (13) |
In2—La1—La1vii | 54.641 (5) | La1xxvii—La4—La2i | 96.726 (16) |
In1i—La1—La1vii | 108.31 (3) | La2xxviii—La4—La2i | 95.95 (3) |
Ru2i—La1—La1vii | 108.31 (3) | La2xxv—La4—La2i | 118.08 (3) |
Ru1iii—La1—La1vii | 133.87 (3) | La2iv—La4—La2i | 50.73 (2) |
La2iv—La1—La1vii | 101.787 (14) | In1xxix—La5—Ru2xxix | 0.00 (5) |
La1v—La1—La1vii | 110.561 (14) | In1xxix—La5—In1xii | 116.87 (4) |
La4—La1—La1vii | 163.89 (2) | Ru2xxix—La5—In1xii | 116.87 (4) |
La3iii—La1—La1vii | 136.140 (19) | In1xxix—La5—Ru2xii | 116.87 (4) |
La2—La1—La1vii | 57.072 (15) | Ru2xxix—La5—Ru2xii | 116.87 (4) |
La1vi—La1—La1vii | 90.0 | In1xii—La5—Ru2xii | 0.00 (5) |
La1iv—La1—La1vii | 90.0 | In1xxix—La5—In1i | 105.90 (2) |
Ru1i—La1—La3ii | 48.24 (4) | Ru2xxix—La5—In1i | 105.90 (2) |
Ru3ii—La1—La3ii | 77.10 (4) | In1xii—La5—In1i | 105.90 (2) |
Ru4—La1—La3ii | 109.84 (2) | Ru2xii—La5—In1i | 105.90 (2) |
In2—La1—La3ii | 79.748 (13) | In1xxix—La5—In1xxv | 105.90 (2) |
In1i—La1—La3ii | 105.53 (2) | Ru2xxix—La5—In1xxv | 105.90 (2) |
Ru2i—La1—La3ii | 105.53 (2) | In1xii—La5—In1xxv | 105.90 (2) |
Ru1iii—La1—La3ii | 163.83 (3) | Ru2xii—La5—In1xxv | 105.90 (2) |
La2iv—La1—La3ii | 149.48 (2) | In1i—La5—In1xxv | 116.87 (4) |
La1v—La1—La3ii | 61.869 (12) | In1xxix—La5—Ru2i | 105.90 (2) |
La4—La1—La3ii | 120.05 (2) | Ru2xxix—La5—Ru2i | 105.90 (2) |
La3iii—La1—La3ii | 117.600 (15) | In1xii—La5—Ru2i | 105.90 (2) |
La2—La1—La3ii | 88.72 (2) | Ru2xii—La5—Ru2i | 105.90 (2) |
La1vi—La1—La3ii | 60.766 (12) | In1i—La5—Ru2i | 0.00 (5) |
La1iv—La1—La3ii | 134.374 (13) | In1xxv—La5—Ru2i | 116.87 (4) |
La1vii—La1—La3ii | 58.54 (2) | In1xxix—La5—Ru2xxv | 105.90 (2) |
Ru1i—La2—Ru5 | 153.94 (4) | Ru2xxix—La5—Ru2xxv | 105.90 (2) |
Ru1i—La2—Ru4 | 96.58 (4) | In1xii—La5—Ru2xxv | 105.90 (2) |
Ru5—La2—Ru4 | 61.66 (3) | Ru2xii—La5—Ru2xxv | 105.90 (2) |
Ru1i—La2—In1i | 66.35 (5) | In1i—La5—Ru2xxv | 116.87 (4) |
Ru5—La2—In1i | 100.77 (3) | In1xxv—La5—Ru2xxv | 0.00 (5) |
Ru4—La2—In1i | 98.14 (2) | Ru2i—La5—Ru2xxv | 116.87 (4) |
Ru1i—La2—Ru2i | 66.35 (5) | In1xxix—La5—La4xxx | 58.44 (2) |
Ru5—La2—Ru2i | 100.77 (3) | Ru2xxix—La5—La4xxx | 58.44 (2) |
Ru4—La2—Ru2i | 98.14 (2) | In1xii—La5—La4xxx | 58.44 (2) |
In1i—La2—Ru2i | 0.00 (5) | Ru2xii—La5—La4xxx | 58.44 (2) |
Ru1i—La2—In1viii | 97.34 (5) | In1i—La5—La4xxx | 121.56 (2) |
Ru5—La2—In1viii | 99.26 (3) | In1xxv—La5—La4xxx | 121.56 (2) |
Ru4—La2—In1viii | 96.72 (3) | Ru2i—La5—La4xxx | 121.56 (2) |
In1i—La2—In1viii | 159.05 (3) | Ru2xxv—La5—La4xxx | 121.56 (2) |
Ru2i—La2—In1viii | 159.05 (3) | In1xxix—La5—La4 | 121.56 (2) |
Ru1i—La2—Ru2viii | 97.34 (5) | Ru2xxix—La5—La4 | 121.56 (2) |
Ru5—La2—Ru2viii | 99.26 (3) | In1xii—La5—La4 | 121.56 (2) |
Ru4—La2—Ru2viii | 96.72 (3) | Ru2xii—La5—La4 | 121.56 (2) |
In1i—La2—Ru2viii | 159.05 (3) | In1i—La5—La4 | 58.44 (2) |
Ru2i—La2—Ru2viii | 159.05 (3) | In1xxv—La5—La4 | 58.44 (2) |
In1viii—La2—Ru2viii | 0.00 (5) | Ru2i—La5—La4 | 58.44 (2) |
Ru1i—La2—La2ix | 152.02 (3) | Ru2xxv—La5—La4 | 58.44 (2) |
Ru5—La2—La2ix | 54.020 (13) | La4xxx—La5—La4 | 180.0 |
Ru4—La2—La2ix | 106.31 (3) | In1xxix—La5—La2i | 151.770 (11) |
In1i—La2—La2ix | 124.21 (4) | Ru2xxix—La5—La2i | 151.770 (11) |
Ru2i—La2—La2ix | 124.21 (4) | In1xii—La5—La2i | 60.91 (2) |
In1viii—La2—La2ix | 64.66 (3) | Ru2xii—La5—La2i | 60.91 (2) |
Ru2viii—La2—La2ix | 64.66 (3) | In1i—La5—La2i | 101.346 (16) |
Ru1i—La2—La1vii | 66.18 (3) | In1xxv—La5—La2i | 53.724 (10) |
Ru5—La2—La1vii | 105.49 (2) | Ru2i—La5—La2i | 101.346 (16) |
Ru4—La2—La1vii | 53.12 (3) | Ru2xxv—La5—La2i | 53.724 (10) |
In1i—La2—La1vii | 119.10 (3) | La4xxx—La5—La2i | 112.164 (9) |
Ru2i—La2—La1vii | 119.10 (3) | La4—La5—La2i | 67.836 (9) |
In1viii—La2—La1vii | 60.38 (3) | In1xxix—La5—La2iv | 151.770 (11) |
Ru2viii—La2—La1vii | 60.38 (3) | Ru2xxix—La5—La2iv | 151.770 (11) |
La2ix—La2—La1vii | 115.72 (3) | In1xii—La5—La2iv | 60.91 (2) |
Ru1i—La2—La2x | 128.22 (4) | Ru2xii—La5—La2iv | 60.91 (2) |
Ru5—La2—La2x | 52.682 (13) | In1i—La5—La2iv | 53.724 (10) |
Ru4—La2—La2x | 103.66 (3) | In1xxv—La5—La2iv | 101.346 (16) |
In1i—La2—La2x | 63.93 (3) | Ru2i—La5—La2iv | 53.724 (10) |
Ru2i—La2—La2x | 63.93 (3) | Ru2xxv—La5—La2iv | 101.346 (16) |
In1viii—La2—La2x | 126.15 (4) | La4xxx—La5—La2iv | 112.164 (9) |
Ru2viii—La2—La2x | 126.15 (4) | La4—La5—La2iv | 67.836 (9) |
La2ix—La2—La2x | 61.90 (2) | La2i—La5—La2iv | 55.12 (2) |
La1vii—La2—La2x | 156.27 (2) | In1xxix—La5—La2xxxi | 53.724 (10) |
Ru1i—La2—In1xi | 108.17 (3) | Ru2xxix—La5—La2xxxi | 53.724 (10) |
Ru5—La2—In1xi | 91.53 (2) | In1xii—La5—La2xxxi | 101.346 (16) |
Ru4—La2—In1xi | 152.93 (4) | Ru2xii—La5—La2xxxi | 101.346 (16) |
In1i—La2—In1xi | 82.45 (3) | In1i—La5—La2xxxi | 151.770 (11) |
Ru2i—La2—In1xi | 82.45 (3) | In1xxv—La5—La2xxxi | 60.91 (2) |
In1viii—La2—In1xi | 90.96 (4) | Ru2i—La5—La2xxxi | 151.770 (11) |
Ru2viii—La2—In1xi | 90.96 (4) | Ru2xxv—La5—La2xxxi | 60.91 (2) |
La2ix—La2—In1xi | 54.223 (18) | La4xxx—La5—La2xxxi | 67.836 (9) |
La1vii—La2—In1xi | 148.25 (3) | La4—La5—La2xxxi | 112.164 (9) |
La2x—La2—In1xi | 52.17 (2) | La2i—La5—La2xxxi | 98.183 (7) |
Ru1i—La2—Ru2xi | 108.17 (3) | La2iv—La5—La2xxxi | 152.21 (2) |
Ru5—La2—Ru2xi | 91.53 (2) | In1xxix—La5—La2xii | 53.724 (10) |
Ru4—La2—Ru2xi | 152.93 (4) | Ru2xxix—La5—La2xii | 53.724 (10) |
In1i—La2—Ru2xi | 82.45 (3) | In1xii—La5—La2xii | 101.346 (16) |
Ru2i—La2—Ru2xi | 82.45 (3) | Ru2xii—La5—La2xii | 101.346 (16) |
In1viii—La2—Ru2xi | 90.96 (4) | In1i—La5—La2xii | 60.91 (2) |
Ru2viii—La2—Ru2xi | 90.96 (4) | In1xxv—La5—La2xii | 151.770 (11) |
La2ix—La2—Ru2xi | 54.223 (18) | Ru2i—La5—La2xii | 60.91 (2) |
La1vii—La2—Ru2xi | 148.25 (3) | Ru2xxv—La5—La2xii | 151.770 (11) |
La2x—La2—Ru2xi | 52.17 (2) | La4xxx—La5—La2xii | 67.836 (9) |
In1xi—La2—Ru2xi | 0.00 (2) | La4—La5—La2xii | 112.164 (9) |
Ru1i—La2—La2v | 48.86 (3) | La2i—La5—La2xii | 152.21 (2) |
Ru5—La2—La2v | 142.682 (13) | La2iv—La5—La2xii | 98.183 (7) |
Ru4—La2—La2v | 140.98 (2) | La2xxxi—La5—La2xii | 106.69 (2) |
In1i—La2—La2v | 55.251 (18) | In1xxix—La5—La2xxviii | 60.91 (2) |
Ru2i—La2—La2v | 55.251 (18) | Ru2xxix—La5—La2xxviii | 60.91 (2) |
In1viii—La2—La2v | 104.32 (2) | In1xii—La5—La2xxviii | 151.770 (11) |
Ru2viii—La2—La2v | 104.32 (2) | Ru2xii—La5—La2xxviii | 151.770 (11) |
La2ix—La2—La2v | 112.316 (14) | In1i—La5—La2xxviii | 101.346 (16) |
La1vii—La2—La2v | 111.218 (15) | In1xxv—La5—La2xxviii | 53.724 (10) |
La2x—La2—La2v | 90.0 | Ru2i—La5—La2xxviii | 101.346 (16) |
In1xi—La2—La2v | 59.923 (14) | Ru2xxv—La5—La2xxviii | 53.724 (10) |
Ru2xi—La2—La2v | 59.923 (14) | La4xxx—La5—La2xxviii | 112.164 (9) |
Ru1i—La2—La2vii | 127.67 (3) | La4—La5—La2xxviii | 67.836 (9) |
Ru5—La2—La2vii | 52.110 (5) | La2i—La5—La2xxviii | 106.69 (2) |
Ru4—La2—La2vii | 53.130 (14) | La2iv—La5—La2xxviii | 135.671 (18) |
In1i—La2—La2vii | 146.01 (3) | La2xxxi—La5—La2xxviii | 53.130 (19) |
Ru2i—La2—La2vii | 146.01 (3) | La2xii—La5—La2xxviii | 98.183 (7) |
In1viii—La2—La2vii | 54.40 (3) | In1xxix—La5—La2xxv | 60.91 (2) |
Ru2viii—La2—La2vii | 54.40 (3) | Ru2xxix—La5—La2xxv | 60.91 (2) |
La2ix—La2—La2vii | 60.55 (2) | In1xii—La5—La2xxv | 151.770 (11) |
La1vii—La2—La2vii | 61.549 (16) | Ru2xii—La5—La2xxv | 151.770 (11) |
La2x—La2—La2vii | 102.075 (5) | In1i—La5—La2xxv | 53.724 (10) |
In1xi—La2—La2vii | 114.454 (19) | In1xxv—La5—La2xxv | 101.346 (16) |
Ru2xi—La2—La2vii | 114.454 (19) | Ru2i—La5—La2xxv | 53.724 (10) |
La2v—La2—La2vii | 158.701 (16) | Ru2xxv—La5—La2xxv | 101.346 (16) |
Ru1i—La2—La2iv | 104.12 (4) | La4xxx—La5—La2xxv | 112.164 (9) |
Ru5—La2—La2iv | 52.110 (5) | La4—La5—La2xxv | 67.836 (9) |
Ru4—La2—La2iv | 53.130 (14) | La2i—La5—La2xxv | 135.671 (18) |
In1i—La2—La2iv | 56.11 (3) | La2iv—La5—La2xxv | 106.69 (2) |
Ru2i—La2—La2iv | 56.11 (3) | La2xxxi—La5—La2xxv | 98.183 (7) |
In1viii—La2—La2iv | 144.30 (3) | La2xii—La5—La2xxv | 53.130 (19) |
Ru2viii—La2—La2iv | 144.30 (3) | La2xxviii—La5—La2xxv | 55.12 (2) |
La2ix—La2—La2iv | 102.465 (5) | In1xxix—La5—La2xxix | 101.346 (16) |
La1vii—La2—La2iv | 103.037 (14) | Ru2xxix—La5—La2xxix | 101.346 (16) |
La2x—La2—La2iv | 57.55 (2) | In1xii—La5—La2xxix | 53.724 (10) |
In1xi—La2—La2iv | 108.54 (3) | Ru2xii—La5—La2xxix | 53.724 (10) |
Ru2xi—La2—La2iv | 108.54 (3) | In1i—La5—La2xxix | 151.770 (11) |
La2v—La2—La2iv | 111.299 (16) | In1xxv—La5—La2xxix | 60.91 (2) |
La2vii—La2—La2iv | 90.0 | Ru2i—La5—La2xxix | 151.770 (11) |
Ru1i—La2—La1 | 51.96 (3) | Ru2xxv—La5—La2xxix | 60.91 (2) |
Ru5—La2—La1 | 102.03 (2) | La4xxx—La5—La2xxix | 67.836 (9) |
Ru4—La2—La1 | 51.44 (2) | La4—La5—La2xxix | 112.164 (9) |
In1i—La2—La1 | 59.24 (3) | La2i—La5—La2xxix | 53.130 (19) |
Ru2i—La2—La1 | 59.24 (3) | La2iv—La5—La2xxix | 98.183 (7) |
In1viii—La2—La1 | 121.93 (3) | La2xxxi—La5—La2xxix | 55.12 (2) |
Ru2viii—La2—La1 | 121.93 (3) | La2xii—La5—La2xxix | 135.671 (18) |
La2ix—La2—La1 | 155.591 (17) | La2xxviii—La5—La2xxix | 98.183 (7) |
La1vii—La2—La1 | 62.001 (19) | La2xxv—La5—La2xxix | 152.21 (2) |
La2x—La2—La1 | 109.54 (3) | In1xxix—La5—La2x | 101.346 (16) |
In1xi—La2—La1 | 140.96 (3) | Ru2xxix—La5—La2x | 101.346 (16) |
Ru2xi—La2—La1 | 140.96 (3) | In1xii—La5—La2x | 53.724 (10) |
La2v—La2—La1 | 89.586 (15) | Ru2xii—La5—La2x | 53.724 (10) |
La2vii—La2—La1 | 102.512 (13) | In1i—La5—La2x | 60.91 (2) |
La2iv—La2—La1 | 57.604 (16) | In1xxv—La5—La2x | 151.770 (11) |
Ru1i—La2—La5xii | 88.59 (4) | Ru2i—La5—La2x | 60.91 (2) |
Ru5—La2—La5xii | 117.455 (19) | Ru2xxv—La5—La2x | 151.770 (11) |
Ru4—La2—La5xii | 146.38 (2) | La4xxx—La5—La2x | 67.836 (9) |
In1i—La2—La5xii | 114.20 (2) | La4—La5—La2x | 112.164 (9) |
Ru2i—La2—La5xii | 114.20 (2) | La2i—La5—La2x | 98.183 (7) |
In1viii—La2—La5xii | 49.67 (2) | La2iv—La5—La2x | 53.130 (19) |
Ru2viii—La2—La5xii | 49.67 (2) | La2xxxi—La5—La2x | 135.671 (18) |
La2ix—La2—La5xii | 63.435 (9) | La2xii—La5—La2x | 55.12 (2) |
La1vii—La2—La5xii | 100.404 (19) | La2xxviii—La5—La2x | 152.21 (2) |
La2x—La2—La5xii | 98.84 (2) | La2xxv—La5—La2x | 98.183 (7) |
In1xi—La2—La5xii | 47.88 (2) | La2xxix—La5—La2x | 106.69 (2) |
Ru2xi—La2—La5xii | 47.88 (2) | La2xxiii—Ru1—La2xxii | 82.28 (5) |
La2v—La2—La5xii | 62.442 (10) | La2xxiii—Ru1—La3 | 137.34 (3) |
La2vii—La2—La5xii | 98.03 (2) | La2xxii—Ru1—La3 | 137.34 (3) |
La2iv—La2—La5xii | 156.280 (13) | La2xxiii—Ru1—La1xxii | 129.38 (7) |
La1—La2—La5xii | 140.19 (2) | La2xxii—Ru1—La1xxii | 80.57 (3) |
Ru1i—La2—La4xiii | 47.69 (4) | La3—Ru1—La1xxii | 81.52 (4) |
Ru5—La2—La4xiii | 148.76 (2) | La2xxiii—Ru1—La1xxiii | 80.57 (3) |
Ru4—La2—La4xiii | 108.30 (3) | La2xxii—Ru1—La1xxiii | 129.38 (7) |
In1i—La2—La4xiii | 110.16 (3) | La3—Ru1—La1xxiii | 81.52 (4) |
Ru2i—La2—La4xiii | 110.16 (3) | La1xxii—Ru1—La1xxiii | 74.69 (5) |
In1viii—La2—La4xiii | 50.68 (2) | La2xxiii—Ru1—La4xvi | 91.71 (5) |
Ru2viii—La2—La4xiii | 50.68 (2) | La2xxii—Ru1—La4xvi | 91.71 (5) |
La2ix—La2—La4xiii | 108.33 (2) | La3—Ru1—La4xvi | 75.27 (6) |
La1vii—La2—La4xiii | 55.473 (19) | La1xxii—Ru1—La4xvi | 135.90 (4) |
La2x—La2—La4xiii | 148.03 (2) | La1xxiii—Ru1—La4xvi | 135.90 (4) |
In1xi—La2—La4xiii | 96.65 (3) | La2xxiii—Ru1—La1xvi | 67.76 (2) |
Ru2xi—La2—La4xiii | 96.65 (3) | La2xxii—Ru1—La1xvi | 141.71 (5) |
La2v—La2—La4xiii | 64.635 (10) | La3—Ru1—La1xvi | 69.77 (3) |
La2vii—La2—La4xiii | 97.43 (2) | La1xxii—Ru1—La1xvi | 136.97 (5) |
La2iv—La2—La4xiii | 147.966 (18) | La1xxiii—Ru1—La1xvi | 70.03 (2) |
La1—La2—La4xiii | 90.36 (2) | La4xvi—Ru1—La1xvi | 66.92 (3) |
La5xii—La2—La4xiii | 53.123 (17) | La2xxiii—Ru1—La1xx | 141.71 (5) |
Ru1vi—La3—Ru1 | 154.28 (9) | La2xxii—Ru1—La1xx | 67.76 (2) |
Ru1vi—La3—Ru3xiv | 100.76 (4) | La3—Ru1—La1xx | 69.77 (3) |
Ru1—La3—Ru3xiv | 100.76 (4) | La1xxii—Ru1—La1xx | 70.03 (2) |
Ru1vi—La3—Ru3xv | 100.76 (4) | La1xxiii—Ru1—La1xx | 136.97 (5) |
Ru1—La3—Ru3xv | 100.76 (4) | La4xvi—Ru1—La1xx | 66.92 (3) |
Ru3xiv—La3—Ru3xv | 65.99 (7) | La1xvi—Ru1—La1xx | 124.26 (6) |
Ru1vi—La3—La4xvi | 149.96 (5) | La5xii—Ru2—La2xxii | 132.69 (3) |
Ru1—La3—La4xvi | 55.75 (4) | La5xii—Ru2—La2xxiii | 132.69 (3) |
Ru3xiv—La3—La4xvi | 55.19 (2) | La2xxii—Ru2—La2xxiii | 69.50 (4) |
Ru3xv—La3—La4xvi | 55.19 (2) | La5xii—Ru2—La2v | 76.61 (3) |
Ru1vi—La3—La4xvii | 55.75 (4) | La2xxii—Ru2—La2v | 69.49 (3) |
Ru1—La3—La4xvii | 149.96 (5) | La2xxiii—Ru2—La2v | 138.87 (3) |
Ru3xiv—La3—La4xvii | 55.19 (2) | La5xii—Ru2—La2viii | 76.61 (3) |
Ru3xv—La3—La4xvii | 55.19 (2) | La2xxii—Ru2—La2viii | 138.87 (3) |
La4xvi—La3—La4xvii | 94.21 (4) | La2xxiii—Ru2—La2viii | 69.49 (3) |
Ru1vi—La3—La1xvi | 122.257 (9) | La2v—Ru2—La2viii | 150.98 (5) |
Ru1—La3—La1xvi | 63.380 (15) | La5xii—Ru2—La4xiii | 69.62 (3) |
Ru3xiv—La3—La1xvi | 51.68 (3) | La2xxii—Ru2—La4xiii | 132.16 (3) |
Ru3xv—La3—La1xvi | 107.30 (4) | La2xxiii—Ru2—La4xiii | 132.16 (3) |
La4xvi—La3—La1xvi | 60.009 (14) | La2v—Ru2—La4xiii | 80.19 (2) |
La4xvii—La3—La1xvi | 103.76 (3) | La2viii—Ru2—La4xiii | 80.19 (2) |
Ru1vi—La3—La1xviii | 63.380 (15) | La5xii—Ru2—La1xxii | 124.03 (3) |
Ru1—La3—La1xviii | 122.257 (9) | La2xxii—Ru2—La1xxii | 67.79 (3) |
Ru3xiv—La3—La1xviii | 107.30 (4) | La2xxiii—Ru2—La1xxii | 102.52 (4) |
Ru3xv—La3—La1xviii | 51.68 (3) | La2v—Ru2—La1xxii | 64.082 (19) |
La4xvi—La3—La1xviii | 103.76 (3) | La2viii—Ru2—La1xxii | 124.96 (4) |
La4xvii—La3—La1xviii | 60.009 (14) | La4xiii—Ru2—La1xxii | 65.88 (3) |
La1xvi—La3—La1xviii | 157.81 (4) | La5xii—Ru2—La1xxiii | 124.03 (3) |
Ru1vi—La3—La1xix | 63.380 (15) | La2xxii—Ru2—La1xxiii | 102.52 (4) |
Ru1—La3—La1xix | 122.257 (9) | La2xxiii—Ru2—La1xxiii | 67.79 (3) |
Ru3xiv—La3—La1xix | 51.68 (3) | La2v—Ru2—La1xxiii | 124.96 (4) |
Ru3xv—La3—La1xix | 107.30 (4) | La2viii—Ru2—La1xxiii | 64.082 (19) |
La4xvi—La3—La1xix | 103.76 (3) | La4xiii—Ru2—La1xxiii | 65.88 (3) |
La4xvii—La3—La1xix | 60.009 (14) | La1xxii—Ru2—La1xxiii | 62.89 (3) |
La1xvi—La3—La1xix | 60.467 (19) | La5xii—Ru2—La2xxxii | 71.20 (3) |
La1xviii—La3—La1xix | 114.76 (2) | La2xxii—Ru2—La2xxxii | 63.90 (3) |
Ru1vi—La3—La1xx | 122.257 (9) | La2xxiii—Ru2—La2xxxii | 97.55 (3) |
Ru1—La3—La1xx | 63.380 (15) | La2v—Ru2—La2xxxii | 61.12 (2) |
Ru3xiv—La3—La1xx | 107.30 (4) | La2viii—Ru2—La2xxxii | 119.17 (4) |
Ru3xv—La3—La1xx | 51.68 (3) | La4xiii—Ru2—La2xxxii | 129.84 (4) |
La4xvi—La3—La1xx | 60.009 (14) | La1xxii—Ru2—La2xxxii | 115.849 (17) |
La4xvii—La3—La1xx | 103.76 (3) | La1xxiii—Ru2—La2xxxii | 163.52 (4) |
La1xvi—La3—La1xx | 114.76 (2) | La5xii—Ru2—La2xi | 71.20 (3) |
La1xviii—La3—La1xx | 60.467 (19) | La2xxii—Ru2—La2xi | 97.55 (3) |
La1xix—La3—La1xx | 157.81 (4) | La2xxiii—Ru2—La2xi | 63.90 (3) |
Ru1vi—La3—La1xiv | 50.24 (3) | La2v—Ru2—La2xi | 119.17 (4) |
Ru1—La3—La1xiv | 108.22 (4) | La2viii—Ru2—La2xi | 61.12 (2) |
Ru3xiv—La3—La1xiv | 150.765 (12) | La4xiii—Ru2—La2xi | 129.84 (4) |
Ru3xv—La3—La1xiv | 111.05 (3) | La1xxii—Ru2—La2xi | 163.52 (4) |
La4xvi—La3—La1xiv | 149.047 (11) | La1xxiii—Ru2—La2xi | 115.849 (17) |
La4xvii—La3—La1xiv | 98.166 (15) | La2xxxii—Ru2—La2xi | 60.15 (3) |
La1xvi—La3—La1xiv | 141.66 (3) | La1xiv—Ru3—La1xxii | 77.21 (4) |
La1xviii—La3—La1xiv | 59.886 (19) | La1xiv—Ru3—La1xxiii | 120.29 (7) |
La1xix—La3—La1xiv | 107.008 (19) | La1xxii—Ru3—La1xxiii | 74.08 (4) |
La1xx—La3—La1xiv | 89.43 (2) | La1xiv—Ru3—La1xxi | 74.08 (4) |
Ru1vi—La3—La1xxi | 50.24 (3) | La1xxii—Ru3—La1xxi | 120.29 (7) |
Ru1—La3—La1xxi | 108.22 (4) | La1xxiii—Ru3—La1xxi | 77.21 (4) |
Ru3xiv—La3—La1xxi | 111.04 (3) | La1xiv—Ru3—La3ii | 76.459 (16) |
Ru3xv—La3—La1xxi | 150.765 (12) | La1xxii—Ru3—La3ii | 76.459 (16) |
La4xvi—La3—La1xxi | 149.047 (11) | La1xxiii—Ru3—La3ii | 140.924 (12) |
La4xvii—La3—La1xxi | 98.166 (15) | La1xxi—Ru3—La3ii | 140.924 (12) |
La1xvi—La3—La1xxi | 89.43 (2) | La1xiv—Ru3—La3xxxiii | 140.924 (12) |
La1xviii—La3—La1xxi | 107.008 (19) | La1xxii—Ru3—La3xxxiii | 140.924 (12) |
La1xix—La3—La1xxi | 59.886 (19) | La1xxiii—Ru3—La3xxxiii | 76.459 (16) |
La1xx—La3—La1xxi | 141.66 (3) | La1xxi—Ru3—La3xxxiii | 76.459 (16) |
La1xiv—La3—La1xxi | 56.26 (2) | La3ii—Ru3—La3xxxiii | 114.01 (7) |
Ru1vi—La3—La1xxii | 108.22 (4) | La1xiv—Ru3—La4xiv | 73.911 (15) |
Ru1—La3—La1xxii | 50.24 (3) | La1xxii—Ru3—La4xiv | 142.318 (12) |
Ru3xiv—La3—La1xxii | 150.765 (12) | La1xxiii—Ru3—La4xiv | 142.317 (12) |
Ru3xv—La3—La1xxii | 111.05 (3) | La1xxi—Ru3—La4xiv | 73.911 (15) |
La4xvi—La3—La1xxii | 98.166 (15) | La3ii—Ru3—La4xiv | 73.66 (3) |
La4xvii—La3—La1xxii | 149.047 (11) | La3xxxiii—Ru3—La4xiv | 73.66 (3) |
La1xvi—La3—La1xxii | 107.008 (19) | La1xiv—Ru3—La4xiii | 142.317 (12) |
La1xviii—La3—La1xxii | 89.43 (2) | La1xxii—Ru3—La4xiii | 73.911 (15) |
La1xix—La3—La1xxii | 141.66 (3) | La1xxiii—Ru3—La4xiii | 73.911 (15) |
La1xx—La3—La1xxii | 59.886 (19) | La1xxi—Ru3—La4xiii | 142.318 (12) |
La1xiv—La3—La1xxii | 58.47 (2) | La3ii—Ru3—La4xiii | 73.66 (3) |
La1xxi—La3—La1xxii | 85.50 (3) | La3xxxiii—Ru3—La4xiii | 73.66 (3) |
Ru1vi—La3—La1xxiii | 108.22 (4) | La4xiv—Ru3—La4xiii | 117.80 (7) |
Ru1—La3—La1xxiii | 50.24 (3) | La1xxxiv—Ru4—La1iv | 77.36 (3) |
Ru3xiv—La3—La1xxiii | 111.04 (3) | La1xxxiv—Ru4—La1 | 124.21 (6) |
Ru3xv—La3—La1xxiii | 150.765 (12) | La1iv—Ru4—La1 | 77.36 (3) |
La4xvi—La3—La1xxiii | 98.166 (15) | La1xxxiv—Ru4—La1vii | 77.36 (3) |
La4xvii—La3—La1xxiii | 149.047 (11) | La1iv—Ru4—La1vii | 124.21 (6) |
La1xvi—La3—La1xxiii | 59.886 (19) | La1—Ru4—La1vii | 77.36 (3) |
La1xviii—La3—La1xxiii | 141.66 (3) | La1xxxiv—Ru4—La2 | 138.418 (17) |
La1xix—La3—La1xxiii | 89.43 (2) | La1iv—Ru4—La2 | 143.716 (18) |
La1xx—La3—La1xxiii | 107.008 (19) | La1—Ru4—La2 | 75.350 (16) |
La1xiv—La3—La1xxiii | 85.50 (3) | La1vii—Ru4—La2 | 71.881 (16) |
La1xxi—La3—La1xxiii | 58.47 (2) | La1xxxiv—Ru4—La2iv | 143.716 (18) |
La1xxii—La3—La1xxiii | 56.26 (2) | La1iv—Ru4—La2iv | 75.350 (16) |
Ru1xxiv—La4—Ru1iii | 176.27 (8) | La1—Ru4—La2iv | 71.881 (16) |
Ru1xxiv—La4—Ru3xxv | 91.60 (3) | La1vii—Ru4—La2iv | 138.418 (17) |
Ru1iii—La4—Ru3xxv | 91.60 (3) | La2—Ru4—La2iv | 73.74 (3) |
Ru1xxiv—La4—Ru3ii | 91.60 (3) | La1xxxiv—Ru4—La2xxxiv | 75.350 (16) |
Ru1iii—La4—Ru3ii | 91.60 (3) | La1iv—Ru4—La2xxxiv | 71.881 (16) |
Ru3xxv—La4—Ru3ii | 62.20 (7) | La1—Ru4—La2xxxiv | 138.418 (17) |
Ru1xxiv—La4—In1i | 88.85 (2) | La1vii—Ru4—La2xxxiv | 143.716 (18) |
Ru1iii—La4—In1i | 88.85 (2) | La2—Ru4—La2xxxiv | 116.11 (6) |
Ru3xxv—La4—In1i | 159.16 (5) | La2iv—Ru4—La2xxxiv | 73.74 (3) |
Ru3ii—La4—In1i | 96.95 (4) | La1xxxiv—Ru4—La2vii | 71.881 (16) |
Ru1xxiv—La4—In1xxv | 88.85 (2) | La1iv—Ru4—La2vii | 138.418 (17) |
Ru1iii—La4—In1xxv | 88.85 (2) | La1—Ru4—La2vii | 143.716 (18) |
Ru3xxv—La4—In1xxv | 96.95 (4) | La1vii—Ru4—La2vii | 75.350 (16) |
Ru3ii—La4—In1xxv | 159.16 (5) | La2—Ru4—La2vii | 73.74 (3) |
In1i—La4—In1xxv | 103.89 (6) | La2iv—Ru4—La2vii | 116.11 (6) |
Ru1xxiv—La4—Ru2i | 88.85 (2) | La2xxxiv—Ru4—La2vii | 73.74 (3) |
Ru1iii—La4—Ru2i | 88.85 (2) | La2x—Ru5—La2xxxiv | 139.13 (3) |
Ru3xxv—La4—Ru2i | 159.16 (5) | La2x—Ru5—La2vii | 143.22 (3) |
Ru3ii—La4—Ru2i | 96.95 (4) | La2xxxiv—Ru5—La2vii | 75.781 (11) |
In1i—La4—Ru2i | 0.00 (4) | La2x—Ru5—La2ix | 75.781 (11) |
In1xxv—La4—Ru2i | 103.89 (6) | La2xxxiv—Ru5—La2ix | 143.22 (3) |
Ru1xxiv—La4—Ru2xxv | 88.85 (2) | La2vii—Ru5—La2ix | 74.64 (3) |
Ru1iii—La4—Ru2xxv | 88.85 (2) | La2x—Ru5—La2xxxv | 120.58 (2) |
Ru3xxv—La4—Ru2xxv | 96.95 (4) | La2xxxiv—Ru5—La2xxxv | 74.64 (3) |
Ru3ii—La4—Ru2xxv | 159.16 (5) | La2vii—Ru5—La2xxxv | 71.96 (3) |
In1i—La4—Ru2xxv | 103.89 (6) | La2ix—Ru5—La2xxxv | 75.781 (11) |
In1xxv—La4—Ru2xxv | 0.00 (4) | La2x—Ru5—La2 | 74.64 (3) |
Ru2i—La4—Ru2xxv | 103.89 (6) | La2xxxiv—Ru5—La2 | 120.58 (2) |
Ru1xxiv—La4—La5 | 88.13 (4) | La2vii—Ru5—La2 | 75.781 (11) |
Ru1iii—La4—La5 | 88.13 (4) | La2ix—Ru5—La2 | 71.96 (3) |
Ru3xxv—La4—La5 | 148.90 (3) | La2xxxv—Ru5—La2 | 139.13 (3) |
Ru3ii—La4—La5 | 148.90 (3) | La2x—Ru5—La2xxxvi | 75.781 (11) |
In1i—La4—La5 | 51.94 (3) | La2xxxiv—Ru5—La2xxxvi | 71.96 (3) |
In1xxv—La4—La5 | 51.94 (3) | La2vii—Ru5—La2xxxvi | 139.13 (3) |
Ru2i—La4—La5 | 51.94 (3) | La2ix—Ru5—La2xxxvi | 120.58 (2) |
Ru2xxv—La4—La5 | 51.94 (3) | La2xxxv—Ru5—La2xxxvi | 75.781 (11) |
Ru1xxiv—La4—La3iii | 134.76 (5) | La2—Ru5—La2xxxvi | 143.22 (3) |
Ru1iii—La4—La3iii | 48.97 (3) | La2x—Ru5—La2iv | 71.96 (3) |
Ru3xxv—La4—La3iii | 51.15 (3) | La2xxxiv—Ru5—La2iv | 75.781 (11) |
Ru3ii—La4—La3iii | 51.15 (3) | La2vii—Ru5—La2iv | 120.58 (2) |
In1i—La4—La3iii | 116.846 (17) | La2ix—Ru5—La2iv | 139.13 (3) |
In1xxv—La4—La3iii | 116.845 (17) | La2xxxv—Ru5—La2iv | 143.22 (3) |
Ru2i—La4—La3iii | 116.846 (17) | La2—Ru5—La2iv | 75.781 (11) |
Ru2xxv—La4—La3iii | 116.845 (17) | La2xxxvi—Ru5—La2iv | 74.64 (3) |
La5—La4—La3iii | 137.10 (2) | La1—In2—La1xxxvii | 180.00 (3) |
Ru1xxiv—La4—La3xvii | 48.97 (3) | La1—In2—La1iv | 70.717 (10) |
Ru1iii—La4—La3xvii | 134.76 (5) | La1xxxvii—In2—La1iv | 109.283 (10) |
Ru3xxv—La4—La3xvii | 51.15 (3) | La1—In2—La1xxxiv | 109.85 (2) |
Ru3ii—La4—La3xvii | 51.15 (3) | La1xxxvii—In2—La1xxxiv | 70.15 (2) |
In1i—La4—La3xvii | 116.845 (17) | La1iv—In2—La1xxxiv | 70.717 (10) |
In1xxv—La4—La3xvii | 116.845 (17) | La1—In2—La1vii | 70.717 (10) |
Ru2i—La4—La3xvii | 116.845 (17) | La1xxxvii—In2—La1vii | 109.283 (10) |
Ru2xxv—La4—La3xvii | 116.845 (17) | La1iv—In2—La1vii | 109.85 (2) |
La5—La4—La3xvii | 137.10 (2) | La1xxxiv—In2—La1vii | 70.717 (10) |
La3iii—La4—La3xvii | 85.79 (4) | La1—In2—La1xxxviii | 109.283 (10) |
Ru1xxiv—La4—La1 | 119.600 (14) | La1xxxvii—In2—La1xxxviii | 70.717 (10) |
Ru1iii—La4—La1 | 61.370 (13) | La1iv—In2—La1xxxviii | 70.15 (2) |
Ru3xxv—La4—La1 | 103.96 (4) | La1xxxiv—In2—La1xxxviii | 109.283 (10) |
Ru3ii—La4—La1 | 50.94 (3) | La1vii—In2—La1xxxviii | 180.00 (3) |
In1i—La4—La1 | 58.39 (2) | La1—In2—La1vi | 70.15 (2) |
In1xxv—La4—La1 | 143.53 (3) | La1xxxvii—In2—La1vi | 109.85 (2) |
Ru2i—La4—La1 | 58.39 (2) | La1iv—In2—La1vi | 109.283 (10) |
Ru2xxv—La4—La1 | 143.53 (3) | La1xxxiv—In2—La1vi | 180.00 (2) |
La5—La4—La1 | 103.13 (2) | La1vii—In2—La1vi | 109.283 (10) |
La3iii—La4—La1 | 60.151 (15) | La1xxxviii—In2—La1vi | 70.717 (10) |
La3xvii—La4—La1 | 99.50 (3) | La1—In2—La1xxxix | 109.283 (10) |
Ru1xxiv—La4—La1v | 61.370 (13) | La1xxxvii—In2—La1xxxix | 70.717 (10) |
Ru1iii—La4—La1v | 119.600 (14) | La1iv—In2—La1xxxix | 180.00 (2) |
Ru3xxv—La4—La1v | 103.96 (4) | La1xxxiv—In2—La1xxxix | 109.283 (10) |
Ru3ii—La4—La1v | 50.94 (3) | La1vii—In2—La1xxxix | 70.15 (2) |
In1i—La4—La1v | 58.39 (2) | La1xxxviii—In2—La1xxxix | 109.85 (2) |
In1xxv—La4—La1v | 143.53 (3) | La1vi—In2—La1xxxix | 70.717 (10) |
Ru2i—La4—La1v | 58.39 (2) |
Symmetry codes: (i) x−1/2, −y+1/2, z; (ii) x−1/2, −y+1/2, −z; (iii) x−1, y, z; (iv) −y, x, z; (v) −y+1/2, −x+1/2, z; (vi) x, y, −z; (vii) y, −x, z; (viii) −x+1, −y, z; (ix) x, −y, −z+1/2; (x) y, x, −z+1/2; (xi) −x+1, y, −z+1/2; (xii) −x+1/2, −y+1/2, −z+1/2; (xiii) −x+1/2, y−1/2, z; (xiv) x+1/2, −y+1/2, −z; (xv) −x+3/2, y+1/2, z; (xvi) x+1, y, z; (xvii) −x+1, −y+1, −z; (xviii) y+1/2, x+1/2, −z; (xix) x+1, y, −z; (xx) y+1/2, x+1/2, z; (xxi) −y+1, x, −z; (xxii) x+1/2, −y+1/2, z; (xxiii) −y+1, x, z; (xxiv) −x+1, −y+1, z; (xxv) −x+1/2, y+1/2, z; (xxvi) y−1/2, x+1/2, z; (xxvii) −x, −y+1, z; (xxviii) y, −x+1, z; (xxix) x−1/2, y+1/2, −z+1/2; (xxx) x, −y+1, −z+1/2; (xxxi) −y, −x+1, −z+1/2; (xxxii) y+1/2, −x+1/2, −z+1/2; (xxxiii) −x+3/2, y−1/2, z; (xxxiv) −x, −y, z; (xxxv) −y, −x, −z+1/2; (xxxvi) −x, y, −z+1/2; (xxxvii) −x, −y, −z; (xxxviii) −y, x, −z; (xxxix) y, −x, −z. |
Experimental details
Crystal data | |
Chemical formula | La21Ru10.16In3.84 |
Mr | 4384.89 |
Crystal system, space group | Tetragonal, I4/mcm |
Temperature (K) | 293 |
a, c (Å) | 12.1298 (3), 25.9820 (7) |
V (Å3) | 3822.79 (17) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 28.98 |
Crystal size (mm) | 0.06 × 0.05 × 0.05 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | For a sphere (WinGX; Farrugia, 1999) |
Tmin, Tmax | 0.243, 0.261 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 22423, 1202, 927 |
Rint | 0.087 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.062, 1.12 |
No. of reflections | 1202 |
No. of parameters | 53 |
w = 1/[σ2(Fo2) + (0.0131P)2 + 224.3566P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 2.00, −2.74 |
Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).
Acknowledgements
This work was supported by the RFBR project 080300702a.
References
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143. CrossRef Web of Science IUCr Journals Google Scholar
Moreau, J.-M., Paccard, D. & Parthé, E. (1976). Acta Cryst. B32, 1767–1771. CrossRef CAS IUCr Journals Web of Science Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zaremba, R., Rodewald, U. Ch., Zaremba, V. I. & Pöttgen, R. (2007). Z. Naturforsch. Teil B, 62, 1397–1406. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
New rare-earth metal-rich indium compounds RE3T2-xInx (RE = Gd, Tb, Dy, Ho, Er, Tm; T = Rh, Pd, Ir) have been recently synthesized (Zaremba et al., 2007). They can be regarded as extensions of the parent binaries RE3T2 with either the Y3Rh2- (T = Rh, Ir) or U3Si2-type (T = Pd) structures into the ternary RE–T–In systems. In contrast, La21Ru9+xIn5-x, presented here, is strictly a ternary compound with no corresponding La-Ru binary of the same stoichiometry.
In the Y3Rh2–type structure, six crystallographically independent transition metal sites are available with trigonal prismatic, square prismatic, and square antiprismatic coordination environments (Moreau et al., 1976). The structure of La21Ru9+xIn5-x is derived through an ordered substitution at two sites, with the square prismatic site (16l) occupied by a mixture of Ru and In atoms and one of the square antiprismatic sites (4c) occupied fully by In atoms (Fig. 1). This suggests the existence of a solid solution, as confirmed by EDX measurements which revealed a homogeneity range of ca. 3 at.% in La21Ru9+xIn5-x.