organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-(2-Chloro­phen­yl)-1-(4-chloro­phen­yl)-4-[(E)-(2-chloro­phen­yl)methyl­­idene]-6-methyl-4,5,6,7,7a,8-hexa­hydro-1,2,4-oxa­diazolo[5,4-d]pyrido[3,4-c][1,5]benzo­thia­zepine

aDepartment of Physics, Thiagarajar College, Madurai 625 009, India, bDepartment of Physics, The Standard Fireworks Rajaratnam College for Women, Sivakasi 626 123, India, and cDepartment of Physics, Saraswathy Narayanan College, Madurai 625 022, India
*Correspondence e-mail: vasan692000@yahoo.co.in

(Received 5 March 2010; accepted 10 April 2010; online 21 April 2010)

In the title compound, C33H26Cl3N3OS, the oxadiazole, piperidine and benzothia­pezine rings adopt envelope, chair and twist-boat conformations, respectively. In the crystal, the mol­ecular aggregation is characterized by chains of centrosymmetrically related pairs connected through Cl⋯Cl inter­actions [3.533 (2) Å], extending parallel to (202).

Related literature

For the biological importance of benziothia­zepines and oxadiazol derivatives, see: Budriesi et al. (2007[Budriesi, R., Cosimelli, B., Ioan, P., Carosati, E., Ugenti, M. P. & Spisani, R. (2007). Curr. Med. Chem. 14, 279-287.]); Sahin et al. (2002[Sahin, G., Palaska, E., Ekizoglu, M. & Ozalp, M. (2002). Il Farm. 57, 539-542.]). For ring geometry, see: Boeyens (1978[Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For a related structure, see: Srinivasan et al. (2007[Srinivasan, N., Sribala, R., Ranjith Kumar, R., Perumal, S. & Krishnakumar, R. V. (2007). Acta Cryst. E63, o4268.]).

[Scheme 1]

Experimental

Crystal data
  • C33H26Cl3N3OS

  • Mr = 618.98

  • Triclinic, [P \overline 1]

  • a = 11.015 (3) Å

  • b = 11.758 (4) Å

  • c = 11.988 (4) Å

  • α = 78.87 (2)°

  • β = 86.89 (3)°

  • γ = 78.29 (2)°

  • V = 1491.5 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 298 K

  • 0.30 × 0.15 × 0.15 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.90, Tmax = 0.94

  • 42055 measured reflections

  • 11096 independent reflections

  • 7867 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.146

  • S = 1.03

  • 11096 reflections

  • 372 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.62 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, C33H26N3OCl3 S, belongs to an important class of heterocycles which exhibit antihypertensive properties. The compound consists of a benzothiazepine, a oxadiazole and a methyl piperidine ring. Benziothiazepines are regarded as a class of calcium channel blockers (Budriesi et al., 2007), oxadiazol derivatives are established as micobicides (Sahin et al., 2002) and piperidines are established as key components of anti-Parkinson's drugs. Accurate description of the molecular geometry of such molecules are indispensable to proceed with the pharmacological investigations which may prove useful in the design of drugs with a wide range of activities. Also, the role of non-conventional hydrogen bonds viz. C—H···X (X= N, O, Cl, F, etc.) in influencing the geometry of the molecular packing can be unambiguously assessed. Recently, an anlogue of the title compound namely, the crystal structure of 1-(4-chlorophenyl)- 8-(4-fluorophenyl)-4-[(E)-(4-fluorophenyl)methylidene]-6-methyl-4,5,6,7,7a, 8-hexahydro[1,2,4]oxadiazolo[5,4-d]pyrido [3,4-c][1,5] benzothiazepine (Srinivasan et al., 2007) was elucidated.

A least-squares plane calculations show that the 2-chlorophenyl attached to thiazepine, 2-chlorophenyl attached to piperidine and 4-chlorophenyl ring of the oxadiazole ring make a dihedral angle of 34.8 (1) °, 51.3 (1) ° and 73.9 (1) °, respectively, with respect to the benzene fused to the thiazepine ring. The torsion angles about the methylidene bond C4—C40—C41—C42 = 39.8 (2) ° and C4—C40—C41—C46 = -141.8 (2) ° indicates a significant twist of the 2-chlorophenyl ring which may be attributed to steric factors. These values that describe the molecular geometry slightly differ from those observed in the 4-fluoro-4-fluoro- 4-chloro analogue (Srinivasan et al., 2007). The oxadiazole, piperidine and benzothiapezine rings adopt the usually expected envelope, chair and twist-boat conformations, respectively. The molecular aggreagation is characterized by linear chains of centrosymmetrically related pairs extending parallel to the (202) plane and connected through Cl···Cl interactions [Cl1···Cl2(-x+1,-y,-z+2) = 3.533 (2) Å. Other Cl···Cl distances observed are Cl2···Cl2(-x+1,-y+1,-z+1) = 3.826 (2) Å and Cl1···Cl3(x,+y-1,+z+1) = 3.952 (2) Å.

Related literature top

For the biological importance of benziothiazepines and oxadiazol derivatives, see: Budriesi et al. (2007); Sahin et al. (2002).For ring geometry, see: Boeyens (1978); Cremer & Pople (1975). For a related structure, see: Srinivasan et al. (2007).

Experimental top

2-Methyl-11-(2-chlorophenyl)-4-[(E)-(2-chlorophenyl)methylidene]- 1,2,3,4,11,11a-hexahydro-pyrido[3,4-c][1,5]benzothiazepines (1 mmol) and 4-chloro-N-hydroxybenzenecarboximidoyl chloride (1 mmol) were dissolved in benzene (15 ml). Triethylamine (1 mmol) was added to the mixture and refluxed for 20 to 30 min. After completion of the reaction as evident from thin layer chromatography the triethylamine hydrochloride was filtered off, solvent evaporated, product was purified by column chromatography using petroleum ether:ethyl acetate (90:10 v/v) mixture and finally recrystallized from ethyl acetate to obtain pure 1-(4-chlorophenyl)-8-(2-chlorophenyl) -4-[(E)-(2-chlorophenyl)methylidene]-6-methyl-4,5,6,7,7a,8- hexahydro[1,2,4]oxa-diazolo[5,4-d]pyrido[3,4-c][1,5] benzothiazepine as colorless crystals.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Structure description top

The title compound, C33H26N3OCl3 S, belongs to an important class of heterocycles which exhibit antihypertensive properties. The compound consists of a benzothiazepine, a oxadiazole and a methyl piperidine ring. Benziothiazepines are regarded as a class of calcium channel blockers (Budriesi et al., 2007), oxadiazol derivatives are established as micobicides (Sahin et al., 2002) and piperidines are established as key components of anti-Parkinson's drugs. Accurate description of the molecular geometry of such molecules are indispensable to proceed with the pharmacological investigations which may prove useful in the design of drugs with a wide range of activities. Also, the role of non-conventional hydrogen bonds viz. C—H···X (X= N, O, Cl, F, etc.) in influencing the geometry of the molecular packing can be unambiguously assessed. Recently, an anlogue of the title compound namely, the crystal structure of 1-(4-chlorophenyl)- 8-(4-fluorophenyl)-4-[(E)-(4-fluorophenyl)methylidene]-6-methyl-4,5,6,7,7a, 8-hexahydro[1,2,4]oxadiazolo[5,4-d]pyrido [3,4-c][1,5] benzothiazepine (Srinivasan et al., 2007) was elucidated.

A least-squares plane calculations show that the 2-chlorophenyl attached to thiazepine, 2-chlorophenyl attached to piperidine and 4-chlorophenyl ring of the oxadiazole ring make a dihedral angle of 34.8 (1) °, 51.3 (1) ° and 73.9 (1) °, respectively, with respect to the benzene fused to the thiazepine ring. The torsion angles about the methylidene bond C4—C40—C41—C42 = 39.8 (2) ° and C4—C40—C41—C46 = -141.8 (2) ° indicates a significant twist of the 2-chlorophenyl ring which may be attributed to steric factors. These values that describe the molecular geometry slightly differ from those observed in the 4-fluoro-4-fluoro- 4-chloro analogue (Srinivasan et al., 2007). The oxadiazole, piperidine and benzothiapezine rings adopt the usually expected envelope, chair and twist-boat conformations, respectively. The molecular aggreagation is characterized by linear chains of centrosymmetrically related pairs extending parallel to the (202) plane and connected through Cl···Cl interactions [Cl1···Cl2(-x+1,-y,-z+2) = 3.533 (2) Å. Other Cl···Cl distances observed are Cl2···Cl2(-x+1,-y+1,-z+1) = 3.826 (2) Å and Cl1···Cl3(x,+y-1,+z+1) = 3.952 (2) Å.

For the biological importance of benziothiazepines and oxadiazol derivatives, see: Budriesi et al. (2007); Sahin et al. (2002).For ring geometry, see: Boeyens (1978); Cremer & Pople (1975). For a related structure, see: Srinivasan et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the molecular aggregation down the a--axis. H atoms have been omitted and Cl···Cl interactions are indicated by dashed lines.
8-(2-Chlorophenyl)-1-(4-chlorophenyl)-4-[(E)-(2- chlorophenyl)methylidene]-6-methyl-4,5,6,7,7a,8-hexahydro- 1,2,4-oxadiazolo[5,4-d]pyrido[3,4-c][1,5]benzothiazepine top
Crystal data top
C33H26Cl3N3OSZ = 2
Mr = 618.98F(000) = 640
Triclinic, P1Dx = 1.378 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.015 (3) ÅCell parameters from 4125 reflections
b = 11.758 (4) Åθ = 2.0–30.0°
c = 11.988 (4) ŵ = 0.41 mm1
α = 78.87 (2)°T = 298 K
β = 86.89 (3)°Needle, colourless
γ = 78.29 (2)°0.30 × 0.15 × 0.15 mm
V = 1491.5 (8) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
11096 independent reflections
Radiation source: fine-focus sealed tube7867 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and φ scanθmax = 33.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1616
Tmin = 0.90, Tmax = 0.94k = 1717
42055 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0605P)2 + 0.6302P]
where P = (Fo2 + 2Fc2)/3
11096 reflections(Δ/σ)max = 0.001
372 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
C33H26Cl3N3OSγ = 78.29 (2)°
Mr = 618.98V = 1491.5 (8) Å3
Triclinic, P1Z = 2
a = 11.015 (3) ÅMo Kα radiation
b = 11.758 (4) ŵ = 0.41 mm1
c = 11.988 (4) ÅT = 298 K
α = 78.87 (2)°0.30 × 0.15 × 0.15 mm
β = 86.89 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
11096 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
7867 reflections with I > 2σ(I)
Tmin = 0.90, Tmax = 0.94Rint = 0.023
42055 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.03Δρmax = 0.64 e Å3
11096 reflectionsΔρmin = 0.62 e Å3
372 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.57470 (7)0.12556 (6)1.22882 (7)0.0878 (2)
Cl20.55422 (5)0.34566 (6)0.58843 (6)0.07294 (17)
Cl30.71901 (7)0.77874 (5)0.53545 (4)0.0769 (2)
C10.85278 (14)0.22540 (11)0.96401 (12)0.0336 (3)
N20.97082 (12)0.20144 (11)0.95229 (12)0.0404 (3)
O31.00715 (9)0.30577 (9)0.89247 (9)0.0378 (2)
C3A0.89581 (12)0.37735 (11)0.83332 (11)0.0300 (2)
C40.89945 (13)0.33994 (11)0.71870 (12)0.0320 (3)
C51.01522 (14)0.36089 (13)0.65093 (13)0.0368 (3)
H5A1.08570.30300.68430.044*
H5B1.00690.34950.57390.044*
N61.03901 (12)0.48001 (11)0.64726 (10)0.0353 (2)
C71.03493 (13)0.51369 (13)0.75868 (13)0.0355 (3)
H7A1.04890.59380.74970.043*
H7B1.10050.46170.80530.043*
C7A0.90965 (12)0.50621 (11)0.81809 (12)0.0307 (2)
H71A0.91040.52760.89310.037*
C80.80644 (13)0.59400 (11)0.74674 (12)0.0315 (2)
H80.82520.58690.66720.038*
S90.65096 (3)0.56089 (3)0.77852 (3)0.03747 (9)
C9A0.65984 (13)0.52634 (12)0.92758 (13)0.0333 (3)
C100.59577 (15)0.60462 (13)0.99383 (16)0.0439 (3)
H100.55210.67800.95890.053*
C110.59637 (17)0.57444 (16)1.11118 (17)0.0484 (4)
H110.55210.62661.15490.058*
C120.66289 (16)0.46670 (16)1.16287 (14)0.0437 (3)
H120.66130.44531.24170.052*
C130.73233 (14)0.38968 (13)1.09826 (13)0.0368 (3)
H130.78030.31881.13400.044*
C13A0.73021 (12)0.41847 (11)0.98022 (12)0.0303 (2)
N140.79641 (11)0.34047 (9)0.91010 (10)0.0300 (2)
C611.15951 (16)0.48759 (16)0.59264 (15)0.0462 (4)
H61A1.17590.56520.58990.069*
H61B1.15910.47260.51680.069*
H61C1.22290.42990.63540.069*
C1E0.78313 (14)0.13884 (11)1.02695 (12)0.0350 (3)
C2E0.65779 (16)0.15047 (14)1.01121 (16)0.0458 (4)
H2E0.61680.21270.95790.055*
C3E0.59237 (19)0.07021 (16)1.07412 (19)0.0555 (5)
H3E0.50740.07961.06500.067*
C4E0.6548 (2)0.02356 (15)1.15020 (17)0.0527 (4)
C5E0.7800 (2)0.03845 (15)1.16498 (16)0.0529 (4)
H5E0.82110.10321.21560.063*
C6E0.84464 (17)0.04309 (13)1.10441 (14)0.0443 (3)
H6E0.92930.03411.11530.053*
C400.80948 (15)0.29252 (12)0.68793 (12)0.0364 (3)
H400.74410.28670.73980.044*
C410.79968 (17)0.24807 (13)0.58271 (13)0.0419 (3)
C420.9013 (2)0.18426 (17)0.53161 (17)0.0557 (5)
H420.97880.16820.56470.067*
C430.8879 (3)0.1446 (2)0.4319 (2)0.0757 (7)
H430.95680.10370.39800.091*
C440.7738 (3)0.1654 (2)0.38322 (19)0.0815 (8)
H440.76560.13870.31640.098*
C450.6718 (3)0.2253 (2)0.43257 (18)0.0690 (6)
H450.59420.23830.40020.083*
C460.68514 (19)0.26646 (16)0.53113 (15)0.0503 (4)
C810.80119 (13)0.72208 (12)0.75331 (12)0.0336 (3)
C820.82787 (18)0.75779 (14)0.85131 (15)0.0460 (4)
H820.85720.70060.91400.055*
C830.8122 (2)0.87629 (16)0.85885 (19)0.0585 (5)
H830.82970.89740.92620.070*
C840.7708 (2)0.96217 (16)0.7669 (2)0.0635 (5)
H840.76071.04160.77170.076*
C850.7445 (2)0.93064 (15)0.66774 (18)0.0598 (5)
H850.71680.98850.60500.072*
C860.75923 (17)0.81224 (14)0.66168 (14)0.0436 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1016 (5)0.0606 (3)0.0984 (5)0.0388 (3)0.0198 (4)0.0104 (3)
Cl20.0590 (3)0.0861 (4)0.0774 (4)0.0188 (3)0.0099 (3)0.0169 (3)
Cl30.1281 (5)0.0532 (3)0.0411 (2)0.0047 (3)0.0262 (3)0.0051 (2)
C10.0396 (7)0.0255 (5)0.0314 (6)0.0003 (5)0.0013 (5)0.0025 (5)
N20.0403 (6)0.0324 (6)0.0411 (7)0.0011 (5)0.0000 (5)0.0022 (5)
O30.0318 (5)0.0364 (5)0.0399 (5)0.0018 (4)0.0024 (4)0.0015 (4)
C3A0.0312 (6)0.0271 (5)0.0302 (6)0.0029 (4)0.0011 (5)0.0043 (4)
C40.0377 (7)0.0256 (5)0.0318 (6)0.0046 (5)0.0018 (5)0.0054 (4)
C50.0399 (7)0.0343 (6)0.0366 (7)0.0070 (5)0.0049 (6)0.0091 (5)
N60.0375 (6)0.0350 (6)0.0335 (6)0.0097 (5)0.0018 (5)0.0044 (4)
C70.0357 (7)0.0349 (6)0.0371 (7)0.0096 (5)0.0016 (5)0.0067 (5)
C7A0.0334 (6)0.0278 (5)0.0314 (6)0.0065 (5)0.0025 (5)0.0055 (5)
C80.0366 (6)0.0276 (5)0.0303 (6)0.0060 (5)0.0027 (5)0.0048 (4)
S90.03504 (17)0.03241 (16)0.0429 (2)0.00581 (13)0.00816 (14)0.00064 (13)
C9A0.0302 (6)0.0275 (6)0.0415 (7)0.0045 (5)0.0010 (5)0.0063 (5)
C100.0401 (8)0.0306 (6)0.0599 (10)0.0017 (6)0.0067 (7)0.0133 (6)
C110.0483 (9)0.0447 (8)0.0581 (10)0.0099 (7)0.0122 (8)0.0266 (8)
C120.0472 (8)0.0509 (9)0.0387 (8)0.0146 (7)0.0045 (6)0.0187 (7)
C130.0387 (7)0.0368 (7)0.0357 (7)0.0069 (5)0.0009 (5)0.0092 (5)
C13A0.0294 (6)0.0271 (5)0.0349 (6)0.0046 (4)0.0007 (5)0.0080 (5)
N140.0330 (5)0.0231 (4)0.0310 (5)0.0016 (4)0.0021 (4)0.0031 (4)
C610.0456 (8)0.0512 (9)0.0429 (8)0.0179 (7)0.0091 (7)0.0052 (7)
C1E0.0426 (7)0.0238 (5)0.0351 (7)0.0006 (5)0.0046 (5)0.0046 (5)
C2E0.0457 (8)0.0315 (7)0.0553 (10)0.0037 (6)0.0005 (7)0.0006 (6)
C3E0.0514 (10)0.0409 (8)0.0724 (13)0.0125 (7)0.0056 (9)0.0042 (8)
C4E0.0684 (12)0.0340 (7)0.0553 (10)0.0164 (7)0.0136 (9)0.0042 (7)
C5E0.0704 (12)0.0319 (7)0.0474 (9)0.0029 (7)0.0042 (8)0.0057 (6)
C6E0.0503 (9)0.0322 (7)0.0434 (8)0.0006 (6)0.0012 (7)0.0006 (6)
C400.0456 (8)0.0308 (6)0.0342 (7)0.0119 (5)0.0033 (6)0.0062 (5)
C410.0631 (10)0.0334 (7)0.0341 (7)0.0221 (7)0.0032 (7)0.0061 (5)
C420.0753 (13)0.0449 (9)0.0521 (10)0.0158 (9)0.0077 (9)0.0201 (8)
C430.118 (2)0.0592 (12)0.0582 (13)0.0252 (13)0.0204 (14)0.0288 (10)
C440.141 (3)0.0757 (15)0.0429 (11)0.0470 (17)0.0015 (14)0.0220 (10)
C450.1051 (18)0.0694 (13)0.0436 (10)0.0437 (13)0.0145 (11)0.0061 (9)
C460.0713 (12)0.0456 (8)0.0402 (8)0.0299 (8)0.0033 (8)0.0028 (7)
C810.0385 (7)0.0273 (5)0.0346 (7)0.0064 (5)0.0007 (5)0.0051 (5)
C820.0612 (10)0.0329 (7)0.0447 (8)0.0057 (7)0.0120 (7)0.0100 (6)
C830.0764 (13)0.0389 (8)0.0653 (12)0.0070 (8)0.0167 (10)0.0223 (8)
C840.0848 (15)0.0293 (7)0.0776 (14)0.0098 (8)0.0056 (11)0.0131 (8)
C850.0850 (14)0.0296 (7)0.0580 (11)0.0053 (8)0.0037 (10)0.0032 (7)
C860.0584 (10)0.0328 (7)0.0365 (7)0.0057 (6)0.0010 (7)0.0022 (5)
Geometric parameters (Å, º) top
Cl1—C4E1.7345 (19)C13A—N141.4279 (17)
Cl2—C461.736 (2)C61—H61A0.9600
Cl3—C861.7364 (19)C61—H61B0.9600
C1—N21.279 (2)C61—H61C0.9600
C1—N141.4138 (17)C1E—C2E1.379 (2)
C1—C1E1.467 (2)C1E—C6E1.394 (2)
N2—O31.4169 (17)C2E—C3E1.386 (3)
O3—C3A1.4698 (17)C2E—H2E0.9300
C3A—N141.4708 (18)C3E—C4E1.376 (3)
C3A—C41.518 (2)C3E—H3E0.9300
C3A—C7A1.5285 (19)C4E—C5E1.371 (3)
C4—C401.331 (2)C5E—C6E1.381 (2)
C4—C51.511 (2)C5E—H5E0.9300
C5—N61.4684 (19)C6E—H6E0.9300
C5—H5A0.9700C40—C411.472 (2)
C5—H5B0.9700C40—H400.9300
N6—C611.459 (2)C41—C461.394 (3)
N6—C71.461 (2)C41—C421.398 (3)
C7—C7A1.529 (2)C42—C431.389 (3)
C7—H7A0.9700C42—H420.9300
C7—H7B0.9700C43—C441.372 (4)
C7A—C81.5420 (19)C43—H430.9300
C7A—H71A0.9800C44—C451.370 (4)
C8—C811.5124 (19)C44—H440.9300
C8—S91.8364 (16)C45—C461.386 (3)
C8—H80.9800C45—H450.9300
S9—C9A1.7580 (17)C81—C821.386 (2)
C9A—C101.391 (2)C81—C861.397 (2)
C9A—C13A1.3974 (19)C82—C831.389 (2)
C10—C111.383 (3)C82—H820.9300
C10—H100.9300C83—C841.371 (3)
C11—C121.377 (3)C83—H830.9300
C11—H110.9300C84—C851.373 (3)
C12—C131.389 (2)C84—H840.9300
C12—H120.9300C85—C861.384 (2)
C13—C13A1.390 (2)C85—H850.9300
C13—H130.9300
N2—C1—N14114.41 (13)N6—C61—H61A109.5
N2—C1—C1E122.05 (12)N6—C61—H61B109.5
N14—C1—C1E123.53 (13)H61A—C61—H61B109.5
C1—N2—O3106.95 (11)N6—C61—H61C109.5
N2—O3—C3A105.63 (10)H61A—C61—H61C109.5
O3—C3A—N14101.63 (10)H61B—C61—H61C109.5
O3—C3A—C4105.55 (10)C2E—C1E—C6E119.32 (15)
N14—C3A—C4113.86 (11)C2E—C1E—C1121.26 (13)
O3—C3A—C7A106.44 (11)C6E—C1E—C1119.43 (15)
N14—C3A—C7A117.54 (11)C1E—C2E—C3E120.60 (16)
C4—C3A—C7A110.41 (11)C1E—C2E—H2E119.7
C40—C4—C5126.87 (13)C3E—C2E—H2E119.7
C40—C4—C3A121.26 (13)C4E—C3E—C2E119.13 (19)
C5—C4—C3A111.85 (12)C4E—C3E—H3E120.4
N6—C5—C4112.64 (11)C2E—C3E—H3E120.4
N6—C5—H5A109.1C5E—C4E—C3E121.18 (16)
C4—C5—H5A109.1C5E—C4E—Cl1119.05 (15)
N6—C5—H5B109.1C3E—C4E—Cl1119.77 (17)
C4—C5—H5B109.1C4E—C5E—C6E119.72 (16)
H5A—C5—H5B107.8C4E—C5E—H5E120.1
C61—N6—C7109.80 (12)C6E—C5E—H5E120.1
C61—N6—C5108.88 (12)C5E—C6E—C1E120.02 (17)
C7—N6—C5113.90 (11)C5E—C6E—H6E120.0
N6—C7—C7A110.94 (12)C1E—C6E—H6E120.0
N6—C7—H7A109.5C4—C40—C41128.64 (14)
C7A—C7—H7A109.5C4—C40—H40115.7
N6—C7—H7B109.5C41—C40—H40115.7
C7A—C7—H7B109.5C46—C41—C42117.06 (16)
H7A—C7—H7B108.0C46—C41—C40120.18 (16)
C3A—C7A—C7106.66 (11)C42—C41—C40122.74 (17)
C3A—C7A—C8113.68 (11)C43—C42—C41120.8 (2)
C7—C7A—C8109.23 (12)C43—C42—H42119.6
C3A—C7A—H71A109.1C41—C42—H42119.6
C7—C7A—H71A109.1C44—C43—C42120.4 (2)
C8—C7A—H71A109.1C44—C43—H43119.8
C81—C8—C7A114.25 (11)C42—C43—H43119.8
C81—C8—S9108.47 (10)C45—C44—C43120.3 (2)
C7A—C8—S9113.89 (10)C45—C44—H44119.9
C81—C8—H8106.6C43—C44—H44119.9
C7A—C8—H8106.6C44—C45—C46119.5 (2)
S9—C8—H8106.6C44—C45—H45120.3
C9A—S9—C898.49 (6)C46—C45—H45120.3
C10—C9A—C13A119.60 (14)C45—C46—C41122.0 (2)
C10—C9A—S9120.58 (12)C45—C46—Cl2117.89 (18)
C13A—C9A—S9119.82 (11)C41—C46—Cl2120.09 (14)
C11—C10—C9A120.63 (15)C82—C81—C86116.15 (14)
C11—C10—H10119.7C82—C81—C8122.89 (13)
C9A—C10—H10119.7C86—C81—C8120.79 (13)
C12—C11—C10119.64 (15)C81—C82—C83122.09 (16)
C12—C11—H11120.2C81—C82—H82119.0
C10—C11—H11120.2C83—C82—H82119.0
C11—C12—C13120.55 (16)C84—C83—C82119.96 (18)
C11—C12—H12119.7C84—C83—H83120.0
C13—C12—H12119.7C82—C83—H83120.0
C12—C13—C13A120.05 (14)C83—C84—C85119.84 (17)
C12—C13—H13120.0C83—C84—H84120.1
C13A—C13—H13120.0C85—C84—H84120.1
C13—C13A—C9A119.41 (13)C84—C85—C86119.65 (17)
C13—C13A—N14122.17 (12)C84—C85—H85120.2
C9A—C13A—N14118.41 (13)C86—C85—H85120.2
C1—N14—C13A117.65 (11)C85—C86—C81122.31 (16)
C1—N14—C3A102.39 (10)C85—C86—Cl3117.21 (14)
C13A—N14—C3A119.70 (11)C81—C86—Cl3120.46 (12)
N14—C1—N2—O33.72 (17)C9A—C13A—N14—C3A63.38 (17)
C1E—C1—N2—O3177.20 (13)O3—C3A—N14—C126.29 (12)
C1—N2—O3—C3A21.41 (15)C4—C3A—N14—C186.69 (13)
N2—O3—C3A—N1429.51 (12)C7A—C3A—N14—C1141.96 (12)
N2—O3—C3A—C489.57 (12)O3—C3A—N14—C13A105.95 (12)
N2—O3—C3A—C7A153.08 (11)C4—C3A—N14—C13A141.07 (12)
O3—C3A—C4—C40119.11 (14)C7A—C3A—N14—C13A9.72 (17)
N14—C3A—C4—C408.51 (18)N2—C1—C1E—C2E160.17 (16)
C7A—C3A—C4—C40126.24 (14)N14—C1—C1E—C2E18.8 (2)
O3—C3A—C4—C559.56 (14)N2—C1—C1E—C6E20.0 (2)
N14—C3A—C4—C5170.17 (11)N14—C1—C1E—C6E161.01 (14)
C7A—C3A—C4—C555.08 (14)C6E—C1E—C2E—C3E2.1 (3)
C40—C4—C5—N6132.87 (15)C1—C1E—C2E—C3E177.78 (16)
C3A—C4—C5—N648.55 (16)C1E—C2E—C3E—C4E2.0 (3)
C4—C5—N6—C61173.08 (13)C2E—C3E—C4E—C5E0.3 (3)
C4—C5—N6—C750.17 (17)C2E—C3E—C4E—Cl1179.47 (16)
C61—N6—C7—C7A179.84 (12)C3E—C4E—C5E—C6E1.3 (3)
C5—N6—C7—C7A57.44 (16)Cl1—C4E—C5E—C6E178.92 (15)
O3—C3A—C7A—C753.94 (13)C4E—C5E—C6E—C1E1.2 (3)
N14—C3A—C7A—C7166.95 (11)C2E—C1E—C6E—C5E0.4 (2)
C4—C3A—C7A—C760.14 (14)C1—C1E—C6E—C5E179.41 (15)
O3—C3A—C7A—C8174.39 (11)C5—C4—C40—C410.6 (3)
N14—C3A—C7A—C872.60 (15)C3A—C4—C40—C41177.89 (14)
C4—C3A—C7A—C860.30 (15)C4—C40—C41—C46141.76 (17)
N6—C7—C7A—C3A61.13 (14)C4—C40—C41—C4239.8 (2)
N6—C7—C7A—C862.13 (14)C46—C41—C42—C431.9 (3)
C3A—C7A—C8—C81166.54 (12)C40—C41—C42—C43179.61 (17)
C7—C7A—C8—C8174.47 (14)C41—C42—C43—C441.4 (3)
C3A—C7A—C8—S941.12 (14)C42—C43—C44—C450.1 (4)
C7—C7A—C8—S9160.11 (9)C43—C44—C45—C461.0 (4)
C81—C8—S9—C9A85.63 (10)C44—C45—C46—C410.5 (3)
C7A—C8—S9—C9A42.81 (11)C44—C45—C46—Cl2178.16 (17)
C8—S9—C9A—C10106.47 (13)C42—C41—C46—C451.0 (2)
C8—S9—C9A—C13A74.58 (12)C40—C41—C46—C45179.52 (16)
C13A—C9A—C10—C113.0 (2)C42—C41—C46—Cl2179.57 (13)
S9—C9A—C10—C11175.92 (13)C40—C41—C46—Cl21.9 (2)
C9A—C10—C11—C121.2 (3)C7A—C8—C81—C8235.1 (2)
C10—C11—C12—C132.0 (3)S9—C8—C81—C8293.14 (16)
C11—C12—C13—C13A3.2 (2)C7A—C8—C81—C86149.96 (14)
C12—C13—C13A—C9A1.3 (2)S9—C8—C81—C8681.81 (16)
C12—C13—C13A—N14177.72 (13)C86—C81—C82—C830.9 (3)
C10—C9A—C13A—C131.8 (2)C8—C81—C82—C83174.28 (18)
S9—C9A—C13A—C13177.20 (11)C81—C82—C83—C841.0 (3)
C10—C9A—C13A—N14179.17 (13)C82—C83—C84—C850.3 (4)
S9—C9A—C13A—N141.87 (17)C83—C84—C85—C860.3 (4)
N2—C1—N14—C13A118.19 (14)C84—C85—C86—C810.4 (3)
C1E—C1—N14—C13A62.74 (18)C84—C85—C86—Cl3177.80 (18)
N2—C1—N14—C3A15.27 (16)C82—C81—C86—C850.2 (3)
C1E—C1—N14—C3A163.80 (13)C8—C81—C86—C85175.07 (17)
C13—C13A—N14—C17.71 (19)C82—C81—C86—Cl3178.35 (14)
C9A—C13A—N14—C1171.33 (12)C8—C81—C86—Cl33.1 (2)
C13—C13A—N14—C3A117.57 (15)

Experimental details

Crystal data
Chemical formulaC33H26Cl3N3OS
Mr618.98
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)11.015 (3), 11.758 (4), 11.988 (4)
α, β, γ (°)78.87 (2), 86.89 (3), 78.29 (2)
V3)1491.5 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.30 × 0.15 × 0.15
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.90, 0.94
No. of measured, independent and
observed [I > 2σ(I)] reflections
42055, 11096, 7867
Rint0.023
(sin θ/λ)max1)0.766
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.146, 1.03
No. of reflections11096
No. of parameters372
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.62

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

The authors thank the Sophisticated Analytical Instrumentation Facility (SAIF), Indian Institute of Technology, Chennai, for the X-ray intensity data collection.

References

First citationBoeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.  CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBudriesi, R., Cosimelli, B., Ioan, P., Carosati, E., Ugenti, M. P. & Spisani, R. (2007). Curr. Med. Chem. 14, 279–287.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationSahin, G., Palaska, E., Ekizoglu, M. & Ozalp, M. (2002). Il Farm. 57, 539–542.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrinivasan, N., Sribala, R., Ranjith Kumar, R., Perumal, S. & Krishnakumar, R. V. (2007). Acta Cryst. E63, o4268.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds