metal-organic compounds
Trichlorido{2-[2-(η5-cyclopentadienyl)-2-methylpropyl]-1-trimethylsilyl-1H-imidazole-κN3}titanium(IV) tetrahydrofuran hemisolvate
aKey Laboratory of Synthetic and Natural Chemistry of the Ministry of Education, College of Chemistry and Material Science, The North-West University of Xi'an, Taibai Bei Avenue 229, Xi'an 710069, Shaanxi Province, People's Republic of China, bKey State Key Laboratory of Elementoorganic Chemistry, Nankai University, Weijing Rd 94, Tianjing 300071, People's Republic of China, and cN. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Science, Leninskii Prosp. 31, Moscow 119991, Russian Federation
*Correspondence e-mail: maxborzov@mail.ru
The title compound, [Ti(C15H23N2Si)Cl3]·0.5C4H8O, has been prepared from {2-[2-(η5-cyclopentadienyl)-2-methylpropyl]-1H-imidazolyl-κN1}bis(N,N-diethylamido-κN)titanium(IV), (C12H14N2)Ti(NEt2)2, by reaction with excess of Me3SiCl in tetrahydrofuran (THF) at 353 K. The contains THF as adduct solvent, disordered around a center of inversion. The presence of THF and the adduct ratio has been independently supported by 1H NMR spectroscopy. The of the Ti atom is distorted square-pyramidal, assuming the cyclopentadienyl (Cp) ring occupies one coordination site. The Ti, Si and CH2 group C atoms only deviate slightly from the imidazole ring plane [by 0.021 (4), 0.133 (4) and 0.094 (4) Å, respectively]. Comparison of the principal geometric parameters with those of the few known structurally characterized analogues reveal small differences in bond lengths and angles at the Ti atom. The title complex is only stable in THF-d8 in the presence of excess Me3SiCl, otherwise it exists in an equilibrium with equimolar amounts of dichlorido{2-[2-(η5-cyclopentadienyl)-2-methylpropyl]-1H-imidazolyl-κN3}titanium(IV) and chlorotrimethylsilane.
Related literature
For a description of cyclopentadienes with pendant 1H-imidazol(in)-2-yl side-chain functional groups and group 4 transition metal complexes of general type [η5-Cp-(CPh2CH2)-imidazol(in)e)-κN3]-MIVCl3 (M = Ti, Zr) , see: Krut'ko et al. (2006); Nie et al. (2008). For the geometric parameters of structurally characterized TiIV complexes of the similar η5-CpTiCl3-NRn type, see: trichloro{2-[2-(η5-cyclopentadienyl)-2,2-diphenylethyl]-1-methyl-1H-imidazole-κN3}titanium(IV), C23H21Cl3N2Ti (Krut'ko et al., 2006); trichloro{1-[2-(η5-cyclopentadienyl)ethyl]pyrrolidine-κN}titanium(IV), C11H16Cl3NTi (Herrmann et al., 1995); trichloro[8-(η5-2,3,4,5-tetramethylcyclopentadienyl)quinoline-κN]titanium(IV), C18H18Cl3NTi (Enders et al., 1997); trichloro[8-(η5-2,3-dimethylcyclopentadienyl)quinoline-κN]titanium(IV), C16H14Cl3NTi (Enders et al., 1996). For the preparation of [2-[2-(η5-cyclopentadienyl)-2-methylpropyl]-1H-imidazolyl-κN1]bis(N,N-diethylamido-κN)titanium(IV), (C12H14N2)Ti(NEt2)2, see: Wang et al. (2009). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL, OLEX2 and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810013772/nc2182sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810013772/nc2182Isup2.hkl
All operations were performed in all-sealed evacuated glass vessels with application of the high-vacuum line (the residual pressure of non-condensible gases within 1.5–1.0×10 -3 Torr range, 1 Torr = 133.322 Pa). Complex (II) was prepared as described in our earlier work (Wang et al., 2009). THF and THF-d8 were kept with disodium benzophenone ketyl and transferred into reaction vessels and/or NMR tubes on the high-vacuum line by trapping the vapour with liq. N2. Chlorotrimethylsilane was refluxed with and kept over CaH2 and transferred into reaction vessels in a similar way. — NMR spectra were recorded on Varian INOVA-400 instrument. For 13C{1H}and 1H NMR spectra, the 13C and residual proton resonance of the d-solvent [δH = 1.73 and δC = 25.3 (THF-d8)] were used as internal reference standards.
Complex (I): To a solution of (II) (0.282 g, 0.75 mmol) in THF (20 ml), an excess of Me3SiCl (0.6 ml, 4.71 mmol) was added at approx. 253 K. An immediate precipitation of a yellow fine-crystalline solid occurred. The reaction mixture was then heated at 353 K until all the solid dissolved, the volume was reduced two times and the mother liquor was allowed to cool gradually along with the water bath down to ambient temperature. On the walls of the reaction vessel well formed bright-orange crystals grew. The orange mother liquor was removed from the crystals by decantation, the solid was rinsed once with cold (253 K) THF and the crystals were quickly dried by trapping all volatiles with liquid N2. Yield 0.275 g (82%). — 1H NMR (THF-d8, 296 K): δ = 0.58 [s, 9 H, Si(CH3)3], 1.30 [s, 6 H, C(CH3)2], 1.78 (m, 2 H, 3- and 4-CH2 in THF), 3.25 (s, CH2), 3.62 (broadened m, 2 H, 2- and 5-CH2 in THF), 6.91 (broadened m, 4 H, C5H4), 6.95, 7.52 (both broadened d, 1 H + 1 H, 3JHH = 2.3 Hz, CH in imidazole). — 13C{1H} NMR (THF-d8, 296 K): δ = 0.09 [Si(CH3)3], 28.81 (C(CH3)2), 36.11 (CH2), 41.72 [C(CH3)2], 119.99, 131.05 (CH in imidazole), 122.71, 124.49 (CH in C5H4, double intensity), 145.72 (C in C5H4), 149.73 (C in imidazole). — Admixture of (VII): 1H NMR (THF-d8, 296 K): δ = 1.26 [s, 6 H, C(CH3)2], 3.15 (s, CH2), 6.87, 6.92 (both broadened virt. t, 4 H, 3 + 4JHH =2.7 Hz, C5H4), 6.96, 7.48 (both broadened unresolved d, 1 H + 1 H, CH in imidazole). — Admixture of Me3SiCl: 1H NMR (THF-d8, 296 K): δ = 0.41 [s, 9 H, Si(CH3)3]. — 13C{1H} NMR (THF-d8, 296 K): δ = 3.10 [Si(CH3)3]. Content of complex (VII) and Me3SiCl in the reaction mixture is 16% (mol.) Low concentration of (VII) made its signals in 13C{1H} NMR spectrum of the equilibrium mixture invisible.
Single crystal of I suitable for X-ray
were picked up directly from the isolated materials (N2-filled glove-box) and mounted inside a Lindemann glass capillary (diameter 0.5 mm).The non-H atoms were refined anisotropically. The H atoms were treated as riding atoms with distances C—H = 0.96 (CH3), 0.97 (CH2), 0.93 Å (CArH), and Uiso(H) = 1.5 Ueq(C), 1.2 Ueq(C), and 1.2 Ueq(C), respectively. The THF molecule is disordered around inversion center (1/2, 0, 1/2) and was treated with a "PART -1" instruction and sof constrained to 0.5. O—C, (O)C—C, C—C 1,2-distances and corresponding 1,3-distances were restrained to 1.421 (6), 1.482 (6), 1.498 (6) and 2.329 (10), 2.344 (10), 2.302 (10) Å, respectively [DFIX instructions; distance values and their standard uncertainties (su-s) were chosen on the basis of the statistical analysis of the CSD (Version 5.27, release February 2009; Allen, 2002) for non-disordered solvent THF molecules (Rmax = 5.0; 70 hits and 99 fragments; 61 fragments used for statistical analysis on rejecting hits with pathological fragments)]. Non-hydrogen atoms of the disordered THF molecule were restrained to behave approximately isotropically with su 0.01 Å2 (ISOR instruction). The anisotropic displacement parameters (ADP-s) for these atoms were restrained to be the same with su of 0.01 Å2 (SIMU instruction).
Cyclopentadienes (Cp-s) with pendant 1H-imidazol(in)-2-yl side-chain functional groups and the Group 4 transition metal complexes of general type [η5-Cp-(C2-link)-imidazol(in)e)-κN3]-MIVCl3 (M = Ti, Zr), (A), based on them were described not long ago (Krut'ko et al., 2006; Nie et al., 2008). All Ti and Zr complexes reported in these papers possess Me-groups at the N1 atoms and were prepared by reactions of metal tetrachlorides with monolithium- or trimethylsilyl-derivatives of parent cyclopentadienes. Recently a synthetic approach to η5-Cp-tris(sec-amido)TiIV type complexes of general formula [η5-Cp-(C1 or 2-link)-imidazolyl-κN1]-MIV(NEt2)2, (B), was suggested (Wang et al., 2009). Here we report on the of trichloro{2-[2-(η5-cyclopentadienyl)-2-methylpropyl]-1-trimethylsilyl-1H-imidazole-κN3}titanium(IV) that crystallizes as an 1:0.5 adduct with tetrahydrofuran (THF) (I), which was prepared by a reaction with chlorotrimethylsilane via a facile (B) to (A) conversion method. The molecular structure of (I) is discussed in comparison with those of its few known analogues.
Complex (I) was prepared by treatment of [2-[2-(η5-cyclopentadienyl)-2-methylpropyl]-1H-imidazolyl-κN1]bis(N,N-diethylamido-κN)titanium(IV), (C12H14N2)Ti(NEt2)2, (II), with excess of Me3SiCl in a THF medium at elevated temperature (see Fig. 2 and Experimental for details). The presence of THF in the crystal and the adduct ratio were not evident in the structure solution and stages but were independently supported by 1H NMR spectroscopy data [multiplets at δ(H) 1.78 and 3.62 p.p.m. with both of the relative integral intensities corresponding to 2 H]. The THF molecule was found and located using SQUEEZE in the PLATON program package (Spek, 2009) which retrieved two voids at (1/2, 0, 1/2) and (1/2, 1/2, 1) (each of 180 Å3 and 42ē; total electron count per 84ē). In the final structure model, the adduct solvent molecule was treated as disordered around a center of inversion (1/2, 0, 1/2) (see section for details).
An analysis in the Cambridge Structural Database (CSD; Version 5.27, release February 2009; Allen, 2002) reveals only 4 structurally characterized TiIV complexes of the similar η5-CpTiCl3-NRn type (4 independent fragments): trichloro{2-[2-(η5-cyclopentadienyl)-2,2-diphenylethyl]-1-methyl-1H-imidazole-κN3}titanium(IV), C23H21Cl3N2Ti, (III), (Krut'ko et al., 2006); trichloro{1-[2-(η5-cyclopentadienyl)ethyl]pyrrolidine-κN}titanium(IV), C11H16Cl3NTi, (IV), (Herrmann et al., 1995); trichloro[8-(η5-2,3,4,5-tetramethylcyclopentadienyl)quinoline-κN]titanium(IV), C18H18Cl3NTi, (V), (Enders et al., 1997); and trichloro[8-(η5-2,3-dimethylcyclopentadienyl)quinoline-κN]titanium(IV), C16H14Cl3NTi, (VI), (Enders et al., 1996).
All complexes of question exhibit one and the same structural motif. They are mononuclear complexes, with the coordination environment of the Ti-atoms being a distorted square pyramid (assuming Cp-rings occupy one coordination site; "four-leg piano stool"). Contents of the unit cells are presented by pairs of enantiomorphic conformers connected by inversion symmetry operations. In all complexes under discussion, ligating N-atoms are linked to Cp-groups with a C2 [(IV)-(VI)] or C3 [(I) and (III)] bridges. Noteworthy, that no structurally characterized complexes of type η5-CpTiCl3-NRn with a non-linked to Cp NRn functionality are known at the moment.
Compounds (I) and (III) represent a pair of the "closest relatives", and, despite of the evident differences in their chemical structure (CPh2 against CMe2 and NMe against NSiMe3), the geometrical parameters of the coordination environment of the Ti-atoms and imidazole rings nearly match (see Table 1). This is the same for the torsion angles in the bridge [C4—C5—C11—C12 and C1—C4—C5—C11 in (I) and the related angles in (III); compare –136.8 (3) and 64.3 (3)° in (I) with –135.21 (4) and 61.22 (5)° in (III)]. However, while in the main molecule of (I), the Ti-, Si- and CH2-group carbon atoms deviate only slightly from the imidazole ring r. m. s. plane [PL2; by 0.022 (5), 0.133 (4) and 0.094 (5) Å, respectively], the Ti-atom in (III) noticeably deviates from the imidazole r. m. s. plane (by 0.608 Å) what could be, at the first glance, explained by a mutual repulsion of the spatially adjacent imidazole and phenyl rings. Another difference in the crystal structures of (I) and (III) is due to the presence of a bulky SiMe3 group in (I). These groups are stretched outwards of the main molecule and "pump up" the
volume [compare V = 2205.2 (4) Å3 in (I) with 2098.8, 1304.8, 1567.9, and 1749.9 Å3 in (III)-(VI), respectively] what causes appearance of voids suitable for THF molecules.Elongation of the bridge from C2 [in (IV)-(VI)] to C3 [in (I) and (III)] has a little effect on the Ti1—PL1 (or Cpcent; PL1 and Cpcent denote r.m.s. plane and centroid of the Cp-ring, respectively) distances, as well as on the angle Cl2–Ti1–Cpcent and "cis-angles" Cl2–Ti1–Cl1, Cl2–Ti1–Cl3, Cl1–Ti1–N2, and Cl3–Ti1–N2. However, the angles N2–Ti1–Cpcent in (I) and (III) are expanded by approximately 10° compared to those in (IV)-(VI) while the "trans-angle" Cl2–Ti1–N2 is tightened by the same value. The angles Cl1–Ti1–Cpcent and Cl3–Ti1–Cpcent in (I) and (III) are decreased by approximately 5° comparatively to those in (IV)-(VI) while the "trans-angle" Cl1–Ti1–Cl3 is increased by approximately 10°.
For a description of cyclopentadienes (Cp-s) with pendant 1H-imidazol(in)-2-yl side-chain functional groups and the Group 4 transition metal complexes of general type [η5-Cp-(C2-link)-imidazol(in)e)-κN3]-MIVCl3 (M = Ti, Zr), see: Krut'ko et al. (2006); Nie et al. (2008). For the geometric parameters of structurally characterized TiIV complexes of the similar η5-CpTiCl3-NRn type, see: trichloro{2-[2-(η5-cyclopentadienyl)-2,2-diphenylethyl]-1-methyl-1H-imidazole-κN3}titanium(IV), C23H21Cl3N2Ti (Krut'ko et al., 2006); trichloro{1-[2-(η5-cyclopentadienyl)ethyl]pyrrolidine-κN}titanium(IV), C11H16Cl3NTi (Herrmann et al., 1995); trichloro[8-(η5-2,3,4,5-tetramethylcyclopentadienyl)quinoline-κN]titanium(IV), C18H18Cl3NTi (Enders et al., 1997); trichloro[8-(η5-2,3-dimethylcyclopentadienyl)quinoline-κN]titanium(IV), C16H14Cl3NTi (Enders et al., 1996). For the preparation of [2-[2-(η5-cyclopentadienyl)-2-methylpropyl]-1H-imidazolyl-κN1]bis(N,N-diethylamido-κN)titanium(IV), (C12H14N2)Ti(NEt2)2, see: Wang et al. (2009). For a description of the Cambridge Structural Database, see: Allen (2002).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009).Fig. 1. The asymmetric unit of the title compound (I) with labelling and thermal ellipsoids drawn at the 50% probability level. H-atoms are omitted for clarity. | |
Fig. 2. The formation of the title compound. |
[Ti(C15H23N2Si)Cl3]·0.5C4H8O | F(000) = 936 |
Mr = 449.75 | Dx = 1.355 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2833 reflections |
a = 8.8033 (9) Å | θ = 2.6–24.1° |
b = 11.8201 (11) Å | µ = 0.81 mm−1 |
c = 21.481 (2) Å | T = 293 K |
β = 99.399 (1)° | Block, orange |
V = 2205.2 (4) Å3 | 0.29 × 0.21 × 0.14 mm |
Z = 4 |
Bruker SMART APEXII diffractometer | 3869 independent reflections |
Radiation source: fine-focus sealed tube | 2812 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
Detector resolution: 8.333 pixels mm-1 | θmax = 25.0°, θmin = 1.9° |
phi and ω scans | h = −10→6 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −14→14 |
Tmin = 0.798, Tmax = 0.894 | l = −24→25 |
10736 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.115 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0702P)2] where P = (Fo2 + 2Fc2)/3 |
3869 reflections | (Δ/σ)max < 0.001 |
249 parameters | Δρmax = 0.42 e Å−3 |
70 restraints | Δρmin = −0.27 e Å−3 |
[Ti(C15H23N2Si)Cl3]·0.5C4H8O | V = 2205.2 (4) Å3 |
Mr = 449.75 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.8033 (9) Å | µ = 0.81 mm−1 |
b = 11.8201 (11) Å | T = 293 K |
c = 21.481 (2) Å | 0.29 × 0.21 × 0.14 mm |
β = 99.399 (1)° |
Bruker SMART APEXII diffractometer | 3869 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2812 reflections with I > 2σ(I) |
Tmin = 0.798, Tmax = 0.894 | Rint = 0.031 |
10736 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 70 restraints |
wR(F2) = 0.115 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.42 e Å−3 |
3869 reflections | Δρmin = −0.27 e Å−3 |
249 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ti1 | 0.43495 (6) | 0.55311 (4) | 0.32607 (2) | 0.03818 (17) | |
Cl1 | 0.38088 (10) | 0.37906 (7) | 0.37034 (4) | 0.0627 (3) | |
Cl2 | 0.67102 (10) | 0.47125 (8) | 0.31535 (5) | 0.0702 (3) | |
Cl3 | 0.57958 (10) | 0.71852 (7) | 0.35301 (4) | 0.0566 (2) | |
Si1 | 0.00773 (10) | 0.73534 (8) | 0.49770 (4) | 0.0542 (3) | |
N1 | 0.1676 (2) | 0.67619 (19) | 0.46582 (10) | 0.0396 (5) | |
N2 | 0.3202 (2) | 0.61390 (19) | 0.40069 (10) | 0.0391 (5) | |
C1 | 0.1772 (3) | 0.6447 (2) | 0.40551 (12) | 0.0352 (6) | |
C2 | 0.3137 (3) | 0.6600 (3) | 0.50049 (13) | 0.0491 (8) | |
H2 | 0.3426 | 0.6725 | 0.5435 | 0.059* | |
C3 | 0.4050 (3) | 0.6234 (3) | 0.46088 (13) | 0.0487 (8) | |
H3 | 0.5092 | 0.6069 | 0.4719 | 0.058* | |
C4 | 0.0459 (3) | 0.6406 (2) | 0.35326 (12) | 0.0401 (7) | |
H4B | −0.0408 | 0.6794 | 0.3663 | 0.048* | |
H4A | 0.0164 | 0.5623 | 0.3451 | 0.048* | |
C5 | 0.0790 (3) | 0.6941 (3) | 0.29174 (13) | 0.0424 (7) | |
C6 | −0.0695 (4) | 0.6866 (3) | 0.24248 (14) | 0.0637 (10) | |
H6B | −0.0565 | 0.7290 | 0.2056 | 0.096* | |
H6C | −0.1542 | 0.7172 | 0.2601 | 0.096* | |
H6A | −0.0902 | 0.6089 | 0.2311 | 0.096* | |
C7 | 0.1269 (4) | 0.8181 (3) | 0.30352 (16) | 0.0567 (8) | |
H7B | 0.2190 | 0.8216 | 0.3343 | 0.085* | |
H7C | 0.0460 | 0.8586 | 0.3188 | 0.085* | |
H7A | 0.1457 | 0.8517 | 0.2648 | 0.085* | |
C8 | −0.1419 (4) | 0.6251 (4) | 0.4950 (2) | 0.0828 (12) | |
H8A | −0.1668 | 0.5961 | 0.4528 | 0.124* | |
H8C | −0.2325 | 0.6572 | 0.5075 | 0.124* | |
H8B | −0.1043 | 0.5648 | 0.5232 | 0.124* | |
C9 | −0.0605 (5) | 0.8622 (3) | 0.45119 (18) | 0.0730 (11) | |
H9B | 0.0263 | 0.9042 | 0.4418 | 0.110* | |
H9C | −0.1193 | 0.9089 | 0.4751 | 0.110* | |
H9A | −0.1241 | 0.8396 | 0.4126 | 0.110* | |
C10 | 0.0866 (5) | 0.7784 (5) | 0.57934 (18) | 0.1059 (17) | |
H10A | 0.1331 | 0.7143 | 0.6024 | 0.159* | |
H10C | 0.0050 | 0.8071 | 0.5996 | 0.159* | |
H10B | 0.1627 | 0.8364 | 0.5785 | 0.159* | |
C11 | 0.2036 (3) | 0.6279 (3) | 0.26614 (12) | 0.0424 (7) | |
C12 | 0.3285 (4) | 0.6727 (3) | 0.24110 (13) | 0.0528 (8) | |
H12 | 0.3546 | 0.7489 | 0.2402 | 0.063* | |
C13 | 0.4073 (4) | 0.5834 (4) | 0.21778 (15) | 0.0704 (11) | |
H13 | 0.4951 | 0.5897 | 0.1991 | 0.084* | |
C14 | 0.3307 (5) | 0.4838 (4) | 0.22756 (16) | 0.0705 (11) | |
H14 | 0.3578 | 0.4115 | 0.2162 | 0.085* | |
C15 | 0.2056 (4) | 0.5111 (3) | 0.25741 (14) | 0.0535 (8) | |
H15 | 0.1356 | 0.4599 | 0.2694 | 0.064* | |
O1 | 0.3332 (13) | 0.9741 (12) | 0.4938 (7) | 0.206 (4) | 0.50 |
C21 | 0.3746 (18) | 1.0279 (16) | 0.4404 (6) | 0.205 (5) | 0.50 |
H21B | 0.3099 | 1.0935 | 0.4290 | 0.246* | 0.50 |
H21A | 0.3621 | 0.9763 | 0.4048 | 0.246* | 0.50 |
C22 | 0.5356 (19) | 1.0621 (16) | 0.4569 (7) | 0.199 (5) | 0.50 |
H22B | 0.5489 | 1.1392 | 0.4433 | 0.239* | 0.50 |
H22A | 0.6009 | 1.0129 | 0.4367 | 0.239* | 0.50 |
C23 | 0.5763 (17) | 1.0534 (16) | 0.5268 (8) | 0.201 (5) | 0.50 |
H23A | 0.6671 | 1.0067 | 0.5385 | 0.241* | 0.50 |
H23B | 0.5964 | 1.1277 | 0.5455 | 0.241* | 0.50 |
C24 | 0.443 (2) | 1.0019 (16) | 0.5477 (6) | 0.195 (5) | 0.50 |
H24A | 0.4741 | 0.9342 | 0.5720 | 0.234* | 0.50 |
H24B | 0.3984 | 1.0542 | 0.5744 | 0.234* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ti1 | 0.0335 (3) | 0.0417 (3) | 0.0402 (3) | 0.0018 (2) | 0.0084 (2) | −0.0042 (2) |
Cl1 | 0.0673 (6) | 0.0486 (5) | 0.0696 (6) | −0.0078 (4) | 0.0033 (4) | 0.0064 (4) |
Cl2 | 0.0459 (5) | 0.0750 (6) | 0.0929 (7) | 0.0117 (4) | 0.0209 (4) | −0.0205 (5) |
Cl3 | 0.0591 (5) | 0.0518 (5) | 0.0609 (5) | −0.0144 (4) | 0.0157 (4) | −0.0023 (4) |
Si1 | 0.0444 (5) | 0.0776 (6) | 0.0435 (5) | 0.0092 (5) | 0.0156 (4) | −0.0045 (4) |
N1 | 0.0353 (13) | 0.0528 (14) | 0.0313 (12) | 0.0003 (11) | 0.0075 (10) | 0.0005 (10) |
N2 | 0.0299 (12) | 0.0521 (14) | 0.0358 (12) | 0.0034 (11) | 0.0065 (10) | −0.0004 (10) |
C1 | 0.0330 (15) | 0.0366 (14) | 0.0373 (15) | 0.0003 (11) | 0.0092 (11) | 0.0052 (11) |
C2 | 0.0371 (17) | 0.072 (2) | 0.0363 (16) | 0.0007 (15) | 0.0012 (13) | −0.0022 (15) |
C3 | 0.0305 (16) | 0.074 (2) | 0.0390 (16) | 0.0047 (15) | −0.0018 (13) | 0.0020 (15) |
C4 | 0.0325 (15) | 0.0500 (17) | 0.0373 (15) | −0.0022 (13) | 0.0041 (12) | 0.0015 (13) |
C5 | 0.0356 (16) | 0.0548 (18) | 0.0367 (15) | 0.0058 (13) | 0.0061 (12) | 0.0057 (13) |
C6 | 0.0438 (18) | 0.105 (3) | 0.0392 (17) | 0.0132 (19) | −0.0028 (14) | 0.0103 (17) |
C7 | 0.066 (2) | 0.0485 (18) | 0.059 (2) | 0.0106 (16) | 0.0195 (17) | 0.0141 (15) |
C8 | 0.054 (2) | 0.104 (3) | 0.098 (3) | 0.003 (2) | 0.033 (2) | 0.024 (2) |
C9 | 0.070 (2) | 0.064 (2) | 0.086 (3) | 0.0130 (19) | 0.016 (2) | −0.011 (2) |
C10 | 0.094 (3) | 0.174 (5) | 0.052 (2) | 0.028 (3) | 0.019 (2) | −0.029 (3) |
C11 | 0.0385 (16) | 0.0572 (18) | 0.0300 (14) | 0.0030 (14) | 0.0013 (12) | 0.0018 (13) |
C12 | 0.054 (2) | 0.069 (2) | 0.0370 (16) | 0.0061 (17) | 0.0123 (14) | 0.0125 (15) |
C13 | 0.062 (2) | 0.112 (3) | 0.0396 (18) | 0.021 (2) | 0.0170 (17) | −0.002 (2) |
C14 | 0.075 (3) | 0.083 (3) | 0.049 (2) | 0.020 (2) | −0.0031 (18) | −0.0266 (19) |
C15 | 0.0491 (19) | 0.059 (2) | 0.0475 (17) | 0.0001 (16) | −0.0070 (15) | −0.0126 (15) |
O1 | 0.195 (6) | 0.228 (7) | 0.195 (6) | 0.011 (6) | 0.036 (5) | −0.014 (6) |
C21 | 0.199 (7) | 0.212 (7) | 0.203 (7) | −0.002 (6) | 0.031 (6) | 0.017 (6) |
C22 | 0.203 (7) | 0.199 (8) | 0.193 (7) | −0.014 (6) | 0.024 (6) | 0.008 (6) |
C23 | 0.206 (7) | 0.199 (7) | 0.199 (7) | −0.014 (6) | 0.039 (6) | −0.005 (6) |
C24 | 0.188 (7) | 0.211 (7) | 0.187 (7) | −0.007 (6) | 0.038 (6) | −0.011 (6) |
Ti1—N2 | 2.153 (2) | C7—H7A | 0.9600 |
Ti1—C14 | 2.315 (3) | C8—H8A | 0.9600 |
Ti1—C13 | 2.327 (3) | C8—H8C | 0.9600 |
Ti1—Cl2 | 2.3377 (10) | C8—H8B | 0.9600 |
Ti1—Cl1 | 2.3475 (9) | C9—H9B | 0.9600 |
Ti1—C15 | 2.350 (3) | C9—H9C | 0.9600 |
Ti1—Cl3 | 2.3533 (9) | C9—H9A | 0.9600 |
Ti1—C12 | 2.377 (3) | C10—H10A | 0.9600 |
Ti1—C11 | 2.394 (3) | C10—H10C | 0.9600 |
Si1—N1 | 1.804 (2) | C10—H10B | 0.9600 |
Si1—C8 | 1.847 (4) | C11—C15 | 1.394 (4) |
Si1—C9 | 1.847 (4) | C11—C12 | 1.404 (4) |
Si1—C10 | 1.849 (4) | C12—C13 | 1.399 (5) |
N1—C1 | 1.364 (3) | C12—H12 | 0.9300 |
N1—C2 | 1.390 (3) | C13—C14 | 1.390 (5) |
N2—C1 | 1.330 (3) | C13—H13 | 0.9300 |
N2—C3 | 1.388 (3) | C14—C15 | 1.399 (5) |
C1—C4 | 1.474 (4) | C14—H14 | 0.9300 |
C2—C3 | 1.335 (4) | C15—H15 | 0.9300 |
C2—H2 | 0.9300 | O1—C21 | 1.410 (6) |
C3—H3 | 0.9300 | O1—C24 | 1.421 (6) |
C4—C5 | 1.535 (4) | C21—C22 | 1.460 (6) |
C4—H4B | 0.9700 | C21—H21B | 0.9700 |
C4—H4A | 0.9700 | C21—H21A | 0.9700 |
C5—C11 | 1.522 (4) | C22—C23 | 1.489 (6) |
C5—C7 | 1.534 (4) | C22—H22B | 0.9700 |
C5—C6 | 1.544 (4) | C22—H22A | 0.9700 |
C6—H6B | 0.9600 | C23—C24 | 1.456 (6) |
C6—H6C | 0.9600 | C23—H23A | 0.9700 |
C6—H6A | 0.9600 | C23—H23B | 0.9700 |
C7—H7B | 0.9600 | C24—H24A | 0.9700 |
C7—H7C | 0.9600 | C24—H24B | 0.9700 |
N2—Ti1—C14 | 129.38 (12) | H7B—C7—H7C | 109.5 |
N2—Ti1—C13 | 135.04 (11) | C5—C7—H7A | 109.5 |
C14—Ti1—C13 | 34.86 (13) | H7B—C7—H7A | 109.5 |
N2—Ti1—Cl2 | 138.10 (6) | H7C—C7—H7A | 109.5 |
C14—Ti1—Cl2 | 89.41 (10) | Si1—C8—H8A | 109.5 |
C13—Ti1—Cl2 | 85.12 (9) | Si1—C8—H8C | 109.5 |
N2—Ti1—Cl1 | 80.79 (7) | H8A—C8—H8C | 109.5 |
C14—Ti1—Cl1 | 89.07 (11) | Si1—C8—H8B | 109.5 |
C13—Ti1—Cl1 | 123.02 (12) | H8A—C8—H8B | 109.5 |
Cl2—Ti1—Cl1 | 85.38 (4) | H8C—C8—H8B | 109.5 |
N2—Ti1—C15 | 94.48 (10) | Si1—C9—H9B | 109.5 |
C14—Ti1—C15 | 34.89 (12) | Si1—C9—H9C | 109.5 |
C13—Ti1—C15 | 57.74 (14) | H9B—C9—H9C | 109.5 |
Cl2—Ti1—C15 | 122.49 (8) | Si1—C9—H9A | 109.5 |
Cl1—Ti1—C15 | 81.89 (9) | H9B—C9—H9A | 109.5 |
N2—Ti1—Cl3 | 80.82 (7) | H9C—C9—H9A | 109.5 |
C14—Ti1—Cl3 | 129.55 (12) | Si1—C10—H10A | 109.5 |
C13—Ti1—Cl3 | 94.70 (12) | Si1—C10—H10C | 109.5 |
Cl2—Ti1—Cl3 | 85.07 (4) | H10A—C10—H10C | 109.5 |
Cl1—Ti1—Cl3 | 139.98 (4) | Si1—C10—H10B | 109.5 |
C15—Ti1—Cl3 | 134.78 (9) | H10A—C10—H10B | 109.5 |
N2—Ti1—C12 | 101.49 (10) | H10C—C10—H10B | 109.5 |
C14—Ti1—C12 | 57.36 (13) | C15—C11—C12 | 107.1 (3) |
C13—Ti1—C12 | 34.59 (12) | C15—C11—C5 | 125.7 (3) |
Cl2—Ti1—C12 | 114.57 (8) | C12—C11—C5 | 126.9 (3) |
Cl1—Ti1—C12 | 138.74 (9) | C15—C11—Ti1 | 71.21 (16) |
C15—Ti1—C12 | 56.85 (12) | C12—C11—Ti1 | 72.22 (17) |
Cl3—Ti1—C12 | 79.88 (9) | C5—C11—Ti1 | 126.58 (18) |
N2—Ti1—C11 | 79.37 (9) | C13—C12—C11 | 108.5 (3) |
C14—Ti1—C11 | 57.56 (11) | C13—C12—Ti1 | 70.76 (19) |
C13—Ti1—C11 | 57.62 (11) | C11—C12—Ti1 | 73.55 (16) |
Cl2—Ti1—C11 | 142.36 (7) | C13—C12—H12 | 125.7 |
Cl1—Ti1—C11 | 109.31 (8) | C11—C12—H12 | 125.7 |
C15—Ti1—C11 | 34.16 (10) | Ti1—C12—H12 | 121.6 |
Cl3—Ti1—C11 | 101.76 (8) | C14—C13—C12 | 107.7 (3) |
C12—Ti1—C11 | 34.23 (10) | C14—C13—Ti1 | 72.1 (2) |
N1—Si1—C8 | 108.14 (16) | C12—C13—Ti1 | 74.65 (18) |
N1—Si1—C9 | 108.33 (15) | C14—C13—H13 | 126.2 |
C8—Si1—C9 | 112.84 (18) | C12—C13—H13 | 126.2 |
N1—Si1—C10 | 105.75 (16) | Ti1—C13—H13 | 119.0 |
C8—Si1—C10 | 112.3 (2) | C13—C14—C15 | 108.1 (3) |
C9—Si1—C10 | 109.1 (2) | C13—C14—Ti1 | 73.0 (2) |
C1—N1—C2 | 106.0 (2) | C15—C14—Ti1 | 73.94 (17) |
C1—N1—Si1 | 129.77 (19) | C13—C14—H14 | 125.9 |
C2—N1—Si1 | 124.11 (19) | C15—C14—H14 | 125.9 |
C1—N2—C3 | 106.1 (2) | Ti1—C14—H14 | 118.9 |
C1—N2—Ti1 | 135.58 (18) | C11—C15—C14 | 108.6 (3) |
C3—N2—Ti1 | 118.30 (18) | C11—C15—Ti1 | 74.63 (16) |
N2—C1—N1 | 110.8 (2) | C14—C15—Ti1 | 71.16 (19) |
N2—C1—C4 | 124.5 (2) | C11—C15—H15 | 125.7 |
N1—C1—C4 | 124.7 (2) | C14—C15—H15 | 125.7 |
C3—C2—N1 | 107.7 (2) | Ti1—C15—H15 | 120.2 |
C3—C2—H2 | 126.2 | C21—O1—C24 | 109.0 (5) |
N1—C2—H2 | 126.2 | O1—C21—C22 | 107.3 (5) |
C2—C3—N2 | 109.4 (2) | O1—C21—H21B | 110.3 |
C2—C3—H3 | 125.3 | C22—C21—H21B | 110.3 |
N2—C3—H3 | 125.3 | O1—C21—H21A | 110.3 |
C1—C4—C5 | 114.0 (2) | C22—C21—H21A | 110.3 |
C1—C4—H4B | 108.8 | H21B—C21—H21A | 108.5 |
C5—C4—H4B | 108.8 | C21—C22—C23 | 106.8 (5) |
C1—C4—H4A | 108.8 | C21—C22—H22B | 110.4 |
C5—C4—H4A | 108.8 | C23—C22—H22B | 110.4 |
H4B—C4—H4A | 107.7 | C21—C22—H22A | 110.4 |
C11—C5—C7 | 110.8 (2) | C23—C22—H22A | 110.4 |
C11—C5—C4 | 110.4 (2) | H22B—C22—H22A | 108.6 |
C7—C5—C4 | 109.7 (2) | C24—C23—C22 | 105.4 (5) |
C11—C5—C6 | 107.6 (2) | C24—C23—H23A | 110.7 |
C7—C5—C6 | 110.3 (3) | C22—C23—H23A | 110.7 |
C4—C5—C6 | 107.9 (2) | C24—C23—H23B | 110.7 |
C5—C6—H6B | 109.5 | C22—C23—H23B | 110.7 |
C5—C6—H6C | 109.5 | H23A—C23—H23B | 108.8 |
H6B—C6—H6C | 109.5 | O1—C24—C23 | 108.8 (5) |
C5—C6—H6A | 109.5 | O1—C24—H24A | 109.9 |
H6B—C6—H6A | 109.5 | C23—C24—H24A | 109.9 |
H6C—C6—H6A | 109.5 | O1—C24—H24B | 109.9 |
C5—C7—H7B | 109.5 | C23—C24—H24B | 109.9 |
C5—C7—H7C | 109.5 | H24A—C24—H24B | 108.3 |
C8—Si1—N1—C1 | 68.5 (3) | N2—Ti1—C12—C13 | −167.7 (2) |
C9—Si1—N1—C1 | −54.1 (3) | C14—Ti1—C12—C13 | −38.0 (2) |
C10—Si1—N1—C1 | −171.0 (3) | Cl2—Ti1—C12—C13 | 34.1 (3) |
C8—Si1—N1—C2 | −115.4 (3) | Cl1—Ti1—C12—C13 | −78.6 (3) |
C9—Si1—N1—C2 | 121.9 (3) | C15—Ti1—C12—C13 | −79.9 (3) |
C10—Si1—N1—C2 | 5.1 (3) | Cl3—Ti1—C12—C13 | 113.9 (2) |
C14—Ti1—N2—C1 | −14.3 (3) | C11—Ti1—C12—C13 | −117.0 (3) |
C13—Ti1—N2—C1 | 32.8 (3) | N2—Ti1—C12—C11 | −50.70 (19) |
Cl2—Ti1—N2—C1 | −167.8 (2) | C14—Ti1—C12—C11 | 79.0 (2) |
Cl1—Ti1—N2—C1 | −95.4 (3) | C13—Ti1—C12—C11 | 117.0 (3) |
C15—Ti1—N2—C1 | −14.4 (3) | Cl2—Ti1—C12—C11 | 151.15 (15) |
Cl3—Ti1—N2—C1 | 120.3 (3) | Cl1—Ti1—C12—C11 | 38.4 (2) |
C12—Ti1—N2—C1 | 42.7 (3) | C15—Ti1—C12—C11 | 37.15 (17) |
C11—Ti1—N2—C1 | 16.4 (3) | Cl3—Ti1—C12—C11 | −129.07 (18) |
C14—Ti1—N2—C3 | 163.4 (2) | C11—C12—C13—C14 | 0.7 (4) |
C13—Ti1—N2—C3 | −149.5 (2) | Ti1—C12—C13—C14 | 65.0 (2) |
Cl2—Ti1—N2—C3 | 9.9 (3) | C11—C12—C13—Ti1 | −64.3 (2) |
Cl1—Ti1—N2—C3 | 82.3 (2) | N2—Ti1—C13—C14 | −97.7 (3) |
C15—Ti1—N2—C3 | 163.3 (2) | Cl2—Ti1—C13—C14 | 96.0 (2) |
Cl3—Ti1—N2—C3 | −62.0 (2) | Cl1—Ti1—C13—C14 | 14.7 (3) |
C12—Ti1—N2—C3 | −139.6 (2) | C15—Ti1—C13—C14 | −37.7 (2) |
C11—Ti1—N2—C3 | −165.9 (2) | Cl3—Ti1—C13—C14 | −179.4 (2) |
C3—N2—C1—N1 | 1.5 (3) | C12—Ti1—C13—C14 | −114.8 (3) |
Ti1—N2—C1—N1 | 179.43 (18) | C11—Ti1—C13—C14 | −78.4 (2) |
C3—N2—C1—C4 | −176.1 (3) | N2—Ti1—C13—C12 | 17.2 (3) |
Ti1—N2—C1—C4 | 1.8 (4) | C14—Ti1—C13—C12 | 114.8 (3) |
C2—N1—C1—N2 | −2.0 (3) | Cl2—Ti1—C13—C12 | −149.2 (2) |
Si1—N1—C1—N2 | 174.59 (19) | Cl1—Ti1—C13—C12 | 129.5 (2) |
C2—N1—C1—C4 | 175.6 (3) | C15—Ti1—C13—C12 | 77.1 (2) |
Si1—N1—C1—C4 | −7.8 (4) | Cl3—Ti1—C13—C12 | −64.6 (2) |
C1—N1—C2—C3 | 1.7 (3) | C11—Ti1—C13—C12 | 36.4 (2) |
Si1—N1—C2—C3 | −175.2 (2) | C12—C13—C14—C15 | −0.6 (4) |
N1—C2—C3—N2 | −0.8 (4) | Ti1—C13—C14—C15 | 66.2 (2) |
C1—N2—C3—C2 | −0.4 (3) | C12—C13—C14—Ti1 | −66.7 (2) |
Ti1—N2—C3—C2 | −178.8 (2) | N2—Ti1—C14—C13 | 115.0 (2) |
N2—C1—C4—C5 | −48.5 (4) | Cl2—Ti1—C14—C13 | −82.3 (2) |
N1—C1—C4—C5 | 134.2 (3) | Cl1—Ti1—C14—C13 | −167.7 (2) |
C1—C4—C5—C11 | 64.3 (3) | C15—Ti1—C14—C13 | 115.2 (3) |
C1—C4—C5—C7 | −58.2 (3) | Cl3—Ti1—C14—C13 | 0.8 (3) |
C1—C4—C5—C6 | −178.4 (2) | C12—Ti1—C14—C13 | 37.7 (2) |
C7—C5—C11—C15 | 171.9 (3) | C11—Ti1—C14—C13 | 78.6 (2) |
C4—C5—C11—C15 | 50.2 (4) | N2—Ti1—C14—C15 | −0.2 (3) |
C6—C5—C11—C15 | −67.4 (4) | C13—Ti1—C14—C15 | −115.2 (3) |
C7—C5—C11—C12 | −15.0 (4) | Cl2—Ti1—C14—C15 | 162.5 (2) |
C4—C5—C11—C12 | −136.8 (3) | Cl1—Ti1—C14—C15 | 77.1 (2) |
C6—C5—C11—C12 | 105.7 (3) | Cl3—Ti1—C14—C15 | −114.4 (2) |
C7—C5—C11—Ti1 | 79.7 (3) | C12—Ti1—C14—C15 | −77.5 (2) |
C4—C5—C11—Ti1 | −42.1 (3) | C11—Ti1—C14—C15 | −36.6 (2) |
C6—C5—C11—Ti1 | −159.6 (2) | C12—C11—C15—C14 | 0.2 (3) |
N2—Ti1—C11—C15 | −114.7 (2) | C5—C11—C15—C14 | 174.4 (3) |
C14—Ti1—C11—C15 | 37.4 (2) | Ti1—C11—C15—C14 | −63.5 (2) |
C13—Ti1—C11—C15 | 79.0 (2) | C12—C11—C15—Ti1 | 63.77 (19) |
Cl2—Ti1—C11—C15 | 69.8 (2) | C5—C11—C15—Ti1 | −122.1 (3) |
Cl1—Ti1—C11—C15 | −38.5 (2) | C13—C14—C15—C11 | 0.2 (4) |
Cl3—Ti1—C11—C15 | 167.10 (18) | Ti1—C14—C15—C11 | 65.8 (2) |
C12—Ti1—C11—C15 | 115.8 (3) | C13—C14—C15—Ti1 | −65.6 (2) |
N2—Ti1—C11—C12 | 129.50 (19) | N2—Ti1—C15—C11 | 63.58 (19) |
C14—Ti1—C11—C12 | −78.4 (2) | C14—Ti1—C15—C11 | −116.3 (3) |
C13—Ti1—C11—C12 | −36.8 (2) | C13—Ti1—C15—C11 | −78.6 (2) |
Cl2—Ti1—C11—C12 | −45.9 (2) | Cl2—Ti1—C15—C11 | −137.18 (15) |
Cl1—Ti1—C11—C12 | −154.28 (17) | Cl1—Ti1—C15—C11 | 143.60 (18) |
C15—Ti1—C11—C12 | −115.8 (3) | Cl3—Ti1—C15—C11 | −17.9 (2) |
Cl3—Ti1—C11—C12 | 51.32 (19) | C12—Ti1—C15—C11 | −37.23 (17) |
N2—Ti1—C11—C5 | 6.3 (2) | N2—Ti1—C15—C14 | 179.9 (2) |
C14—Ti1—C11—C5 | 158.4 (3) | C13—Ti1—C15—C14 | 37.7 (2) |
C13—Ti1—C11—C5 | −160.0 (3) | Cl2—Ti1—C15—C14 | −20.9 (3) |
Cl2—Ti1—C11—C5 | −169.14 (18) | Cl1—Ti1—C15—C14 | −100.1 (2) |
Cl1—Ti1—C11—C5 | 82.5 (2) | Cl3—Ti1—C15—C14 | 98.4 (2) |
C15—Ti1—C11—C5 | 121.0 (3) | C12—Ti1—C15—C14 | 79.1 (2) |
Cl3—Ti1—C11—C5 | −71.9 (2) | C11—Ti1—C15—C14 | 116.3 (3) |
C12—Ti1—C11—C5 | −123.2 (3) | C24—O1—C21—C22 | 17 (2) |
C15—C11—C12—C13 | −0.6 (3) | O1—C21—C22—C23 | −14 (2) |
C5—C11—C12—C13 | −174.7 (3) | C21—C22—C23—C24 | 6 (2) |
Ti1—C11—C12—C13 | 62.5 (2) | C21—O1—C24—C23 | −13 (2) |
C15—C11—C12—Ti1 | −63.10 (19) | C22—C23—C24—O1 | 4 (2) |
C5—C11—C12—Ti1 | 122.8 (3) |
Experimental details
Crystal data | |
Chemical formula | [Ti(C15H23N2Si)Cl3]·0.5C4H8O |
Mr | 449.75 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 8.8033 (9), 11.8201 (11), 21.481 (2) |
β (°) | 99.399 (1) |
V (Å3) | 2205.2 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.81 |
Crystal size (mm) | 0.29 × 0.21 × 0.14 |
Data collection | |
Diffractometer | Bruker SMART APEXII |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.798, 0.894 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10736, 3869, 2812 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.115, 1.02 |
No. of reflections | 3869 |
No. of parameters | 249 |
No. of restraints | 70 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.42, −0.27 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009), SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009).
(I) | (III) | (IV) | (V) | (VI) | |
Ti1—N2 | 2.153 (2) | 2.163 (2) | 2.357 (1) | 2.274 (4) | 2.261 (2) |
Ti1—Cl1 | 2.3475 (9) | 2.3513 (8) | 2.3217 (4) | 2.322 (2) | 2.331 (1) |
Ti1—Cl2 | 2.3377 (10) | 2.3486 (8) | 2.3729 (5) | 2.326 (2) | 2.338 (1) |
Ti1—Cl3 | 2.3533 (9) | 2.3340 (8) | 2.2895 (5) | 2.300 (2) | 2.307 (1) |
Ti1···Cpcent | 2.030 (1) | 2.036 | 2.025 | 2.035 | 2.047 |
Ti1···PL1 | 2.029 (1) | 2.034 (1) | 2.025 | 2.034 | 2.046 |
Ti1···PL2 | 0.022 (5) | 0.608 | 0.175 | 0.215 | |
N2—Ti1···Cpcent | 111.2 (1)a | 110.20 | 99.66 | 101.44 | 101.64 |
Cl1—Ti1···Cpcent | 109.2 (1)a | 110.08 | 116.37 | 116.68 | 113.90 |
Cl2—Ti1···Cpcent | 110.69 (9)a | 109.75 | 107.63 | 109.28 | 109.73 |
Cl3—Ti1···Cpcent | 110.58 (9)a | 110.93 | 114.71 | 113.76 | 115.56 |
Cl1—Ti1—N2 | 80.79 (7) | 79.24 (6) | 82.57 (2) | 78.64 | 80.32 |
Cl2—Ti1—N2 | 138.10 (6) | 140.05 (6) | 152.70 (3) | 149.27 | 148.63 |
Cl3—Ti1—N2 | 80.82 (7) | 81.19 (6) | 83.45 (2) | 80.23 | 78.94 |
Cl2—Ti1—Cl1 | 85.38 (4) | 86.06 (3) | 85.18 (2) | 87.84 | 87.14 |
Cl2—Ti1—Cl3 | 85.07 (4) | 86.01 (3) | 85.30 (2) | 86.95 | 87.20 |
Cl3—Ti1—Cl1 | 139.98 (4) | 138.52 (3) | 128.55 (2) | 128.07 | 129.12 |
PL1–PL2 | 81.0 (1) | 78.335 | 82.491 | 85.895 |
Notes: (a) the angle between the Ti1—N2 bond and the normal to PL1; (I) this work; (III) Krut'ko et al. (2006); (IV) Herrmann et al. (1995); (V) Enders et al. (1997); (VI) Enders et al. (1996). PL1 and Cpcent denote the C11–C15 Cp ring r.m.s. plane and centroid, respectively, while PL2 denotes an r.m.s. plane through the non-H atoms of a heterocyclic ring. |
Footnotes
‡Part of the 2010 Master Degree thesis, North-West University of Xi'an, People's Republic of China.
Acknowledgements
Financial support from the National Natural Science Foundation of China (project No. 20702041), Shaanxi Provincial Department of Education (grant Nos. 09 J K733 and 07 J K393), Shaanxi Administration of Foreign Expert Affairs (grant No. 20096100097) and Shaanxi Provincial Department of Science and Technology (grant No. 2007B05) is gratefully acknowledged. The authors are grateful to Mr Sun Wei for his help in measuring the NMR spectra.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Enders, M., Rudolph, R. & Pritzkow, H. (1996). Chem. Ber. 129, 459–463. CrossRef CAS Web of Science Google Scholar
Enders, M., Rudolph, R. & Pritzkow, H. (1997). J. Organomet. Chem. 549, 251–256. Web of Science CSD CrossRef CAS Google Scholar
Herrmann, W. A., Morawietz, M. J. A., Priermeier, T. & Mashima, K. (1995). J. Organomet. Chem. 486, 291–295. CSD CrossRef CAS Web of Science Google Scholar
Krut'ko, D. P., Borzov, M. V., Liao, L., Nie, W., Churakov, A. V., Howard, J. A. K. & Lemenovskii, D. A. (2006). Russ. Chem. Bull. 55, 1574–1580. CAS Google Scholar
Nie, W., Liao, L., Xu, W., Borzov, M. V., Krut'ko, D. P., Churakov, A. V., Howard, J. A. K. & Lemenovskii, D. A. (2008). J. Organomet. Chem. 693, 2355–2368. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, X., Nie, W., Ge, F. & Borzov, M. V. (2009). Acta Cryst. C65, m255–m259. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Cyclopentadienes (Cp-s) with pendant 1H-imidazol(in)-2-yl side-chain functional groups and the Group 4 transition metal complexes of general type [η5-Cp-(C2-link)-imidazol(in)e)-κN3]-MIVCl3 (M = Ti, Zr), (A), based on them were described not long ago (Krut'ko et al., 2006; Nie et al., 2008). All Ti and Zr complexes reported in these papers possess Me-groups at the N1 atoms and were prepared by reactions of metal tetrachlorides with monolithium- or trimethylsilyl-derivatives of parent cyclopentadienes. Recently a synthetic approach to η5-Cp-tris(sec-amido)TiIV type complexes of general formula [η5-Cp-(C1 or 2-link)-imidazolyl-κN1]-MIV(NEt2)2, (B), was suggested (Wang et al., 2009). Here we report on the crystal structure of trichloro{2-[2-(η5-cyclopentadienyl)-2-methylpropyl]-1-trimethylsilyl-1H-imidazole-κN3}titanium(IV) that crystallizes as an 1:0.5 adduct with tetrahydrofuran (THF) (I), which was prepared by a reaction with chlorotrimethylsilane via a facile (B) to (A) conversion method. The molecular structure of (I) is discussed in comparison with those of its few known analogues.
Complex (I) was prepared by treatment of [2-[2-(η5-cyclopentadienyl)-2-methylpropyl]-1H-imidazolyl-κN1]bis(N,N-diethylamido-κN)titanium(IV), (C12H14N2)Ti(NEt2)2, (II), with excess of Me3SiCl in a THF medium at elevated temperature (see Fig. 2 and Experimental for details). The presence of THF in the crystal and the adduct ratio were not evident in the structure solution and refinement stages but were independently supported by 1H NMR spectroscopy data [multiplets at δ(H) 1.78 and 3.62 p.p.m. with both of the relative integral intensities corresponding to 2 H]. The THF molecule was found and located using SQUEEZE in the PLATON program package (Spek, 2009) which retrieved two voids at (1/2, 0, 1/2) and (1/2, 1/2, 1) (each of 180 Å3 and 42ē; total electron count per unit cell 84ē). In the final structure model, the adduct solvent molecule was treated as disordered around a center of inversion (1/2, 0, 1/2) (see Refinement section for details).
An analysis in the Cambridge Structural Database (CSD; Version 5.27, release February 2009; Allen, 2002) reveals only 4 structurally characterized TiIV complexes of the similar η5-CpTiCl3-NRn type (4 independent fragments): trichloro{2-[2-(η5-cyclopentadienyl)-2,2-diphenylethyl]-1-methyl-1H-imidazole-κN3}titanium(IV), C23H21Cl3N2Ti, (III), (Krut'ko et al., 2006); trichloro{1-[2-(η5-cyclopentadienyl)ethyl]pyrrolidine-κN}titanium(IV), C11H16Cl3NTi, (IV), (Herrmann et al., 1995); trichloro[8-(η5-2,3,4,5-tetramethylcyclopentadienyl)quinoline-κN]titanium(IV), C18H18Cl3NTi, (V), (Enders et al., 1997); and trichloro[8-(η5-2,3-dimethylcyclopentadienyl)quinoline-κN]titanium(IV), C16H14Cl3NTi, (VI), (Enders et al., 1996).
All complexes of question exhibit one and the same structural motif. They are mononuclear complexes, with the coordination environment of the Ti-atoms being a distorted square pyramid (assuming Cp-rings occupy one coordination site; "four-leg piano stool"). Contents of the unit cells are presented by pairs of enantiomorphic conformers connected by inversion symmetry operations. In all complexes under discussion, ligating N-atoms are linked to Cp-groups with a C2 [(IV)-(VI)] or C3 [(I) and (III)] bridges. Noteworthy, that no structurally characterized complexes of type η5-CpTiCl3-NRn with a non-linked to Cp NRn functionality are known at the moment.
Compounds (I) and (III) represent a pair of the "closest relatives", and, despite of the evident differences in their chemical structure (CPh2 against CMe2 and NMe against NSiMe3), the geometrical parameters of the coordination environment of the Ti-atoms and imidazole rings nearly match (see Table 1). This is the same for the torsion angles in the bridge [C4—C5—C11—C12 and C1—C4—C5—C11 in (I) and the related angles in (III); compare –136.8 (3) and 64.3 (3)° in (I) with –135.21 (4) and 61.22 (5)° in (III)]. However, while in the main molecule of (I), the Ti-, Si- and CH2-group carbon atoms deviate only slightly from the imidazole ring r. m. s. plane [PL2; by 0.022 (5), 0.133 (4) and 0.094 (5) Å, respectively], the Ti-atom in (III) noticeably deviates from the imidazole r. m. s. plane (by 0.608 Å) what could be, at the first glance, explained by a mutual repulsion of the spatially adjacent imidazole and phenyl rings. Another difference in the crystal structures of (I) and (III) is due to the presence of a bulky SiMe3 group in (I). These groups are stretched outwards of the main molecule and "pump up" the unit cell volume [compare V = 2205.2 (4) Å3 in (I) with 2098.8, 1304.8, 1567.9, and 1749.9 Å3 in (III)-(VI), respectively] what causes appearance of voids suitable for THF molecules.
Elongation of the bridge from C2 [in (IV)-(VI)] to C3 [in (I) and (III)] has a little effect on the Ti1—PL1 (or Cpcent; PL1 and Cpcent denote r.m.s. plane and centroid of the Cp-ring, respectively) distances, as well as on the angle Cl2–Ti1–Cpcent and "cis-angles" Cl2–Ti1–Cl1, Cl2–Ti1–Cl3, Cl1–Ti1–N2, and Cl3–Ti1–N2. However, the angles N2–Ti1–Cpcent in (I) and (III) are expanded by approximately 10° compared to those in (IV)-(VI) while the "trans-angle" Cl2–Ti1–N2 is tightened by the same value. The angles Cl1–Ti1–Cpcent and Cl3–Ti1–Cpcent in (I) and (III) are decreased by approximately 5° comparatively to those in (IV)-(VI) while the "trans-angle" Cl1–Ti1–Cl3 is increased by approximately 10°.