organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2′,10′-Di­bromo­spiro­[cylo­hexane-1,6-di­benzo[d,f][1,3]dioxepine]

aState Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China
*Correspondence e-mail: hqzhang@ysu.edu.cn

(Received 25 March 2010; accepted 3 April 2010; online 10 April 2010)

In the title compound, C18H16Br2O2, the dihedral angle between the aromatic rings is 35.55 (17)° and the cyclohexyl ring adopts a chair-like conformation. In the crystal, molecules are linked by van der Waals forces.

Related literature

For background literature concerning title compound, see Dean (1963[Dean, F. M. (1963). Naturally Occurring Oxygen Ring Compounds, p. 549. London: Butterworths.]); Yang et al. (2004[Yang, B., Zhang, H.-Q., Xu, H., Zheng, Y., Yu, J.-S., Ma, Y.-G. & Sheng, J.-C. (2004). Chim. Sin. Acta Phys. pp. 1476-1480.]). For details of the synthesis, see Zhang et al. (2003[Zhang, H.-O., Mo, Z.-C., Zheng, Y., Yang, G.-D., Ye, L., Ma, Y.-G., Chen, X.-F. & Sheng, J.-C. (2003). Chin. J. Org. Chem. pp. 578-583.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16Br2O2

  • Mr = 424.13

  • Orthorhombic, P b c a

  • a = 17.793 (4) Å

  • b = 10.143 (5) Å

  • c = 18.279 (5) Å

  • V = 3299 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.92 mm−1

  • T = 290 K

  • 0.13 × 0.12 × 0.11 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.567, Tmax = 0.614

  • 29533 measured reflections

  • 3735 independent reflections

  • 2294 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.111

  • S = 1.00

  • 3735 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.64 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Dibenzo[d,f] [1,3] dioxepine derivatives are important seven-member-ring type bridged biphenyl compounds, which proved highly significant for pharmaceutical field (Dean, 1963). Introducing functional group Br on benzene ring of dibenzo[d,f][1,3] dioxepine derivatives can expandthe field of their application, such as photoluminescence, electro-luminescence devices and nonlinear potics etc ( Yang et al., 2004). Herein we present the crysal structure of the title compound.

The molecule structure of title compound, (I), C18H16Br2O2, as shown in Fig. 1, all bond lengths and angles are in normal range. In the crystal structure, the six-membered ring formed by C13 to C18 is in the chair-like comformation. The plane of two benzene rings form a dihedral angle of 35.33 (17) °. The crystal packing is stabilized by van der Waals' force.

Related literature top

For background literature concerning title compound, see Dean (1963); Yang et al. (2004). For details of the synthesis, see Zhang et al. (2003).

Experimental top

The title compound was prepared according to the literature (Zhang et al., 2003). Single crystals suitable for X-ray diffraction were prepared by slow evaperation of an ethanol soluion.

Refinement top

Carbon-bound H-atoms were geometrically positioned with C—H = 0.93 and 0.97 Å with Uiso(H) = 1.2Ueq(C).

Structure description top

Dibenzo[d,f] [1,3] dioxepine derivatives are important seven-member-ring type bridged biphenyl compounds, which proved highly significant for pharmaceutical field (Dean, 1963). Introducing functional group Br on benzene ring of dibenzo[d,f][1,3] dioxepine derivatives can expandthe field of their application, such as photoluminescence, electro-luminescence devices and nonlinear potics etc ( Yang et al., 2004). Herein we present the crysal structure of the title compound.

The molecule structure of title compound, (I), C18H16Br2O2, as shown in Fig. 1, all bond lengths and angles are in normal range. In the crystal structure, the six-membered ring formed by C13 to C18 is in the chair-like comformation. The plane of two benzene rings form a dihedral angle of 35.33 (17) °. The crystal packing is stabilized by van der Waals' force.

For background literature concerning title compound, see Dean (1963); Yang et al. (2004). For details of the synthesis, see Zhang et al. (2003).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric of title compound, with the atom numbering. Displacement ellipsoids of non-H atoms are drawn at the 30% probalility level.
2',10'-Dibromospiro[cylohexane-1,6-dibenzo[d,f][1,3]dioxepine] top
Crystal data top
C18H16Br2O2F(000) = 1680
Mr = 424.13Dx = 1.708 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3788 reflections
a = 17.793 (4) Åθ = 2.2–54.8°
b = 10.143 (5) ŵ = 4.92 mm1
c = 18.279 (5) ÅT = 290 K
V = 3299 (2) Å3Block, white
Z = 80.13 × 0.12 × 0.11 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3735 independent reflections
Radiation source: fine-focus sealed tube2294 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1823
Tmin = 0.567, Tmax = 0.614k = 1212
29533 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.049P)2 + 1.6141P]
where P = (Fo2 + 2Fc2)/3
3735 reflections(Δ/σ)max = 0.016
199 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
C18H16Br2O2V = 3299 (2) Å3
Mr = 424.13Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 17.793 (4) ŵ = 4.92 mm1
b = 10.143 (5) ÅT = 290 K
c = 18.279 (5) Å0.13 × 0.12 × 0.11 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3735 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2294 reflections with I > 2σ(I)
Tmin = 0.567, Tmax = 0.614Rint = 0.088
29533 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.00Δρmax = 0.35 e Å3
3735 reflectionsΔρmin = 0.64 e Å3
199 parameters
Special details top

Experimental. (See detailed section in the paper)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.04490 (3)0.06701 (5)0.35791 (2)0.07070 (18)
Br20.85968 (3)0.22102 (6)0.73751 (2)0.0790 (2)
C11.0023 (2)0.2318 (4)0.38479 (19)0.0504 (10)
C21.0211 (2)0.3410 (4)0.3440 (2)0.0509 (10)
H21.05430.33410.30490.061*
C30.9896 (2)0.4612 (4)0.36234 (18)0.0468 (9)
H31.00080.53570.33480.056*
C40.94151 (19)0.4708 (4)0.42156 (18)0.0384 (8)
C50.92258 (19)0.3603 (4)0.46297 (17)0.0393 (8)
C60.9533 (2)0.2386 (4)0.44328 (18)0.0447 (9)
H60.94090.16290.46930.054*
C70.8410 (2)0.3224 (4)0.65214 (18)0.0487 (9)
C80.8863 (2)0.3024 (4)0.59131 (18)0.0436 (9)
H80.92450.24000.59280.052*
C90.87442 (18)0.3757 (4)0.52831 (17)0.0375 (8)
C100.81592 (19)0.4670 (4)0.52830 (17)0.0399 (8)
C110.7721 (2)0.4878 (4)0.5897 (2)0.0485 (9)
H110.73390.55040.58870.058*
C120.7850 (2)0.4158 (4)0.65240 (19)0.0532 (10)
H120.75640.43020.69420.064*
C130.84221 (18)0.6288 (4)0.43511 (18)0.0402 (8)
C140.8204 (2)0.6406 (4)0.35503 (17)0.0488 (9)
H14A0.76630.65090.35120.059*
H14B0.83430.56030.32950.059*
C150.8591 (2)0.7583 (5)0.3188 (2)0.0610 (12)
H15A0.91280.74200.31630.073*
H15B0.84060.76810.26920.073*
C160.8450 (3)0.8833 (5)0.3606 (2)0.0709 (13)
H16A0.79190.90430.35880.085*
H16B0.87230.95510.33770.085*
C170.8696 (3)0.8706 (4)0.4399 (2)0.0634 (11)
H17A0.92360.85820.44200.076*
H17B0.85750.95110.46600.076*
C180.8310 (2)0.7552 (4)0.4764 (2)0.0507 (10)
H18A0.85060.74510.52560.061*
H18B0.77760.77350.48020.061*
O10.91933 (12)0.5946 (2)0.44369 (12)0.0406 (6)
O20.79528 (13)0.5265 (3)0.46336 (12)0.0439 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0773 (3)0.0523 (3)0.0825 (3)0.0132 (2)0.0174 (2)0.0179 (2)
Br20.1021 (4)0.0865 (4)0.0482 (3)0.0256 (3)0.0059 (2)0.0173 (2)
C10.050 (2)0.049 (3)0.052 (2)0.0083 (19)0.0017 (17)0.0152 (18)
C20.050 (2)0.053 (3)0.049 (2)0.0007 (19)0.0078 (17)0.0141 (19)
C30.042 (2)0.049 (3)0.049 (2)0.0094 (18)0.0049 (16)0.0013 (17)
C40.0355 (19)0.036 (2)0.0436 (18)0.0013 (15)0.0019 (14)0.0083 (15)
C50.0358 (19)0.041 (2)0.0407 (17)0.0019 (16)0.0029 (14)0.0054 (15)
C60.047 (2)0.037 (2)0.051 (2)0.0000 (18)0.0004 (16)0.0026 (16)
C70.055 (2)0.050 (3)0.0416 (19)0.0012 (19)0.0015 (16)0.0006 (17)
C80.045 (2)0.040 (2)0.0448 (19)0.0040 (17)0.0025 (15)0.0028 (16)
C90.0367 (19)0.035 (2)0.0406 (18)0.0023 (16)0.0005 (14)0.0033 (15)
C100.039 (2)0.040 (2)0.0413 (18)0.0010 (16)0.0017 (14)0.0008 (15)
C110.039 (2)0.050 (3)0.057 (2)0.0081 (18)0.0087 (16)0.0004 (18)
C120.055 (2)0.059 (3)0.046 (2)0.007 (2)0.0129 (17)0.0014 (18)
C130.033 (2)0.037 (2)0.0505 (19)0.0008 (16)0.0029 (14)0.0023 (16)
C140.047 (2)0.054 (3)0.046 (2)0.0001 (19)0.0004 (16)0.0043 (17)
C150.052 (2)0.072 (4)0.058 (2)0.004 (2)0.0043 (18)0.018 (2)
C160.062 (3)0.057 (3)0.094 (3)0.003 (2)0.009 (2)0.025 (3)
C170.065 (3)0.039 (3)0.086 (3)0.001 (2)0.007 (2)0.003 (2)
C180.050 (2)0.044 (3)0.058 (2)0.0050 (19)0.0041 (17)0.0028 (18)
O10.0348 (13)0.0354 (16)0.0516 (13)0.0005 (11)0.0001 (10)0.0037 (11)
O20.0379 (14)0.0448 (17)0.0489 (13)0.0042 (11)0.0044 (11)0.0071 (11)
Geometric parameters (Å, º) top
Br1—C11.900 (4)C11—H110.9300
Br2—C71.898 (4)C12—H120.9300
C1—C21.377 (6)C13—O11.424 (4)
C1—C61.381 (5)C13—O21.428 (4)
C2—C31.382 (6)C13—C181.501 (5)
C2—H20.9300C13—C141.519 (5)
C3—C41.384 (5)C14—C151.530 (5)
C3—H30.9300C14—H14A0.9700
C4—O11.376 (4)C14—H14B0.9700
C4—C51.394 (5)C15—C161.502 (6)
C5—C61.398 (5)C15—H15A0.9700
C5—C91.478 (5)C15—H15B0.9700
C6—H60.9300C16—C171.521 (6)
C7—C121.374 (5)C16—H16A0.9700
C7—C81.388 (5)C16—H16B0.9700
C8—C91.387 (5)C17—C181.512 (6)
C8—H80.9300C17—H17A0.9700
C9—C101.394 (5)C17—H17B0.9700
C10—O21.381 (4)C18—H18A0.9700
C10—C111.383 (5)C18—H18B0.9700
C11—C121.379 (5)
C2—C1—C6122.2 (4)O1—C13—C18106.3 (3)
C2—C1—Br1118.1 (3)O2—C13—C18111.1 (3)
C6—C1—Br1119.7 (3)O1—C13—C14111.8 (3)
C1—C2—C3118.7 (3)O2—C13—C14104.8 (3)
C1—C2—H2120.7C18—C13—C14112.6 (3)
C3—C2—H2120.7C13—C14—C15111.3 (3)
C4—C3—C2120.2 (4)C13—C14—H14A109.4
C4—C3—H3119.9C15—C14—H14A109.4
C2—C3—H3119.9C13—C14—H14B109.4
O1—C4—C3118.2 (3)C15—C14—H14B109.4
O1—C4—C5120.3 (3)H14A—C14—H14B108.0
C3—C4—C5121.2 (3)C16—C15—C14111.3 (3)
C4—C5—C6118.4 (3)C16—C15—H15A109.4
C4—C5—C9119.6 (3)C14—C15—H15A109.4
C6—C5—C9121.9 (3)C16—C15—H15B109.4
C1—C6—C5119.4 (4)C14—C15—H15B109.4
C1—C6—H6120.3H15A—C15—H15B108.0
C5—C6—H6120.3C15—C16—C17111.4 (4)
C12—C7—C8121.6 (3)C15—C16—H16A109.3
C12—C7—Br2119.8 (3)C17—C16—H16A109.3
C8—C7—Br2118.5 (3)C15—C16—H16B109.3
C9—C8—C7119.9 (3)C17—C16—H16B109.3
C9—C8—H8120.0H16A—C16—H16B108.0
C7—C8—H8120.0C18—C17—C16110.8 (4)
C8—C9—C10118.0 (3)C18—C17—H17A109.5
C8—C9—C5121.8 (3)C16—C17—H17A109.5
C10—C9—C5120.2 (3)C18—C17—H17B109.5
O2—C10—C11118.7 (3)C16—C17—H17B109.5
O2—C10—C9119.3 (3)H17A—C17—H17B108.1
C11—C10—C9121.5 (3)C13—C18—C17112.2 (3)
C12—C11—C10120.0 (3)C13—C18—H18A109.2
C12—C11—H11120.0C17—C18—H18A109.2
C10—C11—H11120.0C13—C18—H18B109.2
C7—C12—C11118.9 (3)C17—C18—H18B109.2
C7—C12—H12120.5H18A—C18—H18B107.9
C11—C12—H12120.5C4—O1—C13117.8 (3)
O1—C13—O2110.3 (3)C10—O2—C13118.2 (3)

Experimental details

Crystal data
Chemical formulaC18H16Br2O2
Mr424.13
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)290
a, b, c (Å)17.793 (4), 10.143 (5), 18.279 (5)
V3)3299 (2)
Z8
Radiation typeMo Kα
µ (mm1)4.92
Crystal size (mm)0.13 × 0.12 × 0.11
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.567, 0.614
No. of measured, independent and
observed [I > 2σ(I)] reflections
29533, 3735, 2294
Rint0.088
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.111, 1.00
No. of reflections3735
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.64

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

The authors acknowledge financial support from the National Science Foundation of China (grant No. 50973010).

References

First citationDean, F. M. (1963). Naturally Occurring Oxygen Ring Compounds, p. 549. London: Butterworths.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, B., Zhang, H.-Q., Xu, H., Zheng, Y., Yu, J.-S., Ma, Y.-G. & Sheng, J.-C. (2004). Chim. Sin. Acta Phys. pp. 1476–1480.  CAS Google Scholar
First citationZhang, H.-O., Mo, Z.-C., Zheng, Y., Yang, G.-D., Ye, L., Ma, Y.-G., Chen, X.-F. & Sheng, J.-C. (2003). Chin. J. Org. Chem. pp. 578–583.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds