organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Monoclinic modification of N-benzyl­propan-2-aminium chloride

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad, 91779, Iran
*Correspondence e-mail: mehrdad_pourayoubi@yahoo.com

(Received 11 April 2010; accepted 20 April 2010; online 28 April 2010)

In the title salt, C10H16N+·Cl, the cations and anions are linked by two N—H⋯Cl hydrogen bonds, forming a centrosymmetric tetramer.

Related literature

For the ortho­rhom­bic modification, see: Pourayoubi & Negari (2010[Pourayoubi, M. & Negari, M. (2010). Acta Cryst. E66, o708.]).

[Scheme 1]

Experimental

Crystal data
  • C10H16N+·Cl

  • Mr = 185.69

  • Monoclinic, P 21 /c

  • a = 9.9566 (7) Å

  • b = 15.5072 (10) Å

  • c = 7.2179 (5) Å

  • β = 111.112 (1)°

  • V = 1039.63 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 120 K

  • 0.26 × 0.26 × 0.11 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.922, Tmax = 0.966

  • 15855 measured reflections

  • 3008 independent reflections

  • 2303 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.102

  • S = 1.00

  • 3008 reflections

  • 111 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1NA⋯Cl1i 0.90 2.25 3.1517 (14) 176
N1—H1NB⋯Cl1 0.90 2.32 3.2099 (14) 170
Symmetry code: (i) -x, -y+1, -z+2.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the previous work, the structure determination of orthorhombic polymorph of N-benzylpropan-2-aminium chloride (Pourayoubi & Negari, 2010) has been investigated; we report here on the crystal structure of title compound (Fig. 1), a monoclinic polymorph of this salt. The cations and anions are linked together via two different N—H···Cl hydrogen bonds to form a centrosymmetric tetramer, in which two Cl- anions act as a bridge between two C10H16N+ cations. The previously reported structure contains an extended zigzag chain arrangement of cations and anions via two different N—H···Cl hydrogen bonds.

Related literature top

For the orthorhombic modification, see: Pourayoubi & Negari (2010).

Experimental top

The title compound is a by-product of the preparation of P(O)[OC6H5][N(CH2C6H5)(CH(CH3)2)]Cl [from the reaction between P(O)[OC6H5]Cl2 and NH(CH2C6H5)(CH(CH3)2), with 1:2 mole ratio] in CCl4.

Refinement top

All hydrogen atoms were calculated from geometrical point of view with exception of H1NA and H1NB, which were located from difference Fourier maps. The H atoms were refined in isotropic approximation in riding model with the Uiso(H) parameters equal to 1.2 Ueq(C,N), 1.5 Ueq(C-methyl), where U(C,N) are respectively the equivalent thermal parameters of the carbon and oxygen atoms to which corresponding H atoms are bonded.

Structure description top

In the previous work, the structure determination of orthorhombic polymorph of N-benzylpropan-2-aminium chloride (Pourayoubi & Negari, 2010) has been investigated; we report here on the crystal structure of title compound (Fig. 1), a monoclinic polymorph of this salt. The cations and anions are linked together via two different N—H···Cl hydrogen bonds to form a centrosymmetric tetramer, in which two Cl- anions act as a bridge between two C10H16N+ cations. The previously reported structure contains an extended zigzag chain arrangement of cations and anions via two different N—H···Cl hydrogen bonds.

For the orthorhombic modification, see: Pourayoubi & Negari (2010).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A general view of the title salt, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50 % probability level. N(1)—H(1NB)···Cl(1) bond is shown by dash line.
N-benzylpropan-2-aminium chloride top
Crystal data top
C10H16N+·ClF(000) = 400
Mr = 185.69Dx = 1.186 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5439 reflections
a = 9.9566 (7) Åθ = 2.2–29.9°
b = 15.5072 (10) ŵ = 0.32 mm1
c = 7.2179 (5) ÅT = 120 K
β = 111.112 (1)°Prism, colorless
V = 1039.63 (12) Å30.26 × 0.26 × 0.11 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3008 independent reflections
Radiation source: fine-focus sealed tube2303 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1314
Tmin = 0.922, Tmax = 0.966k = 2121
15855 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: mixed
wR(F2) = 0.102H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.022P)2 + 1.240P]
where P = (Fo2 + 2Fc2)/3
3008 reflections(Δ/σ)max < 0.001
111 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C10H16N+·ClV = 1039.63 (12) Å3
Mr = 185.69Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.9566 (7) ŵ = 0.32 mm1
b = 15.5072 (10) ÅT = 120 K
c = 7.2179 (5) Å0.26 × 0.26 × 0.11 mm
β = 111.112 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3008 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2303 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.966Rint = 0.032
15855 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.00Δρmax = 0.67 e Å3
3008 reflectionsΔρmin = 0.26 e Å3
111 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.07253 (4)0.60195 (3)0.78749 (6)0.02540 (11)
N10.05680 (14)0.41218 (8)0.7852 (2)0.0203 (3)
H1NA0.05780.40570.90860.024*
H1NB0.01370.46240.77730.024*
C10.2525 (2)0.30399 (11)1.0254 (3)0.0290 (4)
H1A0.19710.26801.07680.035*
C20.4001 (2)0.31060 (13)1.1261 (3)0.0373 (4)
H2A0.44500.27901.24530.045*
C30.4816 (2)0.36310 (13)1.0528 (3)0.0393 (5)
H3A0.58250.36801.12160.047*
C40.4152 (2)0.40859 (12)0.8782 (3)0.0363 (4)
H4A0.47090.44450.82700.044*
C50.2677 (2)0.40188 (11)0.7779 (3)0.0280 (4)
H5A0.22300.43340.65870.034*
C60.18499 (18)0.34934 (10)0.8506 (2)0.0219 (3)
C70.02639 (18)0.34037 (10)0.7393 (3)0.0243 (3)
H7A0.00750.33980.59490.029*
H7B0.00690.28470.77440.029*
C80.21251 (18)0.41694 (11)0.6481 (2)0.0243 (3)
H8A0.21640.42190.50810.029*
C90.2914 (2)0.33546 (12)0.6674 (3)0.0340 (4)
H9A0.24790.28550.62760.051*
H9B0.39290.33990.58140.051*
H9C0.28410.32850.80560.051*
C100.27797 (18)0.49771 (12)0.7003 (3)0.0283 (4)
H10A0.22110.54810.69190.042*
H10B0.27790.49260.83570.042*
H10C0.37710.50450.60700.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0337 (2)0.02088 (18)0.0252 (2)0.00177 (15)0.01491 (16)0.00074 (15)
N10.0230 (6)0.0190 (6)0.0207 (6)0.0021 (5)0.0101 (5)0.0017 (5)
C10.0358 (9)0.0237 (8)0.0296 (9)0.0017 (7)0.0144 (7)0.0058 (7)
C20.0380 (10)0.0320 (10)0.0354 (10)0.0086 (8)0.0053 (8)0.0012 (8)
C30.0274 (9)0.0318 (10)0.0553 (13)0.0026 (7)0.0109 (9)0.0149 (9)
C40.0374 (10)0.0273 (9)0.0550 (12)0.0049 (7)0.0298 (9)0.0060 (8)
C50.0385 (9)0.0208 (8)0.0309 (9)0.0011 (7)0.0201 (8)0.0013 (7)
C60.0293 (8)0.0153 (7)0.0245 (8)0.0024 (6)0.0139 (6)0.0011 (6)
C70.0305 (8)0.0173 (7)0.0264 (8)0.0015 (6)0.0120 (7)0.0031 (6)
C80.0237 (8)0.0273 (8)0.0213 (7)0.0013 (6)0.0075 (6)0.0016 (6)
C90.0286 (9)0.0344 (10)0.0395 (10)0.0109 (7)0.0130 (8)0.0092 (8)
C100.0236 (8)0.0308 (9)0.0308 (9)0.0034 (6)0.0102 (7)0.0013 (7)
Geometric parameters (Å, º) top
N1—C71.495 (2)C5—H5A0.9500
N1—C81.511 (2)C6—C71.498 (2)
N1—H1NA0.8999C7—H7A0.9900
N1—H1NB0.9001C7—H7B0.9900
C1—C61.388 (2)C8—C91.520 (2)
C1—C21.388 (3)C8—C101.521 (2)
C1—H1A0.9500C8—H8A1.0000
C2—C31.382 (3)C9—H9A0.9800
C2—H2A0.9500C9—H9B0.9800
C3—C41.387 (3)C9—H9C0.9800
C3—H3A0.9500C10—H10A0.9800
C4—C51.387 (3)C10—H10B0.9800
C4—H4A0.9500C10—H10C0.9800
C5—C61.389 (2)
C7—N1—C8114.28 (12)N1—C7—C6111.92 (13)
C7—N1—H1NA110.0N1—C7—H7A109.2
C8—N1—H1NA106.2C6—C7—H7A109.2
C7—N1—H1NB108.4N1—C7—H7B109.2
C8—N1—H1NB108.4C6—C7—H7B109.2
H1NA—N1—H1NB109.5H7A—C7—H7B107.9
C6—C1—C2120.88 (17)N1—C8—C9109.96 (14)
C6—C1—H1A119.6N1—C8—C10107.96 (13)
C2—C1—H1A119.6C9—C8—C10112.36 (14)
C3—C2—C1119.97 (18)N1—C8—H8A108.8
C3—C2—H2A120.0C9—C8—H8A108.8
C1—C2—H2A120.0C10—C8—H8A108.8
C2—C3—C4119.60 (18)C8—C9—H9A109.5
C2—C3—H3A120.2C8—C9—H9B109.5
C4—C3—H3A120.2H9A—C9—H9B109.5
C3—C4—C5120.29 (18)C8—C9—H9C109.5
C3—C4—H4A119.9H9A—C9—H9C109.5
C5—C4—H4A119.9H9B—C9—H9C109.5
C4—C5—C6120.49 (17)C8—C10—H10A109.5
C4—C5—H5A119.8C8—C10—H10B109.5
C6—C5—H5A119.8H10A—C10—H10B109.5
C1—C6—C5118.77 (16)C8—C10—H10C109.5
C1—C6—C7120.82 (15)H10A—C10—H10C109.5
C5—C6—C7120.39 (15)H10B—C10—H10C109.5
C6—C1—C2—C30.2 (3)C4—C5—C6—C7178.39 (15)
C1—C2—C3—C40.3 (3)C8—N1—C7—C6168.23 (13)
C2—C3—C4—C50.3 (3)C1—C6—C7—N197.96 (18)
C3—C4—C5—C60.3 (3)C5—C6—C7—N183.50 (18)
C2—C1—C6—C50.2 (3)C7—N1—C8—C962.65 (17)
C2—C1—C6—C7178.39 (16)C7—N1—C8—C10174.45 (13)
C4—C5—C6—C10.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···Cl1i0.902.253.1517 (14)176
N1—H1NB···Cl10.902.323.2099 (14)170
Symmetry code: (i) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC10H16N+·Cl
Mr185.69
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)9.9566 (7), 15.5072 (10), 7.2179 (5)
β (°) 111.112 (1)
V3)1039.63 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.26 × 0.26 × 0.11
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.922, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
15855, 3008, 2303
Rint0.032
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.102, 1.00
No. of reflections3008
No. of parameters111
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.26

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···Cl1i0.902.253.1517 (14)176
N1—H1NB···Cl10.902.323.2099 (14)170
Symmetry code: (i) x, y+1, z+2.
 

Acknowledgements

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

References

First citationBruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPourayoubi, M. & Negari, M. (2010). Acta Cryst. E66, o708.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds