metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[cis-bis­­(di­phenyl­phosphino)ethene]copper(I) di­chloridocuprate(I)

aEskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane 4111, Australia, and bChemistry, Faculty of Science and Technology, Queensland University of Technology, Brisbane, 4001, Australia
*Correspondence e-mail: P.Healy@griffith.edu.au

(Received 23 March 2010; accepted 30 March 2010; online 10 April 2010)

The crystal structure of the title compound, [Cu(C26H22P2)2][CuCl2], is composed of discrete Cu(dppey)2]+ cations [dppey is cis-bis­(diphenyl­phosphino)ethene] and [CuCl2] anions. The tetra­hedral Cu(P—P)2 core of the [Cu(dppey)2]+ cation is distorted, with Cu—P bond lengths ranging from 2.269 (1) to 2.366 (1) Å. The five-membered –Cu—P—CH=CH—P– rings adopt envelope conformations, with the Cu atom lying 0.38 and 0.65 Å out of the P—C=C—P planes. The Cu—Cl distances in the [CuCl2] anion are 2.094 (2) and 2.096 (2) Å, with a Cl—Cu—Cl angle of 176.81 (7)°.

Related literature

For related literature and crystal structures of [Cu(dppey)2]+ complexes, see: Berners-Price et al. (1992[Berners-Price, S. J., Colquhoun, L. A., Healy, P. C., Byriel, K. A. & Hanna, J. V. (1992). J. Chem. Soc. Dalton Trans. pp. 3357-3363.]); Healy et al. (2009[Healy, P. C., Loughrey, B. T. & Williams, M. L. (2009). Acta Cryst. E65, m500-m501.]). For background literature and crystal structures of [CuCl2] complexes, see: Rodenstein et al. (2008[Rodenstein, A., Creutzburg, D., Schmiedel, P., Griebel, J., Hennig, L. & Kirmse, R. (2008). Z. Anorg. Allg. Chem. 634, 2811-2818.]); Wang et al. (2005[Wang, J.-G., Kang, H.-X. & Zheng, X.-Y. (2005). Z. Kristallogr. New Cryst. Struct. 220, 597-598.]); Mirkhani et al. (2004[Mirkhani, V., Harkema, S. & Kia, R. (2004). Acta Cryst. C60, m343-m344.]); Healy et al. (1989[Healy, P. C., Kildea, J. D., Skelton, B. W. & White, A. H. (1989). Aust. J. Chem. 42, 115-136.]); Asplund et al. (1983[Asplund, M., Jagner, S. & Nilsson, M. (1983). Acta Chem. Scand. Ser. A, 37, 57-62.]). For Raman spectroscopy of [CuCl2] complexes, see: Bowmaker et al. (1973[Bowmaker, G. A., Brockliss, L. D. & Whiting, R. (1973). Aust. J. Chem. 26, 29-42.], 2007[Bowmaker, G. A., Bruce, M. I., Skelton, B. W., Somers, N. & White, A. H. (2007). Z. Anorg. Allg. Chem. 633, 1024-1030.]). For distortion parameters in tetra­hedral bidentate complexes, see: Dobson et al. (1984[Dobson, J. F., Green, B. E., Healy, P. C., Kennard, C. H. L., Pakawatchai, C. & White, A. H. (1984). Aust. J. Chem. 37, 649-659.]); Healy et al. (2008[Healy, P. C., Loughley, B. T., Bowmaker, G. A. & Hanna, J. V. (2008). Dalton Trans. pp. 3723-3728.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C26H22P2)2][CuCl2]

  • Mr = 990.75

  • Monoclinic, P 21 /n

  • a = 15.3109 (9) Å

  • b = 16.1519 (11) Å

  • c = 18.6419 (8) Å

  • β = 95.950 (4)°

  • V = 4585.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.22 mm−1

  • T = 223 K

  • 0.45 × 0.34 × 0.32 mm

Data collection
  • Oxford Diffraction GEMINI S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.610, Tmax = 0.696

  • 18820 measured reflections

  • 8015 independent reflections

  • 6315 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.140

  • S = 1.10

  • 8015 reflections

  • 541 parameters

  • H-atom parameters constrained

  • Δρmax = 2.43 e Å−3

  • Δρmin = −1.04 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Previous single crystal structure determinations on the 1:2 adducts of copper(I) salts with the bidentate phosphine ligand, Ph2P(CH=CH)PPh2 (dppey), show the formation of stable bis-chelated ionic complexes [Cu(dppey)2]X for X = PF6 (Berners-Price et al., 1992) and for BF4 as an ethanol solvate (Healy et al., 2009). In this present work, addition of aqueous hydrochloric acid to a suspension of copper(I) oxide in a solution of dppey in ethanol resulted in the dissolution of the red copper oxide and subsequent precipitation of crystals of the title complex, [Cu(dppey)2][CuCl2] (I), the structure of which is reported here.

The crystal structure consists of discrete Cu(dppey)2]+ cations and [CuCl2]- anions (Fig. 1). In the cation, the four Cu—P bond lengths are dispersed over the range 2.269 (1) - 2.366 (1) Å. The overall Cu(P—P)2 coordination geometry about the copper atom is distorted tetrahedral with the intra-ligand 'bite' angles 89.61 (4) and 87.15 (4)° while the the P—Cu—P inter-ligand angles range from 115.54 (4) - 123.27 (4)°. Angular distortion of the Cu(L—L)2 core of four-coordinate bis(bidentate) complexes can be conveniently described by the angular distortion parameters θx, θy and θz, where θx and θy represent rocking motions of the two CuP2 planes with respect to each other and θz the degree of twist between the two planes (Dobson et al., 1984; Healy et al., 2008). For complexes with D2 d symmetry, θx = θy = θz = 90°. For this present cation, the values of θx, θy and θz, are 93.4, 86.9 and 92.8°. The five membered -Cu—P—CH=CH—P- rings adopt envelope conformations with the copper atom lying 0.38Å out of the P1—C12=C23—P2 plane and 0.65Å out of the P3—C33=C43—P4 plane.

These results show significant differences from those observed for both the PF6 and BF4 complexes, in which the Cu—P bond lengths span narrow ranges of 2.276 (2)-2.289 (2)Å and 2.272 (1)-2.282 (1)Å respectively. The parameters θx, θy and θz are 90.4, 90.4 and 108.6° for the PF6 complex and 90.5, 89.7 and 72.7° for the BF4 complex; while the distances of the copper from the ligand planes are 0.03, 0.21Å and 0.04,0.21Å respectively.

The Cu—Cl distances in the anion are 2.094 (2) and 2.096 (2) Å. The anion deviates from linearity with the Cl—Cu—Cl angle 176.81 (7)°. These values are in accord with those reported for other compounds incorporating the [CuCl2]- anion (e.g. Rodenstein et al., 2008; Wang et al., 2005: Mirkhani et al., 2004; Healy et al., 1989; Asplund et al., 1983). Four C—H···Cl contacts distances ranging between 2.9 and 3.0Å are observed in the structure (Cl1···H314i 2.88 Å, Cl1···H323ii 2.99 Å, Cl2···H115iii 3.03 Å, Cl2···H33 3.00 Å; symmetry codes: (i) 1-x, -y, 2-z, (ii) x-1/2, 1/2-y, 1/2+z, (iii) x-1/2, 1/2-y, z-1/2).

Both the symmetric and anti-symmetic Cu—Cl stretching modes would be expected to be Raman active in this non linear (C2v) anion and in the solid state Raman spectrum of this complex we have assigned two bands of equal intensity observed at 304 and 319 cm-1 not present in the spectrum of the free ligand to the ν(Cu—Cl) stretching modes (cf. Bowmaker et al., 1973; 2007).

Related literature top

For related literature and crystal structures of [Cu(dppey)2]+ complexes, see: Berners-Price et al. (1992); Healy et al. (2009). For background literature and crystal structures of [CuCl2]- complexes, see: Rodenstein et al. (2008); Wang et al. (2005); Mirkhani et al. (2004); Healy et al. (1989); Asplund et al. (1983). For Raman spectroscopy of [CuCl2]- complexes, see: Bowmaker et al. (1973, 2007). For distortion parameters in tetrahedral bidentate complexes, see: Dobson et al.(1984); Healy et al. (2008).

Experimental top

A concentrated aqueous solution of HCl was added dropwise to a suspension of Cu2O (0.067 g, 0.47 mmol) in a stirred solution of dppey (0.309 g, 0.78 mmol) in 10 ml e thanol until all the Cu2O dissolved and a white precipitate formed. The volume of the reaction mixture was increased to 30 ml s and heated to reflux to give a clear solution. This was allowed to slowly cool to room temperature to give colourless crystals of the title complex suitable for single crystal X-ray diffraction studies. M.p. 490-491 K. Raman spectra on for the complex and ligand were recorded on a Renishaw InVia spectrometer.

Refinement top

H atoms attached to carbons were constrained as riding atoms, with C–H set to 0.95 Å. Uiso(H) values were set to 1.2Ueq of the parent atom. Maximum residual electron density in the complex was located at 0.9Å from the cationic copper site.

Structure description top

Previous single crystal structure determinations on the 1:2 adducts of copper(I) salts with the bidentate phosphine ligand, Ph2P(CH=CH)PPh2 (dppey), show the formation of stable bis-chelated ionic complexes [Cu(dppey)2]X for X = PF6 (Berners-Price et al., 1992) and for BF4 as an ethanol solvate (Healy et al., 2009). In this present work, addition of aqueous hydrochloric acid to a suspension of copper(I) oxide in a solution of dppey in ethanol resulted in the dissolution of the red copper oxide and subsequent precipitation of crystals of the title complex, [Cu(dppey)2][CuCl2] (I), the structure of which is reported here.

The crystal structure consists of discrete Cu(dppey)2]+ cations and [CuCl2]- anions (Fig. 1). In the cation, the four Cu—P bond lengths are dispersed over the range 2.269 (1) - 2.366 (1) Å. The overall Cu(P—P)2 coordination geometry about the copper atom is distorted tetrahedral with the intra-ligand 'bite' angles 89.61 (4) and 87.15 (4)° while the the P—Cu—P inter-ligand angles range from 115.54 (4) - 123.27 (4)°. Angular distortion of the Cu(L—L)2 core of four-coordinate bis(bidentate) complexes can be conveniently described by the angular distortion parameters θx, θy and θz, where θx and θy represent rocking motions of the two CuP2 planes with respect to each other and θz the degree of twist between the two planes (Dobson et al., 1984; Healy et al., 2008). For complexes with D2 d symmetry, θx = θy = θz = 90°. For this present cation, the values of θx, θy and θz, are 93.4, 86.9 and 92.8°. The five membered -Cu—P—CH=CH—P- rings adopt envelope conformations with the copper atom lying 0.38Å out of the P1—C12=C23—P2 plane and 0.65Å out of the P3—C33=C43—P4 plane.

These results show significant differences from those observed for both the PF6 and BF4 complexes, in which the Cu—P bond lengths span narrow ranges of 2.276 (2)-2.289 (2)Å and 2.272 (1)-2.282 (1)Å respectively. The parameters θx, θy and θz are 90.4, 90.4 and 108.6° for the PF6 complex and 90.5, 89.7 and 72.7° for the BF4 complex; while the distances of the copper from the ligand planes are 0.03, 0.21Å and 0.04,0.21Å respectively.

The Cu—Cl distances in the anion are 2.094 (2) and 2.096 (2) Å. The anion deviates from linearity with the Cl—Cu—Cl angle 176.81 (7)°. These values are in accord with those reported for other compounds incorporating the [CuCl2]- anion (e.g. Rodenstein et al., 2008; Wang et al., 2005: Mirkhani et al., 2004; Healy et al., 1989; Asplund et al., 1983). Four C—H···Cl contacts distances ranging between 2.9 and 3.0Å are observed in the structure (Cl1···H314i 2.88 Å, Cl1···H323ii 2.99 Å, Cl2···H115iii 3.03 Å, Cl2···H33 3.00 Å; symmetry codes: (i) 1-x, -y, 2-z, (ii) x-1/2, 1/2-y, 1/2+z, (iii) x-1/2, 1/2-y, z-1/2).

Both the symmetric and anti-symmetic Cu—Cl stretching modes would be expected to be Raman active in this non linear (C2v) anion and in the solid state Raman spectrum of this complex we have assigned two bands of equal intensity observed at 304 and 319 cm-1 not present in the spectrum of the free ligand to the ν(Cu—Cl) stretching modes (cf. Bowmaker et al., 1973; 2007).

For related literature and crystal structures of [Cu(dppey)2]+ complexes, see: Berners-Price et al. (1992); Healy et al. (2009). For background literature and crystal structures of [CuCl2]- complexes, see: Rodenstein et al. (2008); Wang et al. (2005); Mirkhani et al. (2004); Healy et al. (1989); Asplund et al. (1983). For Raman spectroscopy of [CuCl2]- complexes, see: Bowmaker et al. (1973, 2007). For distortion parameters in tetrahedral bidentate complexes, see: Dobson et al.(1984); Healy et al. (2008).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the cation and anion of the title complex. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. H atoms are omitted for clarity.
Bis[cis-bis(diphenylphosphino)ethene]copper(I) dichloridocuprate(I) top
Crystal data top
[Cu(C26H22P2)2][CuCl2]F(000) = 2032
Mr = 990.75Dx = 1.435 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ynCell parameters from 8706 reflections
a = 15.3109 (9) Åθ = 3.2–32.5°
b = 16.1519 (11) ŵ = 1.22 mm1
c = 18.6419 (8) ÅT = 223 K
β = 95.950 (4)°Block, colourless
V = 4585.3 (5) Å30.45 × 0.34 × 0.32 mm
Z = 4
Data collection top
Oxford Diffraction GEMINI S Ultra
diffractometer
8015 independent reflections
Radiation source: Enhance (Mo) X-ray Source6315 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 16.0774 pixels mm-1θmax = 25.0°, θmin = 3.3°
ω and φ scansh = 1817
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1719
Tmin = 0.610, Tmax = 0.696l = 1422
18820 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0716P)2 + 4.4671P]
where P = (Fo2 + 2Fc2)/3
8015 reflections(Δ/σ)max = 0.001
541 parametersΔρmax = 2.43 e Å3
0 restraintsΔρmin = 1.04 e Å3
Crystal data top
[Cu(C26H22P2)2][CuCl2]V = 4585.3 (5) Å3
Mr = 990.75Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.3109 (9) ŵ = 1.22 mm1
b = 16.1519 (11) ÅT = 223 K
c = 18.6419 (8) Å0.45 × 0.34 × 0.32 mm
β = 95.950 (4)°
Data collection top
Oxford Diffraction GEMINI S Ultra
diffractometer
8015 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
6315 reflections with I > 2σ(I)
Tmin = 0.610, Tmax = 0.696Rint = 0.038
18820 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.10Δρmax = 2.43 e Å3
8015 reflectionsΔρmin = 1.04 e Å3
541 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.80116 (3)0.21062 (3)0.95590 (2)0.0312 (1)
P10.82828 (6)0.11348 (6)1.04550 (5)0.0277 (3)
P20.93393 (6)0.18014 (6)0.91540 (5)0.0290 (3)
P30.67319 (6)0.21508 (6)0.88279 (4)0.0253 (3)
P40.76677 (6)0.34498 (6)0.99506 (5)0.0300 (3)
C130.9445 (2)0.0902 (2)1.04169 (18)0.0267 (10)
C230.9876 (2)0.1169 (2)0.98804 (18)0.0285 (11)
C330.6106 (2)0.2954 (2)0.92250 (19)0.0320 (11)
C430.6491 (2)0.3492 (2)0.96959 (19)0.0310 (11)
C1110.8199 (2)0.1441 (2)1.13855 (18)0.0288 (11)
C1120.7422 (3)0.1827 (3)1.1532 (2)0.0372 (12)
C1130.7297 (3)0.2054 (3)1.2234 (2)0.0459 (16)
C1140.7943 (3)0.1898 (3)1.2786 (2)0.0484 (16)
C1150.8713 (3)0.1519 (3)1.2650 (2)0.0431 (15)
C1160.8849 (3)0.1299 (3)1.1949 (2)0.0357 (11)
C1210.7829 (2)0.0077 (2)1.04322 (18)0.0297 (11)
C1220.7268 (3)0.0186 (3)0.98437 (19)0.0341 (11)
C1230.6942 (3)0.0989 (3)0.9820 (2)0.0401 (14)
C1240.7168 (3)0.1530 (3)1.0376 (2)0.0425 (12)
C1250.7727 (3)0.1278 (3)1.0972 (2)0.0450 (16)
C1260.8049 (3)0.0473 (3)1.10009 (19)0.0366 (11)
C2110.9352 (3)0.1096 (2)0.83815 (19)0.0332 (11)
C2120.8692 (3)0.0504 (3)0.8293 (2)0.0490 (16)
C2130.8656 (4)0.0057 (3)0.7733 (3)0.0614 (19)
C2140.9258 (4)0.0020 (3)0.7239 (3)0.0574 (19)
C2150.9916 (3)0.0562 (3)0.7305 (2)0.0534 (16)
C2160.9971 (3)0.1125 (3)0.7880 (2)0.0407 (14)
C2211.0158 (2)0.2587 (2)0.90291 (18)0.0270 (11)
C2221.0773 (3)0.2805 (3)0.95950 (19)0.0384 (11)
C2231.1383 (3)0.3432 (3)0.9517 (2)0.0495 (16)
C2241.1353 (3)0.3864 (3)0.8875 (3)0.0503 (17)
C2251.0736 (3)0.3667 (3)0.8314 (2)0.0443 (16)
C2261.0135 (3)0.3031 (2)0.8384 (2)0.0356 (12)
C3110.5976 (2)0.1280 (2)0.87184 (18)0.0286 (11)
C3120.6123 (3)0.0674 (2)0.8210 (2)0.0345 (11)
C3130.5628 (3)0.0042 (3)0.8162 (2)0.0447 (14)
C3140.4979 (3)0.0164 (3)0.8612 (3)0.0487 (16)
C3150.4825 (3)0.0421 (3)0.9106 (3)0.0505 (16)
C3160.5325 (3)0.1148 (3)0.9170 (2)0.0418 (14)
C3210.6762 (2)0.2503 (2)0.78973 (18)0.0268 (10)
C3220.7560 (3)0.2637 (3)0.7634 (2)0.0402 (14)
C3230.7605 (3)0.2870 (3)0.6920 (2)0.0503 (16)
C3240.6835 (3)0.2970 (3)0.6470 (2)0.0463 (15)
C3250.6033 (3)0.2851 (3)0.6725 (2)0.0430 (14)
C3260.5991 (3)0.2620 (2)0.74381 (19)0.0328 (11)
C4110.8069 (3)0.4333 (3)0.9471 (2)0.0408 (13)
C4120.8965 (4)0.4409 (3)0.9429 (4)0.079 (2)
C4130.9290 (6)0.5065 (4)0.9057 (5)0.109 (3)
C4140.8736 (7)0.5646 (4)0.8735 (3)0.099 (3)
C4150.7853 (6)0.5584 (4)0.8783 (3)0.101 (3)
C4160.7511 (4)0.4939 (4)0.9159 (3)0.076 (2)
C4210.7838 (3)0.3777 (2)1.08940 (19)0.0311 (11)
C4220.8642 (3)0.3600 (3)1.1275 (2)0.0426 (14)
C4230.8832 (3)0.3860 (3)1.1984 (2)0.0500 (16)
C4240.8211 (3)0.4268 (3)1.2323 (2)0.0533 (16)
C4250.7404 (3)0.4450 (3)1.1957 (2)0.0535 (16)
C4260.7216 (3)0.4196 (3)1.1241 (2)0.0445 (14)
Cu20.44649 (4)0.31970 (4)1.04879 (3)0.0542 (2)
Cl10.49493 (10)0.23942 (9)1.13188 (8)0.0720 (5)
Cl20.40010 (12)0.39502 (13)0.96164 (8)0.0965 (7)
H130.974900.058301.079100.0320*
H231.047700.102700.987500.0340*
H330.549000.299000.909400.0380*
H430.614900.390300.990100.0370*
H1120.697600.193901.115100.0440*
H1130.676500.231301.233100.0540*
H1140.785800.205601.326500.0580*
H1150.915200.140601.303600.0510*
H1160.938900.105201.185500.0430*
H1220.710500.018300.945700.0410*
H1230.656100.116500.941500.0480*
H1240.694100.207901.035500.0500*
H1250.788700.165301.135600.0530*
H1260.842200.029601.141100.0430*
H2120.826000.048300.862400.0580*
H2130.821000.047000.768900.0730*
H2140.922100.040100.684800.0680*
H2151.033200.058100.696100.0640*
H2161.042900.152500.793000.0480*
H2221.078100.252301.004300.0460*
H2231.181400.356200.990400.0590*
H2241.176200.429700.882200.0590*
H2251.071800.396700.787400.0530*
H2260.971000.290100.799200.0420*
H3120.656500.075400.789600.0410*
H3130.573600.045300.781700.0530*
H3140.463900.065800.857600.0570*
H3150.437300.033800.941100.0600*
H3160.521800.154900.952300.0490*
H3220.808700.257000.794500.0480*
H3230.815800.295800.674400.0590*
H3240.686200.312500.598100.0560*
H3250.550800.292300.641200.0510*
H3260.543700.254200.761500.0390*
H4120.935900.401100.965700.0940*
H4130.990500.510900.902700.1300*
H4140.896500.609000.847800.1170*
H4150.747000.598900.855400.1210*
H4160.689900.491500.920500.0910*
H4220.906800.329701.104700.0510*
H4230.939400.375201.223300.0600*
H4240.833400.442801.281400.0630*
H4250.697900.474501.219100.0640*
H4260.665600.431301.099200.0530*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0253 (2)0.0421 (3)0.0255 (2)0.0024 (2)0.0001 (2)0.0085 (2)
P10.0270 (5)0.0350 (5)0.0208 (4)0.0012 (4)0.0017 (4)0.0063 (4)
P20.0266 (5)0.0378 (6)0.0222 (4)0.0030 (4)0.0011 (4)0.0077 (4)
P30.0252 (5)0.0304 (5)0.0198 (4)0.0006 (4)0.0001 (3)0.0010 (4)
P40.0292 (5)0.0353 (5)0.0256 (5)0.0015 (4)0.0036 (4)0.0015 (4)
C130.0292 (19)0.0286 (19)0.0217 (16)0.0023 (15)0.0004 (14)0.0062 (14)
C230.0245 (18)0.034 (2)0.0260 (18)0.0026 (15)0.0021 (14)0.0038 (15)
C330.0266 (19)0.042 (2)0.0277 (18)0.0069 (17)0.0038 (15)0.0005 (17)
C430.0304 (19)0.036 (2)0.0273 (18)0.0080 (17)0.0060 (15)0.0006 (16)
C1110.036 (2)0.0268 (19)0.0243 (17)0.0041 (16)0.0064 (15)0.0049 (15)
C1120.036 (2)0.036 (2)0.040 (2)0.0012 (17)0.0057 (17)0.0040 (18)
C1130.050 (3)0.039 (2)0.052 (3)0.007 (2)0.021 (2)0.005 (2)
C1140.067 (3)0.047 (3)0.034 (2)0.006 (2)0.018 (2)0.0094 (19)
C1150.053 (3)0.048 (3)0.0278 (19)0.003 (2)0.0014 (18)0.0018 (18)
C1160.038 (2)0.040 (2)0.0288 (19)0.0011 (18)0.0025 (16)0.0017 (17)
C1210.0280 (19)0.038 (2)0.0242 (17)0.0008 (16)0.0074 (15)0.0026 (15)
C1220.035 (2)0.041 (2)0.0261 (18)0.0004 (17)0.0026 (16)0.0014 (16)
C1230.042 (2)0.044 (3)0.034 (2)0.0031 (19)0.0026 (17)0.0109 (19)
C1240.047 (2)0.035 (2)0.047 (2)0.0069 (19)0.012 (2)0.0041 (19)
C1250.056 (3)0.040 (3)0.039 (2)0.003 (2)0.005 (2)0.0096 (19)
C1260.045 (2)0.040 (2)0.0239 (18)0.0067 (19)0.0010 (16)0.0044 (16)
C2110.039 (2)0.036 (2)0.0231 (17)0.0003 (17)0.0040 (15)0.0058 (16)
C2120.054 (3)0.048 (3)0.044 (2)0.013 (2)0.001 (2)0.000 (2)
C2130.068 (4)0.046 (3)0.066 (3)0.011 (2)0.013 (3)0.002 (3)
C2140.074 (4)0.047 (3)0.045 (3)0.016 (3)0.024 (3)0.012 (2)
C2150.060 (3)0.061 (3)0.038 (2)0.015 (3)0.001 (2)0.003 (2)
C2160.042 (2)0.047 (3)0.032 (2)0.0003 (19)0.0020 (17)0.0035 (19)
C2210.0233 (18)0.032 (2)0.0271 (17)0.0001 (15)0.0087 (14)0.0006 (15)
C2220.045 (2)0.045 (2)0.0249 (18)0.008 (2)0.0028 (16)0.0016 (17)
C2230.050 (3)0.053 (3)0.045 (2)0.018 (2)0.002 (2)0.013 (2)
C2240.053 (3)0.042 (3)0.058 (3)0.012 (2)0.016 (2)0.002 (2)
C2250.048 (3)0.041 (3)0.046 (2)0.003 (2)0.015 (2)0.014 (2)
C2260.034 (2)0.039 (2)0.034 (2)0.0011 (17)0.0039 (16)0.0058 (17)
C3110.0252 (18)0.035 (2)0.0243 (17)0.0004 (15)0.0036 (14)0.0066 (15)
C3120.037 (2)0.036 (2)0.0292 (19)0.0002 (17)0.0026 (16)0.0002 (16)
C3130.050 (3)0.039 (2)0.042 (2)0.000 (2)0.010 (2)0.0048 (19)
C3140.048 (3)0.033 (2)0.063 (3)0.010 (2)0.004 (2)0.009 (2)
C3150.038 (2)0.053 (3)0.062 (3)0.008 (2)0.013 (2)0.016 (2)
C3160.038 (2)0.046 (3)0.043 (2)0.0005 (19)0.0121 (18)0.003 (2)
C3210.0311 (19)0.0268 (19)0.0220 (16)0.0000 (15)0.0010 (14)0.0025 (14)
C3220.034 (2)0.055 (3)0.031 (2)0.0004 (19)0.0003 (17)0.0122 (19)
C3230.047 (3)0.067 (3)0.039 (2)0.004 (2)0.015 (2)0.015 (2)
C3240.058 (3)0.055 (3)0.0254 (19)0.009 (2)0.0024 (19)0.0089 (19)
C3250.046 (2)0.048 (3)0.032 (2)0.000 (2)0.0095 (18)0.0062 (19)
C3260.033 (2)0.037 (2)0.0276 (18)0.0015 (17)0.0008 (15)0.0027 (16)
C4110.062 (3)0.039 (2)0.0234 (18)0.010 (2)0.0139 (18)0.0039 (17)
C4120.087 (4)0.033 (3)0.129 (5)0.005 (3)0.076 (4)0.001 (3)
C4130.150 (7)0.037 (3)0.163 (7)0.020 (4)0.127 (6)0.014 (4)
C4140.207 (9)0.053 (4)0.046 (3)0.054 (5)0.055 (4)0.015 (3)
C4150.168 (8)0.067 (4)0.056 (4)0.048 (5)0.045 (4)0.027 (3)
C4160.091 (4)0.064 (4)0.063 (3)0.034 (3)0.035 (3)0.030 (3)
C4210.038 (2)0.031 (2)0.0247 (18)0.0097 (16)0.0048 (16)0.0001 (15)
C4220.041 (2)0.049 (3)0.037 (2)0.010 (2)0.0005 (18)0.0002 (19)
C4230.050 (3)0.060 (3)0.037 (2)0.013 (2)0.010 (2)0.007 (2)
C4240.066 (3)0.066 (3)0.027 (2)0.025 (3)0.000 (2)0.002 (2)
C4250.062 (3)0.065 (3)0.035 (2)0.009 (2)0.012 (2)0.011 (2)
C4260.044 (2)0.055 (3)0.034 (2)0.002 (2)0.0011 (18)0.003 (2)
Cu20.0453 (3)0.0650 (4)0.0523 (3)0.0000 (3)0.0049 (3)0.0095 (3)
Cl10.0788 (10)0.0607 (8)0.0766 (9)0.0045 (7)0.0087 (7)0.0063 (7)
Cl20.0892 (12)0.1363 (16)0.0624 (9)0.0361 (11)0.0003 (8)0.0138 (10)
Geometric parameters (Å, º) top
Cu1—P12.2979 (11)C125—H1250.9500
Cu1—P22.2941 (10)C126—H1260.9500
Cu1—P32.2689 (10)C311—C3121.397 (5)
Cu1—P42.3663 (11)C311—C3161.386 (5)
Cu2—Cl22.0940 (18)C212—H2120.9500
Cu2—Cl12.0958 (16)C312—C3131.381 (6)
P1—C1111.821 (3)C313—C3141.379 (7)
P1—C131.827 (3)C213—H2130.9500
P1—C1211.843 (3)C314—C3151.357 (7)
P2—C2111.838 (4)C214—H2140.9500
P2—C231.823 (3)C315—C3161.400 (7)
P2—C2211.816 (3)C215—H2150.9500
P3—C3111.820 (3)C216—H2160.9500
P3—C3211.831 (3)C321—C3261.397 (5)
P3—C331.816 (3)C321—C3221.380 (5)
P4—C4211.829 (4)C222—H2220.9500
P4—C431.816 (3)C322—C3231.392 (5)
P4—C4111.824 (5)C223—H2230.9500
C13—C231.326 (5)C323—C3241.384 (6)
C33—C431.329 (5)C224—H2240.9500
C111—C1121.395 (6)C324—C3251.375 (6)
C111—C1161.389 (5)C225—H2250.9500
C112—C1131.391 (5)C325—C3261.389 (5)
C113—C1141.375 (6)C226—H2260.9500
C13—H130.9500C411—C4121.388 (8)
C114—C1151.375 (7)C411—C4161.387 (8)
C115—C1161.391 (5)C312—H3120.9500
C121—C1221.388 (5)C412—C4131.387 (10)
C121—C1261.397 (5)C313—H3130.9500
C122—C1231.389 (7)C413—C4141.362 (11)
C123—C1241.372 (6)C314—H3140.9500
C23—H230.9500C414—C4151.368 (14)
C124—C1251.391 (6)C315—H3150.9500
C125—C1261.390 (7)C415—C4161.388 (9)
C33—H330.9500C316—H3160.9500
C43—H430.9500C421—C4261.382 (6)
C211—C2121.389 (6)C421—C4221.386 (6)
C211—C2161.399 (6)C322—H3220.9500
C212—C2131.379 (7)C422—C4231.389 (5)
C112—H1120.9500C423—C4241.365 (6)
C213—C2141.370 (8)C323—H3230.9500
C113—H1130.9500C324—H3240.9500
C114—H1140.9500C424—C4251.380 (6)
C214—C2151.374 (7)C325—H3250.9500
C115—H1150.9500C425—C4261.398 (5)
C215—C2161.402 (6)C326—H3260.9500
C116—H1160.9500C412—H4120.9500
C221—C2261.398 (5)C413—H4130.9500
C221—C2221.385 (5)C414—H4140.9500
C122—H1220.9500C415—H4150.9500
C222—C2231.395 (7)C416—H4160.9500
C123—H1230.9500C422—H4220.9500
C223—C2241.382 (7)C423—H4230.9500
C124—H1240.9500C424—H4240.9500
C224—C2251.372 (7)C425—H4250.9500
C225—C2261.394 (6)C426—H4260.9500
Cl1···C314i3.606 (5)C414···H223x3.0400
Cl1···H314i2.8800C415···H223x2.8100
Cl1···H323ii2.9900C416···H223x3.1000
Cl2···H115iii3.0300C425···H224x2.8700
Cl2···H333.0000C426···H224x2.9000
P1···C232.765 (3)C426···H432.8800
P1···P23.2360 (13)H13···H1162.2400
P2···P13.2360 (13)H13···C1162.9200
P2···C132.757 (3)H23···C2222.9600
P3···P43.1959 (13)H23···H2222.4700
P3···C432.752 (3)H23···C126iv3.0500
P4···C332.742 (3)H33···H3162.5100
P4···P33.1959 (13)H33···C3162.9900
P2···H3223.0700H33···Cl23.0000
C13···C23iv3.563 (5)H43···H4162.4500
C23···C13iv3.563 (5)H43···C4262.8800
C111···C4223.563 (6)H43···H4262.2000
C112···C4223.479 (7)H113···C225ii2.9900
C112···C4213.449 (6)H114···H125xi2.5100
C13···H1162.7000H114···C224ii3.0600
C113···C225ii3.481 (6)H115···Cl2v3.0300
C13···H325v3.0100H116···H132.2400
C114···C224ii3.548 (7)H116···C132.7000
C116···C1263.517 (6)H116···H325v2.5800
C23···H2222.5900H116···C214iv3.0300
C126···C1163.517 (6)H122···C3122.7500
C33···H3162.7300H122···H2122.5200
C43···H4262.7400H122···C3112.7400
C43···H4162.5700H125···H114vii2.5100
C111···H1262.8300H126···C216iv2.9900
C213···C325vi3.545 (7)H126···C1162.8200
C214···C416vi3.559 (8)H126···C1112.8300
C115···H425vii3.0800H212···C1223.0600
C115···H326v3.0500H212···H1222.5200
C116···H1262.8200H213···C323vi3.0800
C116···H132.9200H213···C324vi2.9700
C216···C2263.221 (6)H214···H416vi2.5200
C116···H325v3.0900H215···H425viii2.5700
C221···C4123.583 (6)H216···C2262.6300
C122···H315i3.0000H216···C2212.7400
C122···H2123.0600H216···H2262.4900
C123···H324vi2.8600H222···C232.5900
C123···H315i2.8000H222···H232.4700
C224···C114viii3.548 (7)H222···H324v2.5100
C225···C113viii3.481 (6)H222···C324v3.0700
C225···C4133.543 (9)H223···C415x2.8100
C226···C4123.561 (7)H223···C416x3.1000
C126···H23iv3.0500H223···C414x3.0400
C226···C2163.221 (6)H224···C426x2.9000
C211···H2263.0700H224···C425x2.8700
C312···C3263.454 (5)H226···C2113.0700
C314···Cl1i3.606 (5)H226···H3222.5300
C214···H116iv3.0300H226···C2162.9100
C214···H416vi3.0700H226···H2162.4900
C315···C315i3.588 (8)H312···C3212.8400
C216···H2262.9100H312···C414vi3.0300
C216···H126iv2.9900H314···Cl1i2.8800
C221···H2162.7400H315···C123i2.8000
C221···H4122.9100H315···C122i3.0000
C222···H232.9600H316···C332.7300
C222···H4122.9200H316···H332.5100
C224···H4133.0300H322···H2262.5300
C224···H114viii3.0600H322···P23.0700
C225···H4133.0300H323···Cl1viii2.9900
C225···H113viii2.9900H324···H222iii2.5100
C325···C213ix3.545 (7)H324···C123ix2.8600
C326···C3123.454 (5)H325···C13iii3.0100
C226···H2162.6300H325···H116iii2.5800
C311···H3262.9500H325···C116iii3.0900
C311···H1222.7400H326···C115iii3.0500
C312···H1222.7500H326···C3112.9500
C412···C2263.561 (7)H412···C2212.9100
C412···C2213.583 (6)H412···C2222.9200
C413···C2253.543 (9)H413···C2243.0300
C314···H424iii3.0300H413···C2253.0300
C416···C214ix3.559 (8)H414···C325ix2.8700
C316···H332.9900H414···C326ix3.0100
C321···H3122.8400H416···H432.4500
C421···C1123.449 (6)H416···C432.5700
C422···C1123.479 (7)H416···H214ix2.5200
C422···C1113.563 (6)H416···C214ix3.0700
C323···H213ix3.0800H424···C314v3.0300
C324···H222iii3.0700H425···H215ii2.5700
C324···H213ix2.9700H425···C115xi3.0800
C325···H414vi2.8700H426···H432.2000
C326···H414vi3.0100H426···C432.7400
C414···H312ix3.0300
P1—Cu1—P289.61 (4)C125—C126—H126120.00
P1—Cu1—P3122.55 (4)P3—C311—C312118.2 (3)
P1—Cu1—P4115.54 (4)C312—C311—C316118.7 (3)
P2—Cu1—P3123.27 (4)P3—C311—C316122.7 (3)
P2—Cu1—P4122.10 (4)C311—C312—C313120.3 (4)
P3—Cu1—P487.15 (4)C213—C212—H212119.00
Cl1—Cu2—Cl2176.81 (7)C211—C212—H212120.00
Cu1—P1—C111118.80 (11)C212—C213—H213120.00
Cu1—P1—C121125.23 (11)C312—C313—C314120.4 (4)
C13—P1—C111104.95 (15)C214—C213—H213120.00
C13—P1—C121100.06 (15)C313—C314—C315120.0 (4)
C111—P1—C121102.13 (15)C213—C214—H214120.00
Cu1—P1—C13102.45 (11)C215—C214—H214120.00
Cu1—P2—C23102.85 (11)C314—C315—C316120.7 (4)
Cu1—P2—C221122.64 (11)C216—C215—H215120.00
C23—P2—C211101.20 (16)C214—C215—H215120.00
C23—P2—C221102.88 (15)C215—C216—H216120.00
C211—P2—C221105.62 (17)C211—C216—H216120.00
Cu1—P2—C211118.20 (15)C311—C316—C315119.9 (4)
Cu1—P3—C311122.85 (11)P3—C321—C326121.3 (3)
Cu1—P3—C321118.30 (11)C322—C321—C326118.9 (3)
Cu1—P3—C33103.72 (11)P3—C321—C322119.7 (3)
C33—P3—C321103.33 (15)C321—C322—C323121.1 (4)
C311—P3—C321102.25 (15)C221—C222—H222120.00
C33—P3—C311103.98 (15)C223—C222—H222119.00
Cu1—P4—C43101.55 (11)C322—C323—C324119.2 (4)
Cu1—P4—C421123.20 (12)C222—C223—H223120.00
C43—P4—C411102.59 (18)C224—C223—H223120.00
Cu1—P4—C411117.98 (15)C225—C224—H224120.00
C411—P4—C421102.93 (17)C223—C224—H224120.00
C43—P4—C421106.21 (19)C323—C324—C325120.6 (4)
P1—C13—C23121.7 (3)C226—C225—H225120.00
P2—C23—C13121.4 (2)C224—C225—H225120.00
P3—C33—C43121.3 (2)C324—C325—C326120.0 (4)
P4—C43—C33120.6 (3)C225—C226—H226120.00
P1—C111—C116124.0 (3)C321—C326—C325120.2 (4)
C112—C111—C116119.0 (3)C221—C226—H226120.00
P1—C111—C112117.0 (3)C412—C411—C416118.9 (5)
C111—C112—C113120.4 (4)P4—C411—C412118.8 (4)
C23—C13—H13119.00P4—C411—C416122.2 (4)
C112—C113—C114119.8 (4)C313—C312—H312120.00
P1—C13—H13119.00C411—C412—C413120.3 (6)
C113—C114—C115120.5 (4)C311—C312—H312120.00
C114—C115—C116120.1 (4)C314—C313—H313120.00
C111—C116—C115120.2 (4)C312—C313—H313120.00
P1—C121—C122120.2 (3)C412—C413—C414120.5 (8)
P1—C121—C126120.7 (3)C313—C314—H314120.00
C122—C121—C126119.1 (4)C413—C414—C415119.7 (7)
C121—C122—C123120.1 (4)C315—C314—H314120.00
C13—C23—H23119.00C316—C315—H315120.00
P2—C23—H23119.00C414—C415—C416121.0 (6)
C122—C123—C124120.6 (4)C314—C315—H315120.00
C123—C124—C125120.2 (4)C315—C316—H316120.00
C124—C125—C126119.4 (4)C311—C316—H316120.00
C121—C126—C125120.6 (4)C411—C416—C415119.6 (6)
C43—C33—H33119.00C422—C421—C426118.7 (3)
P3—C33—H33119.00P4—C421—C422117.6 (3)
P4—C43—H43120.00P4—C421—C426123.7 (3)
C33—C43—H43120.00C421—C422—C423120.9 (4)
P2—C211—C216124.5 (3)C321—C322—H322120.00
P2—C211—C212117.0 (3)C323—C322—H322119.00
C212—C211—C216118.6 (3)C422—C423—C424120.0 (4)
C211—C212—C213120.9 (4)C324—C323—H323120.00
C113—C112—H112120.00C322—C323—H323120.00
C111—C112—H112120.00C423—C424—C425120.3 (4)
C114—C113—H113120.00C325—C324—H324120.00
C212—C213—C214120.2 (5)C323—C324—H324120.00
C112—C113—H113120.00C424—C425—C426119.7 (4)
C113—C114—H114120.00C326—C325—H325120.00
C213—C214—C215120.5 (5)C324—C325—H325120.00
C115—C114—H114120.00C421—C426—C425120.5 (4)
C114—C115—H115120.00C325—C326—H326120.00
C116—C115—H115120.00C321—C326—H326120.00
C214—C215—C216119.9 (4)C411—C412—H412120.00
C111—C116—H116120.00C413—C412—H412120.00
C211—C216—C215119.9 (4)C414—C413—H413120.00
C115—C116—H116120.00C412—C413—H413120.00
P2—C221—C222120.3 (3)C413—C414—H414120.00
C222—C221—C226118.7 (3)C415—C414—H414120.00
P2—C221—C226120.9 (3)C416—C415—H415120.00
C121—C122—H122120.00C414—C415—H415119.00
C221—C222—C223121.0 (3)C411—C416—H416120.00
C123—C122—H122120.00C415—C416—H416120.00
C122—C123—H123120.00C423—C422—H422120.00
C124—C123—H123120.00C421—C422—H422119.00
C222—C223—C224119.6 (4)C422—C423—H423120.00
C123—C124—H124120.00C424—C423—H423120.00
C125—C124—H124120.00C425—C424—H424120.00
C223—C224—C225120.1 (4)C423—C424—H424120.00
C124—C125—H125120.00C424—C425—H425120.00
C126—C125—H125120.00C426—C425—H425120.00
C224—C225—C226120.6 (4)C421—C426—H426120.00
C121—C126—H126120.00C425—C426—H426120.00
C221—C226—C225120.0 (4)
P2—Cu1—P1—C1311.99 (11)Cu1—P4—C43—C3316.8 (3)
P2—Cu1—P1—C111127.00 (12)C411—P4—C43—C33105.6 (3)
P2—Cu1—P1—C121100.03 (13)C421—P4—C43—C33146.7 (3)
P3—Cu1—P1—C13142.27 (11)Cu1—P4—C411—C41257.5 (4)
P3—Cu1—P1—C111102.72 (12)Cu1—P4—C411—C416123.7 (4)
P3—Cu1—P1—C12130.25 (14)C43—P4—C411—C412168.1 (4)
P4—Cu1—P1—C13113.87 (11)C43—P4—C411—C41613.2 (4)
P4—Cu1—P1—C1111.14 (13)C421—P4—C411—C41281.8 (4)
P4—Cu1—P1—C121134.12 (13)C421—P4—C411—C41697.0 (4)
P1—Cu1—P2—C2311.66 (11)Cu1—P4—C421—C42247.7 (4)
P1—Cu1—P2—C21198.73 (13)Cu1—P4—C421—C426133.1 (3)
P1—Cu1—P2—C221126.34 (14)C43—P4—C421—C422163.7 (3)
P3—Cu1—P2—C23141.38 (11)C43—P4—C421—C42617.0 (4)
P3—Cu1—P2—C21131.00 (14)C411—P4—C421—C42288.8 (3)
P3—Cu1—P2—C221103.94 (14)C411—P4—C421—C42690.4 (4)
P4—Cu1—P2—C23108.66 (11)P1—C13—C23—P21.1 (4)
P4—Cu1—P2—C211140.96 (13)P3—C33—C43—P40.8 (4)
P4—Cu1—P2—C2216.03 (14)P1—C111—C112—C113177.9 (4)
P1—Cu1—P3—C3398.93 (12)C116—C111—C112—C1131.0 (6)
P1—Cu1—P3—C31118.05 (14)P1—C111—C116—C115177.0 (3)
P1—Cu1—P3—C321147.43 (12)C112—C111—C116—C1151.8 (6)
P2—Cu1—P3—C33146.92 (11)C111—C112—C113—C1140.1 (7)
P2—Cu1—P3—C31196.10 (13)C112—C113—C114—C1150.0 (7)
P2—Cu1—P3—C32133.28 (14)C113—C114—C115—C1160.8 (7)
P4—Cu1—P3—C3319.78 (12)C114—C115—C116—C1111.7 (7)
P4—Cu1—P3—C311136.76 (13)P1—C121—C122—C123178.6 (3)
P4—Cu1—P3—C32193.86 (13)C126—C121—C122—C1230.9 (6)
P1—Cu1—P4—C43105.01 (12)P1—C121—C126—C125178.0 (3)
P1—Cu1—P4—C411143.86 (16)C122—C121—C126—C1251.4 (6)
P1—Cu1—P4—C42113.30 (18)C121—C122—C123—C1240.1 (7)
P2—Cu1—P4—C43148.08 (12)C122—C123—C124—C1250.1 (7)
P2—Cu1—P4—C41136.95 (17)C123—C124—C125—C1260.4 (7)
P2—Cu1—P4—C42193.61 (18)C124—C125—C126—C1211.2 (7)
P3—Cu1—P4—C4319.97 (12)P2—C211—C212—C213179.3 (4)
P3—Cu1—P4—C41191.16 (16)C216—C211—C212—C2131.5 (6)
P3—Cu1—P4—C421138.28 (18)P2—C211—C216—C215179.4 (3)
Cu1—P1—C13—C2310.6 (3)C212—C211—C216—C2150.1 (6)
C111—P1—C13—C23135.3 (3)C211—C212—C213—C2142.2 (8)
C121—P1—C13—C23119.2 (3)C212—C213—C214—C2151.6 (8)
Cu1—P1—C111—C11252.6 (3)C213—C214—C215—C2160.3 (8)
Cu1—P1—C111—C116128.7 (3)C214—C215—C216—C2110.5 (7)
C13—P1—C111—C112166.2 (3)P2—C221—C222—C223177.3 (3)
C13—P1—C111—C11615.0 (4)C226—C221—C222—C2232.6 (6)
C121—P1—C111—C11289.8 (3)P2—C221—C226—C225176.0 (3)
C121—P1—C111—C11689.0 (3)C222—C221—C226—C2251.4 (6)
Cu1—P1—C121—C1220.7 (4)C221—C222—C223—C2242.5 (7)
Cu1—P1—C121—C126178.8 (3)C222—C223—C224—C2251.1 (7)
C13—P1—C121—C122113.8 (3)C223—C224—C225—C2260.1 (7)
C13—P1—C121—C12665.6 (3)C224—C225—C226—C2210.1 (6)
C111—P1—C121—C122138.4 (3)P3—C311—C312—C313172.9 (3)
C111—P1—C121—C12642.2 (3)C316—C311—C312—C3130.1 (6)
Cu1—P2—C23—C139.1 (3)P3—C311—C316—C315173.2 (3)
C211—P2—C23—C13113.6 (3)C312—C311—C316—C3150.6 (6)
C221—P2—C23—C13137.4 (3)C311—C312—C313—C3140.5 (6)
Cu1—P2—C211—C21229.1 (4)C312—C313—C314—C3150.1 (7)
Cu1—P2—C211—C216150.1 (3)C313—C314—C315—C3160.6 (8)
C23—P2—C211—C21282.2 (3)C314—C315—C316—C3111.0 (7)
C23—P2—C211—C21698.6 (4)P3—C321—C322—C323177.2 (3)
C221—P2—C211—C212170.9 (3)C326—C321—C322—C3231.2 (6)
C221—P2—C211—C2168.3 (4)P3—C321—C326—C325177.1 (3)
Cu1—P2—C221—C22288.3 (3)C322—C321—C326—C3251.3 (5)
Cu1—P2—C221—C22686.2 (3)C321—C322—C323—C3240.2 (7)
C23—P2—C221—C22226.4 (3)C322—C323—C324—C3250.8 (7)
C23—P2—C221—C226159.1 (3)C323—C324—C325—C3260.7 (7)
C211—P2—C221—C222132.1 (3)C324—C325—C326—C3210.4 (6)
C211—P2—C221—C22653.4 (3)P4—C411—C412—C413178.8 (5)
Cu1—P3—C33—C4316.5 (3)C416—C411—C412—C4132.4 (9)
C311—P3—C33—C43146.0 (3)P4—C411—C416—C415178.2 (4)
C321—P3—C33—C43107.5 (3)C412—C411—C416—C4153.1 (8)
Cu1—P3—C311—C31285.3 (3)C411—C412—C413—C4140.7 (11)
Cu1—P3—C311—C31687.4 (3)C412—C413—C414—C4150.4 (11)
C33—P3—C311—C312157.9 (3)C413—C414—C415—C4160.4 (9)
C33—P3—C311—C31629.5 (3)C414—C415—C416—C4112.1 (9)
C321—P3—C311—C31250.6 (3)P4—C421—C422—C423177.3 (4)
C321—P3—C311—C316136.7 (3)C426—C421—C422—C4232.0 (6)
Cu1—P3—C321—C3227.8 (4)P4—C421—C426—C425177.9 (3)
Cu1—P3—C321—C326173.9 (2)C422—C421—C426—C4251.3 (6)
C33—P3—C321—C322121.6 (3)C421—C422—C423—C4242.5 (7)
C33—P3—C321—C32660.1 (3)C422—C423—C424—C4252.3 (7)
C311—P3—C321—C322130.6 (3)C423—C424—C425—C4261.6 (7)
C311—P3—C321—C32647.7 (3)C424—C425—C426—C4211.1 (7)
Symmetry codes: (i) x+1, y, z+2; (ii) x1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2; (iv) x+2, y, z+2; (v) x+1/2, y+1/2, z+1/2; (vi) x+3/2, y1/2, z+3/2; (vii) x+3/2, y1/2, z+5/2; (viii) x+1/2, y+1/2, z1/2; (ix) x+3/2, y+1/2, z+3/2; (x) x+2, y+1, z+2; (xi) x+3/2, y+1/2, z+5/2.

Experimental details

Crystal data
Chemical formula[Cu(C26H22P2)2][CuCl2]
Mr990.75
Crystal system, space groupMonoclinic, P21/n
Temperature (K)223
a, b, c (Å)15.3109 (9), 16.1519 (11), 18.6419 (8)
β (°) 95.950 (4)
V3)4585.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.22
Crystal size (mm)0.45 × 0.34 × 0.32
Data collection
DiffractometerOxford Diffraction GEMINI S Ultra
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.610, 0.696
No. of measured, independent and
observed [I > 2σ(I)] reflections
18820, 8015, 6315
Rint0.038
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.140, 1.10
No. of reflections8015
No. of parameters541
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.43, 1.04

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009).

 

Acknowledgements

Support of this work by the Queensland University of Technology, Griffith University and the Australian Research Council is gratefully acknowledged.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAsplund, M., Jagner, S. & Nilsson, M. (1983). Acta Chem. Scand. Ser. A, 37, 57–62.  CrossRef Web of Science Google Scholar
First citationBerners-Price, S. J., Colquhoun, L. A., Healy, P. C., Byriel, K. A. & Hanna, J. V. (1992). J. Chem. Soc. Dalton Trans. pp. 3357–3363.  CSD CrossRef Web of Science Google Scholar
First citationBowmaker, G. A., Brockliss, L. D. & Whiting, R. (1973). Aust. J. Chem. 26, 29–42.  CrossRef CAS Google Scholar
First citationBowmaker, G. A., Bruce, M. I., Skelton, B. W., Somers, N. & White, A. H. (2007). Z. Anorg. Allg. Chem. 633, 1024–1030.  Web of Science CSD CrossRef CAS Google Scholar
First citationDobson, J. F., Green, B. E., Healy, P. C., Kennard, C. H. L., Pakawatchai, C. & White, A. H. (1984). Aust. J. Chem. 37, 649–659.  CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHealy, P. C., Kildea, J. D., Skelton, B. W. & White, A. H. (1989). Aust. J. Chem. 42, 115–136.  CrossRef CAS Google Scholar
First citationHealy, P. C., Loughley, B. T., Bowmaker, G. A. & Hanna, J. V. (2008). Dalton Trans. pp. 3723–3728.  Web of Science CSD CrossRef PubMed Google Scholar
First citationHealy, P. C., Loughrey, B. T. & Williams, M. L. (2009). Acta Cryst. E65, m500–m501.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMirkhani, V., Harkema, S. & Kia, R. (2004). Acta Cryst. C60, m343–m344.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRodenstein, A., Creutzburg, D., Schmiedel, P., Griebel, J., Hennig, L. & Kirmse, R. (2008). Z. Anorg. Allg. Chem. 634, 2811–2818.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J.-G., Kang, H.-X. & Zheng, X.-Y. (2005). Z. Kristallogr. New Cryst. Struct. 220, 597–598.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds