metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ-η2:η2-Peroxido-bis­­[nitratodioxido­bis­(pyrrolidin-2-one)uranium(VI)]

aInstitute of Radiochemistry, Forschungszentrum Dresden-Rossendorf, PO Box 51 01 19, 01314 Dresden, Germany, and bResearch Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-34, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
*Correspondence e-mail: yikeda@nr.titech.ac.jp

(Received 15 March 2010; accepted 12 April 2010; online 21 April 2010)

In the crystal structure of the title compound, [U2(NO3)2O4(O2)(C4H7NO)4], two UO22+ ions are connected by a μ-η2:η2-O2 unit. The O2 unit shows `side-on' coordination to both U atoms. An inversion center is located at the midpoint of the O—O bond in the O2 unit, affording a centrosymmetrically expanded dimeric structure. The U—O(axial) bond lengths are 1.777 (4) Å and 1.784 (4) Å, indicating that the oxidation state of U is exclusively 6+, i.e., UO22+. Furthermore, the O—O distance is 1.492 (8) Å, which is typical of peroxide, O22–. The U atom is eight-coordinated in a hexa­gonal-bipyramidal geometry. The coordinating atoms of the nitrate and pyrrolidine-2-one ligands and the μ-η2:η2-O22– unit are located in the equatorial plane and form an irregular hexa­gon. An inter­molecular hydrogen bond is found between N—H of the pyrrolidine-2-one ligand and the coordinating O of the same ligand in a neighboring complex. A second inter­molecular hydrogen bond is found between the N—H of the other pyrrolidine-2-one ligand and one of the uranyl oxido atoms.

Related literature

For the structural chemistry of uran­yl(VI)–peroxido complexes, see: Haegele & Boeyens (1977[Haegele, R. & Boeyens, J. C. A. (1977). J. Chem. Soc. Dalton Trans. pp. 648-650.]); Charpin et al. (1985[Charpin, P., Folcher, G., Lance, M., Nierlich, M. & Vigner, D. (1985). Acta Cryst. C41, 1302-1305.]); Doyle et al. (1993[Doyle, G. A., Goodgame, D. M. L., Sinden, A. & Williams, D. J. (1993). J. Chem. Soc. Chem. Commun. pp. 1170-1172.]); Rose et al. (1994[Rose, D., Chang, Y.-D., Chen, Q. & Zubieta, J. (1994). Inorg. Chem. 33, 5167-5168.]); Thuéry et al. (1999[Thuéry, P., Nierlich, M., Baldwin, B. W., Komatsuzaki, N. & Hirose, T. (1999). J. Chem. Soc. Dalton Trans. pp. 1047-1048.]); de Aquino et al. (2001[Aquino, A. R. de, Isolani, P. C., Zukerman-Schpector, J., Zinner, L. B. & Vicentini, G. (2001). J. Alloys Compd, 323-324, 18-21.]); John et al. (2004[John, G. H., May, I., Sarsfield, M. J., Steele, H. M., Collison, D., Helliwell, M. & McKinney, J. D. (2004). Dalton Trans. pp. 734-740.]); Masci & Thuéry (2005[Masci, B. & Thuéry, P. (2005). Polyhedron, 24, 229-237.]); Zehnder et al. (2005[Zehnder, R. A., Peper, S. M., Scott, B. L. & Runde, W. H. (2005). Acta Cryst. C61, i3-i5.]); Kubatko et al. (2007[Kubatko, K.-A., Forbes, T. Z., Klingensmith, A. L. & Burns, P. C. (2007). Inorg. Chem. 46, 3657-3662.]); Ikeda et al. (2007[Ikeda, A., Hennig, C., Tsushima, S., Takao, K., Ikeda, Y., Scheinost, A. C. & Bernhard, G. (2007). Inorg. Chem. 46, 4212-4219.]); Takao et al. (2009[Takao, K., Tsushima, S., Takao, S., Scheinost, A. C., Bernhard, G., Ikeda, Y. & Hennig, C. (2009). Inorg. Chem. 48, 9602-9604.]); Vaska (1976[Vaska, L. (1976). Acc. Chem. Res. 9, 175-183.]).

[Scheme 1]

Experimental

Crystal data
  • [U2(NO3)2O4(O2)(C4H7NO)4]

  • Mr = 1036.50

  • Triclinic, [P \overline 1]

  • a = 8.783 (2) Å

  • b = 8.899 (3) Å

  • c = 9.587 (3) Å

  • α = 68.24 (3)°

  • β = 81.30 (2)°

  • γ = 68.96 (2)°

  • V = 649.4 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 12.54 mm−1

  • T = 173 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.117, Tmax = 0.188

  • 5524 measured reflections

  • 2934 independent reflections

  • 2727 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.064

  • S = 1.00

  • 2934 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 2.04 e Å−3

  • Δρmin = −0.97 e Å−3

Table 1
Selected geometric parameters (Å, °)

U1—O1 1.777 (4)
U1—O2 1.784 (4)
U1—O3i 2.303 (4)
U1—O3 2.315 (4)
U1—O5 2.428 (4)
U1—O4 2.436 (4)
U1—O6 2.515 (4)
U1—O7 2.523 (4)
O3—O3i 1.492 (8)
O1—U1—O2 175.6 (2)
O3i—U1—O3 37.70 (19)
Symmetry code: (i) -x, -y+1, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4ii 0.88 2.03 2.885 (6) 165
N2—H2⋯O2iii 0.88 2.31 3.127 (7) 156
Symmetry codes: (ii) -x, -y+1, -z+1; (iii) -x+1, -y+1, -z.

Data collection: PROCESS-AUTO (Rigaku/MSC, 2006[Rigaku/MSC (2006). PROCESS-AUTO and CrystalStructure. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2006[Rigaku/MSC (2006). PROCESS-AUTO and CrystalStructure. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999[Beurskens, P. T., Beurskens, G., de Gelder, R., Garcìa-Granda, S., Israel, R., Gould, R. O. & Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory. University of Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

The molecular structure of the title compound is shown in Fig. 1. The uranium atom is surrounded by eight O atoms; two are at the axial position, as part of the uranyl cation, and the remaining six O from pyrrolidine-2-ones, nitrates, and peroxo which form a distorted-hexagonal equatorial plane. The peroxide unit shows "side-on" coordination and connects two U, i.e., µ-η2:η2-O2. The bond lengths between U and the axial O are 1.78 Å (mean), indicating that oxidation state of U is exclusively 6+, i.e., UO22+ (see related literature; cf. 1.84-1.91 Å for UVO2+, Ikeda et al., 2007, Takao et al., 2009). Furthermore, the O—O distance is 1.492 (8) Å, which is typical of peroxide, O22– (Vaska, 1976). One intermolecular hydrogen bonds is found between N—H of pyrrolidine-2-one and the coordinating O of the same ligand in the neighboring complex. A second intermolecular hydrogen bond is found between the N—H of the other pyrrolidine-2-one and one of the uranyl oxo atoms, see Fig. 2.

Photochemically excited *UO22+ is a potent and long-lived oxidant for organic and inorganic substrates including the solvent. After the oxidation, UO2+ is generated as a short-lived intermediate. This species is very unstable and immediately oxidized by dioxygen molecule. As a result, the initial UO22+ is regenerated, and the photo-induced catalytic cycle is repeated until termination of photo irradiation or complete conversion of the substrate. This reaction affords peroxide as a by-product. As described in Experimental, compound 1 was unexpectedly obtained from an ethanolic solution dissolving UO2(NO3)26H2O and pyrrolidine-2-one under sunlight. The peroxo ligand most likely arose from oxidative addition of atmospheric dioxygen molecule to the UO2+ intermediate through the above-mentioned catalytic oxidation of ethanol by the photo-excited *UO22+. A similar reaction was speculated in some of the former studies which also described incidental deposition of the uranyl-peroxo complexes [Charpin et al. (1985); Doyle et al. (1993); John et al. (2004)].

Related literature top

For the structural chemistry of uranyl(VI)-peroxo complexes, see: Haegele & Boeyens (1977); Charpin et al. (1985); Doyle et al. (1993); Rose et al. (1994); Thuéry et al. (1999); de Aquino et al. (2001); John et al. (2004); Masci et al. (2005); Zehnder et al. (2005); Kubatko et al. (2007); Ikeda et al. (2007); Takao et al. (2009); Vaska (1976).

Experimental top

Pyrrolidine-2-one (2-pyrr, 0.11 g) was added dropwise into a hot ethanol solution (5 ml) dissolving uranyl(VI) nitrate hexahydrate (0.32 g) with vigorous stirring. After stirring for several minutes, the mixture was cooled to room temperature. Yellow crystals of UO2(NO3)2(2-pyrr)2 were removed by filtration. The supernatant was stored under the sunlight. After several days, orange platelet crystals of {[UO2NO3(C4H7NO)2]2O2} subsequently deposited, which were suitable for the X-ray diffraction experiment.

Refinement top

All hydrogen atoms were geometrically positioned (C—H 0.99 Å, N—H 0.88 Å) and refined as riding on their parent atoms, with Uiso(H) = 1.2 Ueq(C,N).

Structure description top

The molecular structure of the title compound is shown in Fig. 1. The uranium atom is surrounded by eight O atoms; two are at the axial position, as part of the uranyl cation, and the remaining six O from pyrrolidine-2-ones, nitrates, and peroxo which form a distorted-hexagonal equatorial plane. The peroxide unit shows "side-on" coordination and connects two U, i.e., µ-η2:η2-O2. The bond lengths between U and the axial O are 1.78 Å (mean), indicating that oxidation state of U is exclusively 6+, i.e., UO22+ (see related literature; cf. 1.84-1.91 Å for UVO2+, Ikeda et al., 2007, Takao et al., 2009). Furthermore, the O—O distance is 1.492 (8) Å, which is typical of peroxide, O22– (Vaska, 1976). One intermolecular hydrogen bonds is found between N—H of pyrrolidine-2-one and the coordinating O of the same ligand in the neighboring complex. A second intermolecular hydrogen bond is found between the N—H of the other pyrrolidine-2-one and one of the uranyl oxo atoms, see Fig. 2.

Photochemically excited *UO22+ is a potent and long-lived oxidant for organic and inorganic substrates including the solvent. After the oxidation, UO2+ is generated as a short-lived intermediate. This species is very unstable and immediately oxidized by dioxygen molecule. As a result, the initial UO22+ is regenerated, and the photo-induced catalytic cycle is repeated until termination of photo irradiation or complete conversion of the substrate. This reaction affords peroxide as a by-product. As described in Experimental, compound 1 was unexpectedly obtained from an ethanolic solution dissolving UO2(NO3)26H2O and pyrrolidine-2-one under sunlight. The peroxo ligand most likely arose from oxidative addition of atmospheric dioxygen molecule to the UO2+ intermediate through the above-mentioned catalytic oxidation of ethanol by the photo-excited *UO22+. A similar reaction was speculated in some of the former studies which also described incidental deposition of the uranyl-peroxo complexes [Charpin et al. (1985); Doyle et al. (1993); John et al. (2004)].

For the structural chemistry of uranyl(VI)-peroxo complexes, see: Haegele & Boeyens (1977); Charpin et al. (1985); Doyle et al. (1993); Rose et al. (1994); Thuéry et al. (1999); de Aquino et al. (2001); John et al. (2004); Masci et al. (2005); Zehnder et al. (2005); Kubatko et al. (2007); Ikeda et al. (2007); Takao et al. (2009); Vaska (1976).

Computing details top

Data collection: PROCESS-AUTO (Rigaku/MSC, 2006); cell refinement: PROCESS-AUTO (Rigaku/MSC, 2006); data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006).

Figures top
[Figure 1] Fig. 1. A drawing of µ-η2:η2-peroxo-bis[nitratobis(pyrrolidine-2-one)dioxouranium(VI)] (1) showing 50% probability displacement ellipsoids. Symmetry code: (i) -x, -y+1, -z.
[Figure 2] Fig. 2. Intermolecular hydrogen bonds. Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+1, -z; (iii) x+1, y, z; (iv) -x+1, -y+1, -z+1; (v) x+1, y, z+1.
µ-η2:η2-Peroxido-bis[nitratodioxidobis(pyrrolidin-2-one)uranium(VI)] top
Crystal data top
[U2(NO3)2O4(O2)(C4H7NO)4]Z = 1
Mr = 1036.50F(000) = 478
Triclinic, P1Dx = 2.650 Mg m3
a = 8.783 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.899 (3) ÅCell parameters from 6275 reflections
c = 9.587 (3) Åθ = 3.1–27.5°
α = 68.24 (3)°µ = 12.54 mm1
β = 81.30 (2)°T = 173 K
γ = 68.96 (2)°Platelet, orange
V = 649.4 (3) Å30.30 × 0.20 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2934 independent reflections
Radiation source: fine-focus sealed tube2727 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1111
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1111
Tmin = 0.117, Tmax = 0.188l = 1212
5524 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0387P)2 + 2.5299P]
where P = (Fo2 + 2Fc2)/3
2934 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 2.04 e Å3
0 restraintsΔρmin = 0.97 e Å3
Crystal data top
[U2(NO3)2O4(O2)(C4H7NO)4]γ = 68.96 (2)°
Mr = 1036.50V = 649.4 (3) Å3
Triclinic, P1Z = 1
a = 8.783 (2) ÅMo Kα radiation
b = 8.899 (3) ŵ = 12.54 mm1
c = 9.587 (3) ÅT = 173 K
α = 68.24 (3)°0.30 × 0.20 × 0.20 mm
β = 81.30 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2934 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
2727 reflections with I > 2σ(I)
Tmin = 0.117, Tmax = 0.188Rint = 0.037
5524 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 1.00Δρmax = 2.04 e Å3
2934 reflectionsΔρmin = 0.97 e Å3
181 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U10.21945 (2)0.38333 (2)0.134424 (19)0.01484 (7)
O10.1573 (5)0.2025 (6)0.2384 (5)0.0283 (9)
O20.2956 (6)0.5569 (5)0.0387 (5)0.0290 (9)
O30.0454 (5)0.5419 (7)0.0555 (5)0.0427 (13)
O40.0681 (4)0.5317 (5)0.3068 (4)0.0184 (7)
O50.3773 (5)0.2945 (5)0.3554 (4)0.0233 (8)
O60.5044 (5)0.1836 (5)0.1196 (4)0.0253 (8)
O70.3597 (5)0.2765 (6)0.0771 (5)0.0274 (9)
O80.6150 (5)0.1159 (6)0.0778 (5)0.0320 (10)
N10.1016 (6)0.7323 (6)0.4011 (5)0.0219 (9)
H10.11090.65870.49080.026*
N20.6174 (6)0.3525 (6)0.3046 (6)0.0252 (10)
H20.60930.39510.20620.030*
N30.4985 (6)0.1888 (6)0.0142 (5)0.0220 (9)
C10.0129 (6)0.6859 (6)0.2925 (6)0.0162 (9)
C20.0222 (7)0.8410 (7)0.1547 (6)0.0232 (11)
H2A0.08990.84780.07740.028*
H2B0.08790.83900.11140.028*
C30.1017 (7)0.9916 (7)0.2126 (6)0.0220 (11)
H3A0.01841.03450.22840.026*
H3B0.18251.08690.14080.026*
C40.1845 (8)0.9175 (7)0.3610 (7)0.0289 (13)
H4A0.16880.95930.43840.035*
H4B0.30280.94770.34840.035*
C50.5058 (6)0.2954 (7)0.3950 (6)0.0183 (10)
C60.5538 (7)0.2302 (9)0.5552 (7)0.0285 (12)
H6A0.57540.10510.60040.034*
H6B0.46710.28820.61500.034*
C70.7558 (8)0.3392 (9)0.3818 (8)0.0336 (14)
H7A0.77000.45240.35360.040*
H7B0.85800.25790.35740.040*
C80.7105 (8)0.2736 (9)0.5478 (7)0.0314 (13)
H8A0.69060.36260.59330.038*
H8B0.79930.17030.60250.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.01539 (10)0.01631 (10)0.01212 (10)0.00364 (7)0.00246 (6)0.00480 (7)
O10.026 (2)0.029 (2)0.036 (2)0.0151 (17)0.0063 (17)0.0150 (19)
O20.039 (2)0.024 (2)0.023 (2)0.0135 (18)0.0088 (17)0.0083 (17)
O30.030 (2)0.058 (3)0.033 (2)0.019 (2)0.0158 (19)0.035 (3)
O40.0237 (18)0.0151 (17)0.0135 (16)0.0020 (14)0.0020 (14)0.0053 (14)
O50.0199 (18)0.034 (2)0.0158 (18)0.0079 (16)0.0062 (14)0.0077 (16)
O60.0233 (19)0.030 (2)0.0205 (19)0.0036 (16)0.0038 (15)0.0099 (17)
O70.026 (2)0.030 (2)0.0210 (19)0.0021 (16)0.0052 (16)0.0117 (17)
O80.024 (2)0.034 (2)0.034 (2)0.0005 (17)0.0046 (17)0.019 (2)
N10.031 (2)0.012 (2)0.018 (2)0.0049 (17)0.0034 (18)0.0043 (17)
N20.028 (2)0.027 (2)0.020 (2)0.011 (2)0.0015 (19)0.006 (2)
N30.024 (2)0.022 (2)0.021 (2)0.0057 (18)0.0002 (18)0.0099 (19)
C10.019 (2)0.016 (2)0.015 (2)0.0066 (18)0.0017 (18)0.0056 (19)
C20.035 (3)0.017 (2)0.015 (2)0.009 (2)0.001 (2)0.002 (2)
C30.022 (2)0.019 (3)0.021 (3)0.006 (2)0.001 (2)0.002 (2)
C40.036 (3)0.017 (3)0.025 (3)0.002 (2)0.007 (2)0.006 (2)
C50.021 (2)0.015 (2)0.015 (2)0.0003 (18)0.0060 (19)0.0050 (19)
C60.027 (3)0.043 (4)0.020 (3)0.015 (3)0.005 (2)0.011 (3)
C70.027 (3)0.039 (4)0.042 (4)0.016 (3)0.001 (3)0.018 (3)
C80.029 (3)0.041 (4)0.030 (3)0.013 (3)0.007 (2)0.015 (3)
Geometric parameters (Å, º) top
U1—O11.777 (4)N2—C71.464 (8)
U1—O21.784 (4)N2—H20.8800
U1—O3i2.303 (4)C1—C21.503 (7)
U1—O32.315 (4)C2—C31.534 (8)
U1—O52.428 (4)C2—H2A0.9900
U1—O42.436 (4)C2—H2B0.9900
U1—O62.515 (4)C3—C41.524 (8)
U1—O72.523 (4)C3—H3A0.9900
U1—N32.960 (5)C3—H3B0.9900
O3—O3i1.492 (8)C4—H4A0.9900
O3—U1i2.303 (4)C4—H4B0.9900
O4—C11.264 (6)C5—C61.494 (7)
O5—C51.247 (6)C6—C81.543 (8)
O6—N31.275 (6)C6—H6A0.9900
O7—N31.284 (6)C6—H6B0.9900
O8—N31.211 (6)C7—C81.523 (9)
N1—C11.305 (7)C7—H7A0.9900
N1—C41.465 (7)C7—H7B0.9900
N1—H10.8800C8—H8A0.9900
N2—C51.321 (7)C8—H8B0.9900
O1—U1—O2175.6 (2)O8—N3—O6122.6 (5)
O1—U1—O3i90.6 (2)O8—N3—O7122.2 (5)
O2—U1—O3i93.5 (2)O6—N3—O7115.2 (4)
O1—U1—O390.0 (2)O8—N3—U1176.9 (4)
O2—U1—O394.2 (2)O6—N3—U157.5 (2)
O3i—U1—O337.70 (19)O7—N3—U157.9 (2)
O1—U1—O583.92 (18)O4—C1—N1123.2 (5)
O2—U1—O592.05 (18)O4—C1—C2126.9 (5)
O3i—U1—O5173.10 (16)N1—C1—C2109.9 (4)
O3—U1—O5137.69 (14)C1—C2—C3103.7 (4)
O1—U1—O491.03 (16)C1—C2—H2A111.0
O2—U1—O489.17 (16)C3—C2—H2A111.0
O3i—U1—O4106.98 (13)C1—C2—H2B111.0
O3—U1—O469.31 (13)C3—C2—H2B111.0
O5—U1—O468.98 (13)H2A—C2—H2B109.0
O1—U1—O689.08 (17)C4—C3—C2104.6 (4)
O2—U1—O687.70 (18)C4—C3—H3A110.8
O3i—U1—O6117.42 (13)C2—C3—H3A110.8
O3—U1—O6155.09 (14)C4—C3—H3B110.8
O5—U1—O666.88 (13)C2—C3—H3B110.8
O4—U1—O6135.59 (13)H3A—C3—H3B108.9
O1—U1—O796.11 (18)N1—C4—C3103.3 (4)
O2—U1—O784.17 (17)N1—C4—H4A111.1
O3i—U1—O767.09 (14)C3—C4—H4A111.1
O3—U1—O7104.63 (14)N1—C4—H4B111.1
O5—U1—O7117.64 (13)C3—C4—H4B111.1
O4—U1—O7170.69 (12)H4A—C4—H4B109.1
O6—U1—O750.79 (13)O5—C5—N2125.9 (5)
O1—U1—N393.83 (17)O5—C5—C6123.6 (5)
O2—U1—N384.52 (17)N2—C5—C6110.5 (5)
O3i—U1—N392.51 (14)C5—C6—C8104.3 (5)
O3—U1—N3130.14 (14)C5—C6—H6A110.9
O5—U1—N392.10 (13)C8—C6—H6A110.9
O4—U1—N3159.86 (13)C5—C6—H6B110.9
O6—U1—N325.29 (13)C8—C6—H6B110.9
O7—U1—N325.54 (13)H6A—C6—H6B108.9
O3i—O3—U1i71.6 (3)N2—C7—C8104.1 (5)
O3i—O3—U170.7 (3)N2—C7—H7A110.9
U1i—O3—U1142.30 (19)C8—C7—H7A110.9
C1—O4—U1134.6 (3)N2—C7—H7B110.9
C5—O5—U1141.9 (4)C8—C7—H7B110.9
N3—O6—U197.2 (3)H7A—C7—H7B109.0
N3—O7—U196.6 (3)C7—C8—C6106.1 (5)
C1—N1—C4114.3 (5)C7—C8—H8A110.5
C1—N1—H1122.9C6—C8—H8A110.5
C4—N1—H1122.9C7—C8—H8B110.5
C5—N2—C7114.4 (5)C6—C8—H8B110.5
C5—N2—H2122.8H8A—C8—H8B108.7
C7—N2—H2122.8
O1—U1—O3—O3i91.0 (5)U1—O6—N3—O8176.3 (5)
O2—U1—O3—O3i90.3 (5)U1—O6—N3—O73.9 (5)
O5—U1—O3—O3i172.0 (3)U1—O7—N3—O8176.3 (5)
O4—U1—O3—O3i177.9 (5)U1—O7—N3—O63.9 (5)
O6—U1—O3—O3i3.2 (8)O1—U1—N3—O8173 (7)
O7—U1—O3—O3i5.3 (5)O2—U1—N3—O83 (7)
N3—U1—O3—O3i4.0 (6)O3i—U1—N3—O896 (7)
O1—U1—O3—U1i91.0 (5)O3—U1—N3—O894 (7)
O2—U1—O3—U1i90.3 (5)O5—U1—N3—O889 (7)
O3i—U1—O3—U1i0.000 (2)O4—U1—N3—O869 (7)
O5—U1—O3—U1i172.0 (3)O6—U1—N3—O893 (7)
O4—U1—O3—U1i177.9 (5)O7—U1—N3—O891 (7)
O6—U1—O3—U1i3.2 (8)O1—U1—N3—O679.7 (3)
O7—U1—O3—U1i5.3 (5)O2—U1—N3—O696.2 (3)
N3—U1—O3—U1i4.0 (6)O3i—U1—N3—O6170.5 (3)
O1—U1—O4—C1144.0 (5)O3—U1—N3—O6172.9 (3)
O2—U1—O4—C140.4 (5)O5—U1—N3—O64.4 (3)
O3i—U1—O4—C153.0 (5)O4—U1—N3—O623.9 (6)
O3—U1—O4—C154.3 (5)O7—U1—N3—O6175.8 (5)
O5—U1—O4—C1132.9 (5)O1—U1—N3—O796.2 (3)
O6—U1—O4—C1126.3 (4)O2—U1—N3—O787.9 (3)
O7—U1—O4—C13.8 (11)O3i—U1—N3—O75.3 (4)
N3—U1—O4—C1111.9 (5)O3—U1—N3—O72.9 (4)
O1—U1—O5—C5149.6 (6)O5—U1—N3—O7179.8 (3)
O2—U1—O5—C528.6 (6)O4—U1—N3—O7160.2 (3)
O3i—U1—O5—C5172.1 (11)O6—U1—N3—O7175.8 (5)
O3—U1—O5—C5127.0 (6)U1—O4—C1—N1171.1 (4)
O4—U1—O5—C5116.9 (6)U1—O4—C1—C29.6 (8)
O6—U1—O5—C558.0 (6)C4—N1—C1—O4179.5 (5)
O7—U1—O5—C555.9 (6)C4—N1—C1—C20.2 (7)
N3—U1—O5—C556.0 (6)O4—C1—C2—C3166.8 (5)
O1—U1—O6—N3101.0 (3)N1—C1—C2—C312.5 (6)
O2—U1—O6—N382.0 (3)C1—C2—C3—C419.4 (6)
O3i—U1—O6—N310.7 (4)C1—N1—C4—C312.8 (7)
O3—U1—O6—N312.9 (6)C2—C3—C4—N119.4 (6)
O5—U1—O6—N3175.2 (3)U1—O5—C5—N23.6 (9)
O4—U1—O6—N3168.5 (3)U1—O5—C5—C6176.3 (4)
O7—U1—O6—N32.3 (3)C7—N2—C5—O5179.5 (5)
O1—U1—O7—N386.1 (3)C7—N2—C5—C60.4 (7)
O2—U1—O7—N389.5 (3)O5—C5—C6—C8174.8 (5)
O3i—U1—O7—N3174.2 (4)N2—C5—C6—C85.1 (7)
O3—U1—O7—N3177.7 (3)C5—N2—C7—C84.6 (7)
O5—U1—O7—N30.2 (4)N2—C7—C8—C67.3 (7)
O4—U1—O7—N3134.0 (7)C5—C6—C8—C77.6 (7)
O6—U1—O7—N32.3 (3)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4ii0.882.032.885 (6)165
N2—H2···O2iii0.882.313.127 (7)156
Symmetry codes: (ii) x, y+1, z+1; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[U2(NO3)2O4(O2)(C4H7NO)4]
Mr1036.50
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.783 (2), 8.899 (3), 9.587 (3)
α, β, γ (°)68.24 (3), 81.30 (2), 68.96 (2)
V3)649.4 (3)
Z1
Radiation typeMo Kα
µ (mm1)12.54
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.117, 0.188
No. of measured, independent and
observed [I > 2σ(I)] reflections
5524, 2934, 2727
Rint0.037
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.064, 1.00
No. of reflections2934
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.04, 0.97

Computer programs: PROCESS-AUTO (Rigaku/MSC, 2006), CrystalStructure (Rigaku/MSC, 2006), DIRDIF99 (Beurskens et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Selected geometric parameters (Å, º) top
U1—O11.777 (4)U1—O42.436 (4)
U1—O21.784 (4)U1—O62.515 (4)
U1—O3i2.303 (4)U1—O72.523 (4)
U1—O32.315 (4)O3—O3i1.492 (8)
U1—O52.428 (4)
O1—U1—O2175.6 (2)O3i—U1—O337.70 (19)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4ii0.8802.0262.885 (6)165.10
N2—H2···O2iii0.8802.3053.127 (7)155.55
Symmetry codes: (ii) x, y+1, z+1; (iii) x+1, y+1, z.
 

Acknowledgements

KT thanks Professor Dr Bernhard (FZD) for the opportunity to work there and to prepare this paper.

References

First citationAquino, A. R. de, Isolani, P. C., Zukerman-Schpector, J., Zinner, L. B. & Vicentini, G. (2001). J. Alloys Compd, 323–324, 18–21.  Google Scholar
First citationBeurskens, P. T., Beurskens, G., de Gelder, R., Garcìa-Granda, S., Israel, R., Gould, R. O. & Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory. University of Nijmegen, The Netherlands.  Google Scholar
First citationCharpin, P., Folcher, G., Lance, M., Nierlich, M. & Vigner, D. (1985). Acta Cryst. C41, 1302–1305.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDoyle, G. A., Goodgame, D. M. L., Sinden, A. & Williams, D. J. (1993). J. Chem. Soc. Chem. Commun. pp. 1170–1172.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHaegele, R. & Boeyens, J. C. A. (1977). J. Chem. Soc. Dalton Trans. pp. 648–650.  CSD CrossRef Web of Science Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIkeda, A., Hennig, C., Tsushima, S., Takao, K., Ikeda, Y., Scheinost, A. C. & Bernhard, G. (2007). Inorg. Chem. 46, 4212–4219.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJohn, G. H., May, I., Sarsfield, M. J., Steele, H. M., Collison, D., Helliwell, M. & McKinney, J. D. (2004). Dalton Trans. pp. 734–740.  Web of Science CSD CrossRef Google Scholar
First citationKubatko, K.-A., Forbes, T. Z., Klingensmith, A. L. & Burns, P. C. (2007). Inorg. Chem. 46, 3657–3662.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMasci, B. & Thuéry, P. (2005). Polyhedron, 24, 229–237.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2006). PROCESS-AUTO and CrystalStructure. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRose, D., Chang, Y.-D., Chen, Q. & Zubieta, J. (1994). Inorg. Chem. 33, 5167–5168.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakao, K., Tsushima, S., Takao, S., Scheinost, A. C., Bernhard, G., Ikeda, Y. & Hennig, C. (2009). Inorg. Chem. 48, 9602–9604.  Web of Science CrossRef PubMed CAS Google Scholar
First citationThuéry, P., Nierlich, M., Baldwin, B. W., Komatsuzaki, N. & Hirose, T. (1999). J. Chem. Soc. Dalton Trans. pp. 1047–1048.  Google Scholar
First citationVaska, L. (1976). Acc. Chem. Res. 9, 175–183.  CrossRef CAS Web of Science Google Scholar
First citationZehnder, R. A., Peper, S. M., Scott, B. L. & Runde, W. H. (2005). Acta Cryst. C61, i3–i5.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds