metal-organic compounds
μ-η2:η2-Peroxido-bis[nitratodioxidobis(pyrrolidin-2-one)uranium(VI)]
aInstitute of Radiochemistry, Forschungszentrum Dresden-Rossendorf, PO Box 51 01 19, 01314 Dresden, Germany, and bResearch Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-34, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
*Correspondence e-mail: yikeda@nr.titech.ac.jp
In the 2(NO3)2O4(O2)(C4H7NO)4], two UO22+ ions are connected by a μ-η2:η2-O2 unit. The O2 unit shows `side-on' coordination to both U atoms. An inversion center is located at the midpoint of the O—O bond in the O2 unit, affording a centrosymmetrically expanded dimeric structure. The U—O(axial) bond lengths are 1.777 (4) Å and 1.784 (4) Å, indicating that the of U is exclusively 6+, i.e., UO22+. Furthermore, the O—O distance is 1.492 (8) Å, which is typical of peroxide, O22–. The U atom is eight-coordinated in a hexagonal-bipyramidal geometry. The coordinating atoms of the nitrate and pyrrolidine-2-one ligands and the μ-η2:η2-O22– unit are located in the equatorial plane and form an irregular hexagon. An intermolecular hydrogen bond is found between N—H of the pyrrolidine-2-one ligand and the coordinating O of the same ligand in a neighboring complex. A second intermolecular hydrogen bond is found between the N—H of the other pyrrolidine-2-one ligand and one of the uranyl oxido atoms.
of the title compound, [URelated literature
For the structural chemistry of uranyl(VI)–peroxido complexes, see: Haegele & Boeyens (1977); Charpin et al. (1985); Doyle et al. (1993); Rose et al. (1994); Thuéry et al. (1999); de Aquino et al. (2001); John et al. (2004); Masci & Thuéry (2005); Zehnder et al. (2005); Kubatko et al. (2007); Ikeda et al. (2007); Takao et al. (2009); Vaska (1976).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku/MSC, 2006); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.
Supporting information
https://doi.org/10.1107/S1600536810013449/om2328sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810013449/om2328Isup2.hkl
Pyrrolidine-2-one (2-pyrr, 0.11 g) was added dropwise into a hot ethanol solution (5 ml) dissolving uranyl(VI) nitrate hexahydrate (0.32 g) with vigorous stirring. After stirring for several minutes, the mixture was cooled to room temperature. Yellow crystals of UO2(NO3)2(2-pyrr)2 were removed by filtration. The supernatant was stored under the sunlight. After several days, orange platelet crystals of {[UO2NO3(C4H7NO)2]2O2} subsequently deposited, which were suitable for the X-ray diffraction experiment.
All hydrogen atoms were geometrically positioned (C—H 0.99 Å, N—H 0.88 Å) and refined as riding on their parent atoms, with Uiso(H) = 1.2 Ueq(C,N).
The molecular structure of the title compound is shown in Fig. 1. The uranium atom is surrounded by eight O atoms; two are at the axial position, as part of the uranyl cation, and the remaining six O from pyrrolidine-2-ones, nitrates, and peroxo which form a distorted-hexagonal equatorial plane. The peroxide unit shows "side-on" coordination and connects two U, i.e., µ-η2:η2-O2. The bond lengths between U and the axial O are 1.78 Å (mean), indicating that of U is exclusively 6+, i.e., UO22+ (see related literature; cf. 1.84-1.91 Å for UVO2+, Ikeda et al., 2007, Takao et al., 2009). Furthermore, the O—O distance is 1.492 (8) Å, which is typical of peroxide, O22– (Vaska, 1976). One intermolecular hydrogen bonds is found between N—H of pyrrolidine-2-one and the coordinating O of the same ligand in the neighboring complex. A second intermolecular hydrogen bond is found between the N—H of the other pyrrolidine-2-one and one of the uranyl oxo atoms, see Fig. 2.
Photochemically excited *UO22+ is a potent and long-lived oxidant for organic and inorganic substrates including the solvent. After the oxidation, UO2+ is generated as a short-lived intermediate. This species is very unstable and immediately oxidized by dioxygen molecule. As a result, the initial UO22+ is regenerated, and the photo-induced catalytic cycle is repeated until termination of photo irradiation or complete conversion of the substrate. This reaction affords peroxide as a by-product. As described in Experimental, compound 1 was unexpectedly obtained from an ethanolic solution dissolving UO2(NO3)26H2O and pyrrolidine-2-one under sunlight. The peroxo ligand most likely arose from
of atmospheric dioxygen molecule to the UO2+ intermediate through the above-mentioned catalytic oxidation of ethanol by the photo-excited *UO22+. A similar reaction was speculated in some of the former studies which also described incidental deposition of the uranyl-peroxo complexes [Charpin et al. (1985); Doyle et al. (1993); John et al. (2004)].For the structural chemistry of uranyl(VI)-peroxo complexes, see: Haegele & Boeyens (1977); Charpin et al. (1985); Doyle et al. (1993); Rose et al. (1994); Thuéry et al. (1999); de Aquino et al. (2001); John et al. (2004); Masci et al. (2005); Zehnder et al. (2005); Kubatko et al. (2007); Ikeda et al. (2007); Takao et al. (2009); Vaska (1976).
Data collection: PROCESS-AUTO (Rigaku/MSC, 2006); cell
PROCESS-AUTO (Rigaku/MSC, 2006); data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006).Fig. 1. A drawing of µ-η2:η2-peroxo-bis[nitratobis(pyrrolidine-2-one)dioxouranium(VI)] (1) showing 50% probability displacement ellipsoids. Symmetry code: (i) -x, -y+1, -z. | |
Fig. 2. Intermolecular hydrogen bonds. Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+1, -z; (iii) x+1, y, z; (iv) -x+1, -y+1, -z+1; (v) x+1, y, z+1. |
[U2(NO3)2O4(O2)(C4H7NO)4] | Z = 1 |
Mr = 1036.50 | F(000) = 478 |
Triclinic, P1 | Dx = 2.650 Mg m−3 |
a = 8.783 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.899 (3) Å | Cell parameters from 6275 reflections |
c = 9.587 (3) Å | θ = 3.1–27.5° |
α = 68.24 (3)° | µ = 12.54 mm−1 |
β = 81.30 (2)° | T = 173 K |
γ = 68.96 (2)° | Platelet, orange |
V = 649.4 (3) Å3 | 0.30 × 0.20 × 0.20 mm |
Rigaku R-AXIS RAPID diffractometer | 2934 independent reflections |
Radiation source: fine-focus sealed tube | 2727 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
Detector resolution: 10.00 pixels mm-1 | θmax = 27.5°, θmin = 3.1° |
ω scans | h = −11→11 |
Absorption correction: numerical (NUMABS; Higashi, 1999) | k = −11→11 |
Tmin = 0.117, Tmax = 0.188 | l = −12→12 |
5524 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.064 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0387P)2 + 2.5299P] where P = (Fo2 + 2Fc2)/3 |
2934 reflections | (Δ/σ)max < 0.001 |
181 parameters | Δρmax = 2.04 e Å−3 |
0 restraints | Δρmin = −0.97 e Å−3 |
[U2(NO3)2O4(O2)(C4H7NO)4] | γ = 68.96 (2)° |
Mr = 1036.50 | V = 649.4 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.783 (2) Å | Mo Kα radiation |
b = 8.899 (3) Å | µ = 12.54 mm−1 |
c = 9.587 (3) Å | T = 173 K |
α = 68.24 (3)° | 0.30 × 0.20 × 0.20 mm |
β = 81.30 (2)° |
Rigaku R-AXIS RAPID diffractometer | 2934 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 2727 reflections with I > 2σ(I) |
Tmin = 0.117, Tmax = 0.188 | Rint = 0.037 |
5524 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.064 | H-atom parameters constrained |
S = 1.00 | Δρmax = 2.04 e Å−3 |
2934 reflections | Δρmin = −0.97 e Å−3 |
181 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
U1 | 0.21945 (2) | 0.38333 (2) | 0.134424 (19) | 0.01484 (7) | |
O1 | 0.1573 (5) | 0.2025 (6) | 0.2384 (5) | 0.0283 (9) | |
O2 | 0.2956 (6) | 0.5569 (5) | 0.0387 (5) | 0.0290 (9) | |
O3 | −0.0454 (5) | 0.5419 (7) | 0.0555 (5) | 0.0427 (13) | |
O4 | 0.0681 (4) | 0.5317 (5) | 0.3068 (4) | 0.0184 (7) | |
O5 | 0.3773 (5) | 0.2945 (5) | 0.3554 (4) | 0.0233 (8) | |
O6 | 0.5044 (5) | 0.1836 (5) | 0.1196 (4) | 0.0253 (8) | |
O7 | 0.3597 (5) | 0.2765 (6) | −0.0771 (5) | 0.0274 (9) | |
O8 | 0.6150 (5) | 0.1159 (6) | −0.0778 (5) | 0.0320 (10) | |
N1 | −0.1016 (6) | 0.7323 (6) | 0.4011 (5) | 0.0219 (9) | |
H1 | −0.1109 | 0.6587 | 0.4908 | 0.026* | |
N2 | 0.6174 (6) | 0.3525 (6) | 0.3046 (6) | 0.0252 (10) | |
H2 | 0.6093 | 0.3951 | 0.2062 | 0.030* | |
N3 | 0.4985 (6) | 0.1888 (6) | −0.0142 (5) | 0.0220 (9) | |
C1 | −0.0129 (6) | 0.6859 (6) | 0.2925 (6) | 0.0162 (9) | |
C2 | −0.0222 (7) | 0.8410 (7) | 0.1547 (6) | 0.0232 (11) | |
H2A | −0.0899 | 0.8478 | 0.0774 | 0.028* | |
H2B | 0.0879 | 0.8390 | 0.1114 | 0.028* | |
C3 | −0.1017 (7) | 0.9916 (7) | 0.2126 (6) | 0.0220 (11) | |
H3A | −0.0184 | 1.0345 | 0.2284 | 0.026* | |
H3B | −0.1825 | 1.0869 | 0.1408 | 0.026* | |
C4 | −0.1845 (8) | 0.9175 (7) | 0.3610 (7) | 0.0289 (13) | |
H4A | −0.1688 | 0.9593 | 0.4384 | 0.035* | |
H4B | −0.3028 | 0.9477 | 0.3484 | 0.035* | |
C5 | 0.5058 (6) | 0.2954 (7) | 0.3950 (6) | 0.0183 (10) | |
C6 | 0.5538 (7) | 0.2302 (9) | 0.5552 (7) | 0.0285 (12) | |
H6A | 0.5754 | 0.1051 | 0.6004 | 0.034* | |
H6B | 0.4671 | 0.2882 | 0.6150 | 0.034* | |
C7 | 0.7558 (8) | 0.3392 (9) | 0.3818 (8) | 0.0336 (14) | |
H7A | 0.7700 | 0.4524 | 0.3536 | 0.040* | |
H7B | 0.8580 | 0.2579 | 0.3574 | 0.040* | |
C8 | 0.7105 (8) | 0.2736 (9) | 0.5478 (7) | 0.0314 (13) | |
H8A | 0.6906 | 0.3626 | 0.5933 | 0.038* | |
H8B | 0.7993 | 0.1703 | 0.6025 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
U1 | 0.01539 (10) | 0.01631 (10) | 0.01212 (10) | −0.00364 (7) | −0.00246 (6) | −0.00480 (7) |
O1 | 0.026 (2) | 0.029 (2) | 0.036 (2) | −0.0151 (17) | 0.0063 (17) | −0.0150 (19) |
O2 | 0.039 (2) | 0.024 (2) | 0.023 (2) | −0.0135 (18) | 0.0088 (17) | −0.0083 (17) |
O3 | 0.030 (2) | 0.058 (3) | 0.033 (2) | 0.019 (2) | −0.0158 (19) | −0.035 (3) |
O4 | 0.0237 (18) | 0.0151 (17) | 0.0135 (16) | −0.0020 (14) | −0.0020 (14) | −0.0053 (14) |
O5 | 0.0199 (18) | 0.034 (2) | 0.0158 (18) | −0.0079 (16) | −0.0062 (14) | −0.0077 (16) |
O6 | 0.0233 (19) | 0.030 (2) | 0.0205 (19) | −0.0036 (16) | −0.0038 (15) | −0.0099 (17) |
O7 | 0.026 (2) | 0.030 (2) | 0.0210 (19) | 0.0021 (16) | −0.0052 (16) | −0.0117 (17) |
O8 | 0.024 (2) | 0.034 (2) | 0.034 (2) | −0.0005 (17) | 0.0046 (17) | −0.019 (2) |
N1 | 0.031 (2) | 0.012 (2) | 0.018 (2) | −0.0049 (17) | 0.0034 (18) | −0.0043 (17) |
N2 | 0.028 (2) | 0.027 (2) | 0.020 (2) | −0.011 (2) | −0.0015 (19) | −0.006 (2) |
N3 | 0.024 (2) | 0.022 (2) | 0.021 (2) | −0.0057 (18) | −0.0002 (18) | −0.0099 (19) |
C1 | 0.019 (2) | 0.016 (2) | 0.015 (2) | −0.0066 (18) | −0.0017 (18) | −0.0056 (19) |
C2 | 0.035 (3) | 0.017 (2) | 0.015 (2) | −0.009 (2) | 0.001 (2) | −0.002 (2) |
C3 | 0.022 (2) | 0.019 (3) | 0.021 (3) | −0.006 (2) | −0.001 (2) | −0.002 (2) |
C4 | 0.036 (3) | 0.017 (3) | 0.025 (3) | −0.002 (2) | 0.007 (2) | −0.006 (2) |
C5 | 0.021 (2) | 0.015 (2) | 0.015 (2) | −0.0003 (18) | −0.0060 (19) | −0.0050 (19) |
C6 | 0.027 (3) | 0.043 (4) | 0.020 (3) | −0.015 (3) | −0.005 (2) | −0.011 (3) |
C7 | 0.027 (3) | 0.039 (4) | 0.042 (4) | −0.016 (3) | 0.001 (3) | −0.018 (3) |
C8 | 0.029 (3) | 0.041 (4) | 0.030 (3) | −0.013 (3) | −0.007 (2) | −0.015 (3) |
U1—O1 | 1.777 (4) | N2—C7 | 1.464 (8) |
U1—O2 | 1.784 (4) | N2—H2 | 0.8800 |
U1—O3i | 2.303 (4) | C1—C2 | 1.503 (7) |
U1—O3 | 2.315 (4) | C2—C3 | 1.534 (8) |
U1—O5 | 2.428 (4) | C2—H2A | 0.9900 |
U1—O4 | 2.436 (4) | C2—H2B | 0.9900 |
U1—O6 | 2.515 (4) | C3—C4 | 1.524 (8) |
U1—O7 | 2.523 (4) | C3—H3A | 0.9900 |
U1—N3 | 2.960 (5) | C3—H3B | 0.9900 |
O3—O3i | 1.492 (8) | C4—H4A | 0.9900 |
O3—U1i | 2.303 (4) | C4—H4B | 0.9900 |
O4—C1 | 1.264 (6) | C5—C6 | 1.494 (7) |
O5—C5 | 1.247 (6) | C6—C8 | 1.543 (8) |
O6—N3 | 1.275 (6) | C6—H6A | 0.9900 |
O7—N3 | 1.284 (6) | C6—H6B | 0.9900 |
O8—N3 | 1.211 (6) | C7—C8 | 1.523 (9) |
N1—C1 | 1.305 (7) | C7—H7A | 0.9900 |
N1—C4 | 1.465 (7) | C7—H7B | 0.9900 |
N1—H1 | 0.8800 | C8—H8A | 0.9900 |
N2—C5 | 1.321 (7) | C8—H8B | 0.9900 |
O1—U1—O2 | 175.6 (2) | O8—N3—O6 | 122.6 (5) |
O1—U1—O3i | 90.6 (2) | O8—N3—O7 | 122.2 (5) |
O2—U1—O3i | 93.5 (2) | O6—N3—O7 | 115.2 (4) |
O1—U1—O3 | 90.0 (2) | O8—N3—U1 | 176.9 (4) |
O2—U1—O3 | 94.2 (2) | O6—N3—U1 | 57.5 (2) |
O3i—U1—O3 | 37.70 (19) | O7—N3—U1 | 57.9 (2) |
O1—U1—O5 | 83.92 (18) | O4—C1—N1 | 123.2 (5) |
O2—U1—O5 | 92.05 (18) | O4—C1—C2 | 126.9 (5) |
O3i—U1—O5 | 173.10 (16) | N1—C1—C2 | 109.9 (4) |
O3—U1—O5 | 137.69 (14) | C1—C2—C3 | 103.7 (4) |
O1—U1—O4 | 91.03 (16) | C1—C2—H2A | 111.0 |
O2—U1—O4 | 89.17 (16) | C3—C2—H2A | 111.0 |
O3i—U1—O4 | 106.98 (13) | C1—C2—H2B | 111.0 |
O3—U1—O4 | 69.31 (13) | C3—C2—H2B | 111.0 |
O5—U1—O4 | 68.98 (13) | H2A—C2—H2B | 109.0 |
O1—U1—O6 | 89.08 (17) | C4—C3—C2 | 104.6 (4) |
O2—U1—O6 | 87.70 (18) | C4—C3—H3A | 110.8 |
O3i—U1—O6 | 117.42 (13) | C2—C3—H3A | 110.8 |
O3—U1—O6 | 155.09 (14) | C4—C3—H3B | 110.8 |
O5—U1—O6 | 66.88 (13) | C2—C3—H3B | 110.8 |
O4—U1—O6 | 135.59 (13) | H3A—C3—H3B | 108.9 |
O1—U1—O7 | 96.11 (18) | N1—C4—C3 | 103.3 (4) |
O2—U1—O7 | 84.17 (17) | N1—C4—H4A | 111.1 |
O3i—U1—O7 | 67.09 (14) | C3—C4—H4A | 111.1 |
O3—U1—O7 | 104.63 (14) | N1—C4—H4B | 111.1 |
O5—U1—O7 | 117.64 (13) | C3—C4—H4B | 111.1 |
O4—U1—O7 | 170.69 (12) | H4A—C4—H4B | 109.1 |
O6—U1—O7 | 50.79 (13) | O5—C5—N2 | 125.9 (5) |
O1—U1—N3 | 93.83 (17) | O5—C5—C6 | 123.6 (5) |
O2—U1—N3 | 84.52 (17) | N2—C5—C6 | 110.5 (5) |
O3i—U1—N3 | 92.51 (14) | C5—C6—C8 | 104.3 (5) |
O3—U1—N3 | 130.14 (14) | C5—C6—H6A | 110.9 |
O5—U1—N3 | 92.10 (13) | C8—C6—H6A | 110.9 |
O4—U1—N3 | 159.86 (13) | C5—C6—H6B | 110.9 |
O6—U1—N3 | 25.29 (13) | C8—C6—H6B | 110.9 |
O7—U1—N3 | 25.54 (13) | H6A—C6—H6B | 108.9 |
O3i—O3—U1i | 71.6 (3) | N2—C7—C8 | 104.1 (5) |
O3i—O3—U1 | 70.7 (3) | N2—C7—H7A | 110.9 |
U1i—O3—U1 | 142.30 (19) | C8—C7—H7A | 110.9 |
C1—O4—U1 | 134.6 (3) | N2—C7—H7B | 110.9 |
C5—O5—U1 | 141.9 (4) | C8—C7—H7B | 110.9 |
N3—O6—U1 | 97.2 (3) | H7A—C7—H7B | 109.0 |
N3—O7—U1 | 96.6 (3) | C7—C8—C6 | 106.1 (5) |
C1—N1—C4 | 114.3 (5) | C7—C8—H8A | 110.5 |
C1—N1—H1 | 122.9 | C6—C8—H8A | 110.5 |
C4—N1—H1 | 122.9 | C7—C8—H8B | 110.5 |
C5—N2—C7 | 114.4 (5) | C6—C8—H8B | 110.5 |
C5—N2—H2 | 122.8 | H8A—C8—H8B | 108.7 |
C7—N2—H2 | 122.8 | ||
O1—U1—O3—O3i | −91.0 (5) | U1—O6—N3—O8 | 176.3 (5) |
O2—U1—O3—O3i | 90.3 (5) | U1—O6—N3—O7 | −3.9 (5) |
O5—U1—O3—O3i | −172.0 (3) | U1—O7—N3—O8 | −176.3 (5) |
O4—U1—O3—O3i | 177.9 (5) | U1—O7—N3—O6 | 3.9 (5) |
O6—U1—O3—O3i | −3.2 (8) | O1—U1—N3—O8 | −173 (7) |
O7—U1—O3—O3i | 5.3 (5) | O2—U1—N3—O8 | 3 (7) |
N3—U1—O3—O3i | 4.0 (6) | O3i—U1—N3—O8 | 96 (7) |
O1—U1—O3—U1i | −91.0 (5) | O3—U1—N3—O8 | 94 (7) |
O2—U1—O3—U1i | 90.3 (5) | O5—U1—N3—O8 | −89 (7) |
O3i—U1—O3—U1i | 0.000 (2) | O4—U1—N3—O8 | −69 (7) |
O5—U1—O3—U1i | −172.0 (3) | O6—U1—N3—O8 | −93 (7) |
O4—U1—O3—U1i | 177.9 (5) | O7—U1—N3—O8 | 91 (7) |
O6—U1—O3—U1i | −3.2 (8) | O1—U1—N3—O6 | −79.7 (3) |
O7—U1—O3—U1i | 5.3 (5) | O2—U1—N3—O6 | 96.2 (3) |
N3—U1—O3—U1i | 4.0 (6) | O3i—U1—N3—O6 | −170.5 (3) |
O1—U1—O4—C1 | −144.0 (5) | O3—U1—N3—O6 | −172.9 (3) |
O2—U1—O4—C1 | 40.4 (5) | O5—U1—N3—O6 | 4.4 (3) |
O3i—U1—O4—C1 | −53.0 (5) | O4—U1—N3—O6 | 23.9 (6) |
O3—U1—O4—C1 | −54.3 (5) | O7—U1—N3—O6 | −175.8 (5) |
O5—U1—O4—C1 | 132.9 (5) | O1—U1—N3—O7 | 96.2 (3) |
O6—U1—O4—C1 | 126.3 (4) | O2—U1—N3—O7 | −87.9 (3) |
O7—U1—O4—C1 | −3.8 (11) | O3i—U1—N3—O7 | 5.3 (4) |
N3—U1—O4—C1 | 111.9 (5) | O3—U1—N3—O7 | 2.9 (4) |
O1—U1—O5—C5 | 149.6 (6) | O5—U1—N3—O7 | −179.8 (3) |
O2—U1—O5—C5 | −28.6 (6) | O4—U1—N3—O7 | −160.2 (3) |
O3i—U1—O5—C5 | −172.1 (11) | O6—U1—N3—O7 | 175.8 (5) |
O3—U1—O5—C5 | −127.0 (6) | U1—O4—C1—N1 | 171.1 (4) |
O4—U1—O5—C5 | −116.9 (6) | U1—O4—C1—C2 | −9.6 (8) |
O6—U1—O5—C5 | 58.0 (6) | C4—N1—C1—O4 | 179.5 (5) |
O7—U1—O5—C5 | 55.9 (6) | C4—N1—C1—C2 | 0.2 (7) |
N3—U1—O5—C5 | 56.0 (6) | O4—C1—C2—C3 | −166.8 (5) |
O1—U1—O6—N3 | 101.0 (3) | N1—C1—C2—C3 | 12.5 (6) |
O2—U1—O6—N3 | −82.0 (3) | C1—C2—C3—C4 | −19.4 (6) |
O3i—U1—O6—N3 | 10.7 (4) | C1—N1—C4—C3 | −12.8 (7) |
O3—U1—O6—N3 | 12.9 (6) | C2—C3—C4—N1 | 19.4 (6) |
O5—U1—O6—N3 | −175.2 (3) | U1—O5—C5—N2 | −3.6 (9) |
O4—U1—O6—N3 | −168.5 (3) | U1—O5—C5—C6 | 176.3 (4) |
O7—U1—O6—N3 | 2.3 (3) | C7—N2—C5—O5 | 179.5 (5) |
O1—U1—O7—N3 | −86.1 (3) | C7—N2—C5—C6 | −0.4 (7) |
O2—U1—O7—N3 | 89.5 (3) | O5—C5—C6—C8 | −174.8 (5) |
O3i—U1—O7—N3 | −174.2 (4) | N2—C5—C6—C8 | 5.1 (7) |
O3—U1—O7—N3 | −177.7 (3) | C5—N2—C7—C8 | −4.6 (7) |
O5—U1—O7—N3 | 0.2 (4) | N2—C7—C8—C6 | 7.3 (7) |
O4—U1—O7—N3 | 134.0 (7) | C5—C6—C8—C7 | −7.6 (7) |
O6—U1—O7—N3 | −2.3 (3) |
Symmetry code: (i) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O4ii | 0.88 | 2.03 | 2.885 (6) | 165 |
N2—H2···O2iii | 0.88 | 2.31 | 3.127 (7) | 156 |
Symmetry codes: (ii) −x, −y+1, −z+1; (iii) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [U2(NO3)2O4(O2)(C4H7NO)4] |
Mr | 1036.50 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 173 |
a, b, c (Å) | 8.783 (2), 8.899 (3), 9.587 (3) |
α, β, γ (°) | 68.24 (3), 81.30 (2), 68.96 (2) |
V (Å3) | 649.4 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 12.54 |
Crystal size (mm) | 0.30 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID |
Absorption correction | Numerical (NUMABS; Higashi, 1999) |
Tmin, Tmax | 0.117, 0.188 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5524, 2934, 2727 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.064, 1.00 |
No. of reflections | 2934 |
No. of parameters | 181 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 2.04, −0.97 |
Computer programs: PROCESS-AUTO (Rigaku/MSC, 2006), CrystalStructure (Rigaku/MSC, 2006), DIRDIF99 (Beurskens et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).
U1—O1 | 1.777 (4) | U1—O4 | 2.436 (4) |
U1—O2 | 1.784 (4) | U1—O6 | 2.515 (4) |
U1—O3i | 2.303 (4) | U1—O7 | 2.523 (4) |
U1—O3 | 2.315 (4) | O3—O3i | 1.492 (8) |
U1—O5 | 2.428 (4) | ||
O1—U1—O2 | 175.6 (2) | O3i—U1—O3 | 37.70 (19) |
Symmetry code: (i) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O4ii | 0.880 | 2.026 | 2.885 (6) | 165.10 |
N2—H2···O2iii | 0.880 | 2.305 | 3.127 (7) | 155.55 |
Symmetry codes: (ii) −x, −y+1, −z+1; (iii) −x+1, −y+1, −z. |
Acknowledgements
KT thanks Professor Dr Bernhard (FZD) for the opportunity to work there and to prepare this paper.
References
Aquino, A. R. de, Isolani, P. C., Zukerman-Schpector, J., Zinner, L. B. & Vicentini, G. (2001). J. Alloys Compd, 323–324, 18–21. Google Scholar
Beurskens, P. T., Beurskens, G., de Gelder, R., Garcìa-Granda, S., Israel, R., Gould, R. O. & Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory. University of Nijmegen, The Netherlands. Google Scholar
Charpin, P., Folcher, G., Lance, M., Nierlich, M. & Vigner, D. (1985). Acta Cryst. C41, 1302–1305. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Doyle, G. A., Goodgame, D. M. L., Sinden, A. & Williams, D. J. (1993). J. Chem. Soc. Chem. Commun. pp. 1170–1172. CrossRef Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Haegele, R. & Boeyens, J. C. A. (1977). J. Chem. Soc. Dalton Trans. pp. 648–650. CSD CrossRef Web of Science Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Ikeda, A., Hennig, C., Tsushima, S., Takao, K., Ikeda, Y., Scheinost, A. C. & Bernhard, G. (2007). Inorg. Chem. 46, 4212–4219. Web of Science CrossRef PubMed CAS Google Scholar
John, G. H., May, I., Sarsfield, M. J., Steele, H. M., Collison, D., Helliwell, M. & McKinney, J. D. (2004). Dalton Trans. pp. 734–740. Web of Science CSD CrossRef Google Scholar
Kubatko, K.-A., Forbes, T. Z., Klingensmith, A. L. & Burns, P. C. (2007). Inorg. Chem. 46, 3657–3662. Web of Science CrossRef PubMed CAS Google Scholar
Masci, B. & Thuéry, P. (2005). Polyhedron, 24, 229–237. Web of Science CSD CrossRef CAS Google Scholar
Rigaku/MSC (2006). PROCESS-AUTO and CrystalStructure. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan. Google Scholar
Rose, D., Chang, Y.-D., Chen, Q. & Zubieta, J. (1994). Inorg. Chem. 33, 5167–5168. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Takao, K., Tsushima, S., Takao, S., Scheinost, A. C., Bernhard, G., Ikeda, Y. & Hennig, C. (2009). Inorg. Chem. 48, 9602–9604. Web of Science CrossRef PubMed CAS Google Scholar
Thuéry, P., Nierlich, M., Baldwin, B. W., Komatsuzaki, N. & Hirose, T. (1999). J. Chem. Soc. Dalton Trans. pp. 1047–1048. Google Scholar
Vaska, L. (1976). Acc. Chem. Res. 9, 175–183. CrossRef CAS Web of Science Google Scholar
Zehnder, R. A., Peper, S. M., Scott, B. L. & Runde, W. H. (2005). Acta Cryst. C61, i3–i5. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The molecular structure of the title compound is shown in Fig. 1. The uranium atom is surrounded by eight O atoms; two are at the axial position, as part of the uranyl cation, and the remaining six O from pyrrolidine-2-ones, nitrates, and peroxo which form a distorted-hexagonal equatorial plane. The peroxide unit shows "side-on" coordination and connects two U, i.e., µ-η2:η2-O2. The bond lengths between U and the axial O are 1.78 Å (mean), indicating that oxidation state of U is exclusively 6+, i.e., UO22+ (see related literature; cf. 1.84-1.91 Å for UVO2+, Ikeda et al., 2007, Takao et al., 2009). Furthermore, the O—O distance is 1.492 (8) Å, which is typical of peroxide, O22– (Vaska, 1976). One intermolecular hydrogen bonds is found between N—H of pyrrolidine-2-one and the coordinating O of the same ligand in the neighboring complex. A second intermolecular hydrogen bond is found between the N—H of the other pyrrolidine-2-one and one of the uranyl oxo atoms, see Fig. 2.
Photochemically excited *UO22+ is a potent and long-lived oxidant for organic and inorganic substrates including the solvent. After the oxidation, UO2+ is generated as a short-lived intermediate. This species is very unstable and immediately oxidized by dioxygen molecule. As a result, the initial UO22+ is regenerated, and the photo-induced catalytic cycle is repeated until termination of photo irradiation or complete conversion of the substrate. This reaction affords peroxide as a by-product. As described in Experimental, compound 1 was unexpectedly obtained from an ethanolic solution dissolving UO2(NO3)26H2O and pyrrolidine-2-one under sunlight. The peroxo ligand most likely arose from oxidative addition of atmospheric dioxygen molecule to the UO2+ intermediate through the above-mentioned catalytic oxidation of ethanol by the photo-excited *UO22+. A similar reaction was speculated in some of the former studies which also described incidental deposition of the uranyl-peroxo complexes [Charpin et al. (1985); Doyle et al. (1993); John et al. (2004)].