organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(4-Meth­oxy­benzo­yl)pyridine-2-carbohydrazide

aSchool of Chemistry and Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: wangzx0908@yahoo.com.cn

(Received 19 March 2010; accepted 12 April 2010; online 24 April 2010)

The crystal structure of the title compound, C14H13N3O3, exhibits two inter­molecular N—H⋯O hydrogen bonds.

Related literature

For general background to the coordination chemistry of pyridine derivatives, see: Koningsbruggen et al. (1997[Koningsbruggen, P. J., Hassnoot, J. G., Kooijman, H., Reedijk, J. & Spek, A. L. (1997). Inorg. Chem. 36, 2487-2489.]); Klingele & Brooker (2003[Klingele, M. H. & Brooker, S. (2003). Coord. Chem. Rev. 241, 119-132.]); Suksrichavalit et al. (2009[Suksrichavalit, T., Prachayasittikul, S., Nantasenamat, C., Isarankurai-Na-Ayudhyal, C. & Prachayasittikul, V. (2009). Eur. J. Inorg. Chem. 44, 3259-3265.]). For their biological activity, see: Tozkoparan et al. (2000[Tozkoparan, B., Gokhan, N., Aktay, G., Yesilada, E. & Ertana, M. (2000). Eur. J. Med. Chem. 35, 743-750.]); Grénman et al. (2003[Grénman, H., Salmi, T., Mäki-Arvela, J., Eränen, K., Tirronen, E. & Pehkonen, A. (2003). Org. Process Res. Dev. 7, 942-950.]); Alagarsamy et al. (2008[Alagarsamy, V., Rupeshkumar, M., Kavitha, K., Meena, S., Shankar, D., Siddiqui, A. A. & Rajesh, R. (2008). Eur. J. Med. Chem. 43, 2331-2337.]); Isloor et al. (2009[Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784-3787.]). For their syntheses, see: Klingsberg (1958[Klingsberg, E. (1958). J. Org. Chem. 23, 1086-1087.]); Potts (1961[Potts, K. T. (1961). Chem. Rev. 61, 87-127.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13N3O3

  • Mr = 271.27

  • Monoclinic, P 21 /c

  • a = 14.836 (3) Å

  • b = 11.6078 (17) Å

  • c = 7.6499 (12) Å

  • β = 97.137 (11)°

  • V = 1307.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.976, Tmax = 0.982

  • 13109 measured reflections

  • 2957 independent reflections

  • 1909 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.143

  • S = 1.02

  • 2957 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.85 2.11 2.9479 (19) 168
N2—H2A⋯O2ii 0.85 2.13 2.938 (2) 159
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As the 1,2,4-triazole ring possesses strong electron donors, the coordination chemistry of 1,2,4-triazole derivatives has gained a great deal of attention in recent years (Koningsbruggen et al., 1997; Klingele & Brooker 2003; Suksrichavalit et al., 2009). Some 1,2,4-triazole compounds have biological activity (Tozkoparan et al., 2000; Grénman et al., 2003; Alagarsamy et al., 2008; Isloor et al., 2009). We report here the crystal structure of the title compound, which can be used to synthesize 3(or 5)-(2-pyridyl)-1,2,4-triazole derivatives (Klingsberg, 1958; Potts, 1961).

The stucture of the title compound is shown in Fig. 1. The structure displays two N—H···O intermolecular hydrogen bonds.

Related literature top

For general background to the coordination chemistry of pyridine derivatives, see: Koningsbruggen et al. (1997); Klingele & Brooker (2003); Suksrichavalit et al. (2009). For their biological activity, see: Tozkoparan et al. (2000); Grénman et al. (2003); Alagarsamy et al. (2008); Isloor et al. (2009). For their syntheses, see: Klingsberg (1958); Potts (1961).

Experimental top

The title compound was prepared by the reaction of 2-picolinyl hydrazide (2.75 g, 20 mmol) with 4-methoxybenzoyl chloride (3.5 g, 20 mmol) in 30 ml N,N-dimethylacetamide at room temperature. The colorless product was collected by recrystallization from ethanol, and the single crystals suitable for X-ray diffraction were selected.

Refinement top

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C, N atoms to which they are bonded, riding with C—H = 0.93 Å (aromatic), 0.96 Å (methyl) or N—H = 0.85 Å, with Uĩso~(H) = 1.2 or 1.5 times U~eq~(C).

Structure description top

As the 1,2,4-triazole ring possesses strong electron donors, the coordination chemistry of 1,2,4-triazole derivatives has gained a great deal of attention in recent years (Koningsbruggen et al., 1997; Klingele & Brooker 2003; Suksrichavalit et al., 2009). Some 1,2,4-triazole compounds have biological activity (Tozkoparan et al., 2000; Grénman et al., 2003; Alagarsamy et al., 2008; Isloor et al., 2009). We report here the crystal structure of the title compound, which can be used to synthesize 3(or 5)-(2-pyridyl)-1,2,4-triazole derivatives (Klingsberg, 1958; Potts, 1961).

The stucture of the title compound is shown in Fig. 1. The structure displays two N—H···O intermolecular hydrogen bonds.

For general background to the coordination chemistry of pyridine derivatives, see: Koningsbruggen et al. (1997); Klingele & Brooker (2003); Suksrichavalit et al. (2009). For their biological activity, see: Tozkoparan et al. (2000); Grénman et al. (2003); Alagarsamy et al. (2008); Isloor et al. (2009). For their syntheses, see: Klingsberg (1958); Potts (1961).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atomic labelling. Displacement ellipsoids are shown at 30% probability level.
N'-(4-Methoxybenzoyl)pyridine-2-carbohydrazide top
Crystal data top
C14H13N3O3F(000) = 568
Mr = 271.27Dx = 1.378 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.836 (3) ÅCell parameters from 2772 reflections
b = 11.6078 (17) Åθ = 2.8–27.5°
c = 7.6499 (12) ŵ = 0.10 mm1
β = 97.137 (11)°T = 293 K
V = 1307.2 (4) Å3Block, colorless
Z = 40.25 × 0.20 × 0.18 mm
Data collection top
Rigaku SCXmini
diffractometer
2957 independent reflections
Radiation source: fine-focus sealed tube1909 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
CCD_Profile_fitting scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1919
Tmin = 0.976, Tmax = 0.982k = 1514
13109 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0677P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2957 reflectionsΔρmax = 0.16 e Å3
183 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.041 (5)
Crystal data top
C14H13N3O3V = 1307.2 (4) Å3
Mr = 271.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.836 (3) ŵ = 0.10 mm1
b = 11.6078 (17) ÅT = 293 K
c = 7.6499 (12) Å0.25 × 0.20 × 0.18 mm
β = 97.137 (11)°
Data collection top
Rigaku SCXmini
diffractometer
2957 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1909 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.982Rint = 0.053
13109 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.02Δρmax = 0.16 e Å3
2957 reflectionsΔρmin = 0.18 e Å3
183 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.91128 (11)0.22439 (14)0.9042 (2)0.0411 (4)
C20.97228 (12)0.13505 (15)0.8969 (2)0.0543 (5)
H20.95270.05950.90750.065*
C31.06100 (13)0.15577 (17)0.8744 (3)0.0598 (5)
H31.10070.09440.86680.072*
C41.09167 (12)0.26761 (16)0.8629 (3)0.0526 (5)
C51.03233 (13)0.35724 (16)0.8720 (3)0.0569 (5)
H51.05250.43280.86560.068*
C60.94239 (12)0.33527 (15)0.8909 (2)0.0520 (5)
H60.90230.39650.89460.062*
C70.81706 (11)0.19679 (14)0.9344 (2)0.0433 (4)
C81.21797 (14)0.3917 (2)0.8418 (4)0.0946 (9)
H8A1.18870.43340.74210.142*
H8B1.28190.38680.83400.142*
H8C1.20830.43110.94820.142*
C90.52469 (11)0.13673 (14)0.8280 (2)0.0432 (4)
C100.41189 (12)0.18980 (18)0.9872 (3)0.0589 (5)
H100.38980.23941.06740.071*
C110.35667 (13)0.10217 (18)0.9177 (3)0.0635 (6)
H110.29920.09190.95170.076*
C120.38794 (14)0.03054 (18)0.7977 (3)0.0679 (6)
H120.35160.02890.74730.081*
C130.47394 (13)0.04696 (16)0.7517 (3)0.0572 (5)
H130.49700.00150.67120.069*
C140.61801 (12)0.15765 (15)0.7797 (2)0.0448 (4)
N10.75270 (10)0.26729 (12)0.8514 (2)0.0500 (4)
H1A0.76320.30960.76550.075*
N20.66187 (9)0.24618 (13)0.8666 (2)0.0507 (4)
H2A0.64350.28810.94610.076*
N30.49533 (9)0.20769 (13)0.9461 (2)0.0507 (4)
O10.79830 (8)0.11775 (10)1.03016 (15)0.0530 (4)
O20.65007 (9)0.10076 (11)0.66877 (17)0.0590 (4)
O31.18109 (9)0.27954 (12)0.8433 (2)0.0759 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0422 (9)0.0415 (9)0.0399 (9)0.0003 (7)0.0060 (7)0.0012 (7)
C20.0473 (11)0.0427 (10)0.0740 (13)0.0009 (8)0.0114 (9)0.0056 (9)
C30.0489 (11)0.0502 (11)0.0822 (14)0.0078 (9)0.0150 (10)0.0052 (10)
C40.0411 (10)0.0567 (11)0.0607 (11)0.0028 (8)0.0090 (8)0.0078 (9)
C50.0511 (11)0.0447 (10)0.0752 (14)0.0067 (9)0.0089 (10)0.0042 (9)
C60.0462 (10)0.0426 (10)0.0676 (12)0.0032 (8)0.0091 (9)0.0022 (9)
C70.0457 (10)0.0427 (9)0.0429 (9)0.0025 (8)0.0117 (8)0.0026 (8)
C80.0509 (13)0.0814 (17)0.153 (3)0.0185 (11)0.0175 (15)0.0266 (17)
C90.0432 (10)0.0418 (9)0.0447 (9)0.0065 (7)0.0066 (8)0.0058 (7)
C100.0438 (11)0.0659 (13)0.0696 (13)0.0007 (9)0.0169 (10)0.0102 (10)
C110.0418 (10)0.0664 (13)0.0831 (14)0.0055 (10)0.0110 (10)0.0014 (12)
C120.0587 (13)0.0552 (12)0.0882 (16)0.0154 (10)0.0035 (11)0.0051 (11)
C130.0620 (12)0.0468 (10)0.0631 (12)0.0005 (9)0.0095 (10)0.0055 (9)
C140.0452 (10)0.0432 (10)0.0468 (10)0.0097 (8)0.0092 (8)0.0057 (8)
N10.0394 (8)0.0553 (9)0.0583 (10)0.0028 (7)0.0179 (7)0.0104 (7)
N20.0401 (8)0.0549 (9)0.0601 (10)0.0024 (7)0.0183 (7)0.0033 (7)
N30.0400 (8)0.0549 (9)0.0583 (9)0.0009 (7)0.0105 (7)0.0059 (7)
O10.0513 (8)0.0525 (7)0.0567 (8)0.0058 (6)0.0124 (6)0.0079 (6)
O20.0620 (8)0.0579 (8)0.0601 (8)0.0135 (6)0.0192 (6)0.0035 (6)
O30.0428 (7)0.0719 (10)0.1157 (13)0.0033 (7)0.0201 (8)0.0171 (9)
Geometric parameters (Å, º) top
C1—C61.375 (2)C8—H8C0.9600
C1—C21.382 (2)C9—N31.335 (2)
C1—C71.480 (2)C9—C131.373 (2)
C2—C31.370 (2)C10—N31.331 (2)
C2—H20.9300C10—C111.371 (3)
C3—C41.382 (3)C10—H100.9300
C3—H30.9300C11—C121.362 (3)
C4—O31.361 (2)C11—H110.9300
C4—C51.370 (3)C12—C131.378 (3)
C5—C61.384 (2)C12—H120.9300
C5—H50.9300C13—H130.9300
C6—H60.9300C14—O21.2179 (19)
C7—O11.2276 (19)C14—N21.347 (2)
C7—N11.354 (2)C14—C91.496 (2)
C8—O31.413 (3)N1—N21.389 (2)
C8—H8A0.9600N1—H1A0.8500
C8—H8B0.9600N2—H2A0.8500
C6—C1—C2118.15 (16)O2—C14—N2123.43 (16)
C6—C1—C7123.11 (15)O2—C14—C9122.51 (16)
C2—C1—C7118.67 (15)N2—C14—C9114.04 (14)
C3—C2—C1121.17 (17)N3—C9—C13123.25 (16)
C3—C2—H2119.4N3—C9—C14117.16 (15)
C1—C2—H2119.4C13—C9—C14119.59 (16)
C2—C3—C4120.13 (17)N3—C10—C11123.56 (18)
C2—C3—H3119.9N3—C10—H10118.2
C4—C3—H3119.9C11—C10—H10118.2
O3—C4—C5124.74 (17)C12—C11—C10118.49 (18)
O3—C4—C3115.84 (17)C12—C11—H11120.8
C5—C4—C3119.42 (17)C10—C11—H11120.8
C4—C5—C6119.96 (17)C11—C12—C13119.42 (18)
C4—C5—H5120.0C11—C12—H12120.3
C6—C5—H5120.0C13—C12—H12120.3
C1—C6—C5121.14 (16)C9—C13—C12118.22 (18)
C1—C6—H6119.4C9—C13—H13120.9
C5—C6—H6119.4C12—C13—H13120.9
O1—C7—N1122.17 (16)C7—N1—N2119.30 (14)
O1—C7—C1122.91 (16)C7—N1—H1A121.7
N1—C7—C1114.89 (15)N2—N1—H1A116.1
O3—C8—H8A109.5C14—N2—N1120.53 (14)
O3—C8—H8B109.5C14—N2—H2A127.8
H8A—C8—H8B109.5N1—N2—H2A111.0
O3—C8—H8C109.5C10—N3—C9117.05 (16)
H8A—C8—H8C109.5C4—O3—C8118.60 (16)
H8B—C8—H8C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.852.112.9479 (19)168
N2—H2A···O2ii0.852.132.938 (2)159
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H13N3O3
Mr271.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.836 (3), 11.6078 (17), 7.6499 (12)
β (°) 97.137 (11)
V3)1307.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.976, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
13109, 2957, 1909
Rint0.053
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.143, 1.02
No. of reflections2957
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.18

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
C7—O11.2276 (19)N1—N21.389 (2)
C7—N11.354 (2)N1—H1A0.8500
C14—O21.2179 (19)N2—H2A0.8500
C14—N21.347 (2)
O1—C7—N1122.17 (16)O2—C14—N2123.43 (16)
O1—C7—C1122.91 (16)O2—C14—C9122.51 (16)
N1—C7—C1114.89 (15)N2—C14—C9114.04 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.852.112.9479 (19)168.0
N2—H2A···O2ii0.852.132.938 (2)158.9
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

We are grateful to the Jingye Pharmochemical Pilot Plant for financial assistance though project 8507041056.

References

First citationAlagarsamy, V., Rupeshkumar, M., Kavitha, K., Meena, S., Shankar, D., Siddiqui, A. A. & Rajesh, R. (2008). Eur. J. Med. Chem. 43, 2331–2337.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGrénman, H., Salmi, T., Mäki-Arvela, J., Eränen, K., Tirronen, E. & Pehkonen, A. (2003). Org. Process Res. Dev. 7, 942–950.  Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKlingele, M. H. & Brooker, S. (2003). Coord. Chem. Rev. 241, 119–132.  Web of Science CrossRef CAS Google Scholar
First citationKlingsberg, E. (1958). J. Org. Chem. 23, 1086–1087.  CrossRef CAS Web of Science Google Scholar
First citationKoningsbruggen, P. J., Hassnoot, J. G., Kooijman, H., Reedijk, J. & Spek, A. L. (1997). Inorg. Chem. 36, 2487–2489.  CSD CrossRef PubMed Web of Science Google Scholar
First citationPotts, K. T. (1961). Chem. Rev. 61, 87–127.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuksrichavalit, T., Prachayasittikul, S., Nantasenamat, C., Isarankurai-Na-Ayudhyal, C. & Prachayasittikul, V. (2009). Eur. J. Inorg. Chem. 44, 3259–3265.  CAS Google Scholar
First citationTozkoparan, B., Gokhan, N., Aktay, G., Yesilada, E. & Ertana, M. (2000). Eur. J. Med. Chem. 35, 743–750.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds