metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Bis[4-amino-N-(pyrimidin-2-yl)benzene­sulfonamidato]di­pyridine­cobalt(II) hemihydrate

aSchool of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China, and bKey Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry & Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China
*Correspondence e-mail: chenzfgxnu@yahoo.com

(Received 31 March 2010; accepted 14 April 2010; online 21 April 2010)

The asymmeric unit of the title compound, [Co(C10H9N4O2S)2(C5H5N)2]·0.5H2O, contains the distorted octa­hedral trans-[Co(sdz)2(py)2] (sdz is the sulfadiazine anion and py is pyridine) complex mol­ecule and a half-mol­ecule of water, which lies on a twofold rotation axis. A three-dimensional network is generated by N—H⋯O and O—H⋯O hydrogen bonds between the complex and the water mol­ecules.

Related literature

For mono ligand sulfadiazine–metal complexes, see: Yuan et al. (2001[Yuan, R.-X., Xiong, R.-G., Chen, Z.-F., Zhang, P., Ju, H.-X., Dai, Z., Guo, Z.-J., Fun, H.-K. & You, X.-Z. (2001). J. Chem. Soc. Dalton Trans. pp. 774-776.]); Wang et al. (2005[Wang, X.-S., Huang, X.-F. & Xiong, R.-G. (2005). Chin. J. Inorg. Chem. 21, 1279-1280.]). For mixed ligand sulfadiazine–metal complexes, see: Ajibade et al. (2006[Ajibade, P. A., Kolawole, G. A., O'Brien, P., Helliwell, M. & Raftery, J. (2006). Inorg. Chim. Acta, 359, 3111-3116.]); Brown et al. (1987[Brown, C. J., Cook, D. S. & Sengier, L. (1987). Acta Cryst. C43, 2332-2334.]); Hossain et al. (2006[Hossain, G. M. G., Banu, A. & Amoroso, A. J. (2006). Acta Cryst. E62, m2727-m2729.]); Wang et al. (2009[Wang, Y.-F., Li, F.-X., Peng, Y., Chen, Z.-F. & Liang, H. (2009). Acta Cryst. E65, m1584.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C10H9N4O2S)2(C5H5N)2]·0.5H2O

  • Mr = 724.68

  • Monoclinic, C 2/c

  • a = 39.618 (4) Å

  • b = 11.2407 (9) Å

  • c = 14.5673 (13) Å

  • β = 104.648 (2)°

  • V = 6276.4 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 193 K

  • 0.44 × 0.15 × 0.12 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.738, Tmax = 0.917

  • 34520 measured reflections

  • 7188 independent reflections

  • 6038 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.103

  • S = 1.18

  • 7188 reflections

  • 434 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O1i 0.88 2.44 3.266 (3) 157
N4—H4B⋯O2ii 0.88 2.30 3.108 (4) 152
N8—H8A⋯O3iii 0.88 2.54 3.084 (3) 120
N8—H8B⋯O5iv 0.88 2.26 3.114 (4) 162
O5—H5⋯O4v 0.89 (4) 1.91 (4) 2.785 (3) 169 (4)
Symmetry codes: (i) [x, -y+2, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y, z+{\script{1\over 2}}]; (iv) -x+1, -y, -z+1; (v) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 1999[Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC & Rigaku, 2000[Rigaku/MSC & Rigaku (2000). CrystalStrucutre. Rigaku/MSC, The Woodands, Texas, USA, and Rigaku Coporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound consists of [Co(C11H11N4O4S2] and half a lattice water molecule and is isostructural with trans-[Ni(sdz)2(py)2] (where sdz = sulfadiazine anion and py = pyridine)(Wang et al., 2009), the title cobalt(II) complex has six-coordinate distorted octahedral geometry and contains two bidentate N-coordinated sulfadiazinate anion and two pyridine molecules occupying the trans sites. One water molecule lies on a 2-fold rotation axis. The coordination mode of sulfadiazine is similar to its cobalt(II) complex (Ajibade et al., 2006) and copper(II) complex (Brown et al., 1987), but different from Zn(sdz)2 (Yuan et al., 2001), polymeric Cd(II) complex (Wang et al. 2005), and its copper complex (Hossain et al. 2006). The Co—N bond distances involving the sulfonamide atoms N3, N7, the pyrimido atoms N1, N5, and the pyridine atoms N9, N10, are very similar, at 2.132 (2), 2.091 (2), 2.124 (2), 2.168 (2), 2.196 (2), 2.193 (2) Å, respectively. The tetrahedral coordination at S is distorted, as is also found in the neutral sulfadiazine molecule. A three dimensional network is generated by N—H···O and O—H···O hydrogen bonds involving the complex and water molecules.

Related literature top

For mono ligand sulfadiazine–metal complexes, see: Yuan et al. (2001); Wang et al. (2005). For mixed ligand sulfadiazine–metal complexes, see: Ajibade et al. (2006); Brown et al. (1987); Hossain et al. (2006); Wang et al. (2009).

Experimental top

0.1 mmol Co(CH3COO)2.3H2O, 0.2 mmol sulfadiazine, ethanol (2.2 ml), water (0.2 ml) and pyridine (0.2 ml) were placed in a Pyrex tube (ca 25 cm). The tube was frozen with liquid N2, evacuated under vacuum, sealed with a torch and heated at 353 K for three days to give red-brown block-shaped crystals, with a yield of 70%.

Refinement top

The water H were found in a difference Fourier map and refined freely. Other H atoms were treated as riding, with C—H distances of 0.95 Å,N—H distances of 0.88 Å, were refined as riding with Uiso(H) = 1.2Ueq(C,N).

Structure description top

The title compound consists of [Co(C11H11N4O4S2] and half a lattice water molecule and is isostructural with trans-[Ni(sdz)2(py)2] (where sdz = sulfadiazine anion and py = pyridine)(Wang et al., 2009), the title cobalt(II) complex has six-coordinate distorted octahedral geometry and contains two bidentate N-coordinated sulfadiazinate anion and two pyridine molecules occupying the trans sites. One water molecule lies on a 2-fold rotation axis. The coordination mode of sulfadiazine is similar to its cobalt(II) complex (Ajibade et al., 2006) and copper(II) complex (Brown et al., 1987), but different from Zn(sdz)2 (Yuan et al., 2001), polymeric Cd(II) complex (Wang et al. 2005), and its copper complex (Hossain et al. 2006). The Co—N bond distances involving the sulfonamide atoms N3, N7, the pyrimido atoms N1, N5, and the pyridine atoms N9, N10, are very similar, at 2.132 (2), 2.091 (2), 2.124 (2), 2.168 (2), 2.196 (2), 2.193 (2) Å, respectively. The tetrahedral coordination at S is distorted, as is also found in the neutral sulfadiazine molecule. A three dimensional network is generated by N—H···O and O—H···O hydrogen bonds involving the complex and water molecules.

For mono ligand sulfadiazine–metal complexes, see: Yuan et al. (2001); Wang et al. (2005). For mixed ligand sulfadiazine–metal complexes, see: Ajibade et al. (2006); Brown et al. (1987); Hossain et al. (2006); Wang et al. (2009).

Computing details top

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear (Rigaku, 1999); data reduction: CrystalStructure (Rigaku/MSC & Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing plot of the title compound view along [010]. Hydrogen bonds are shown in the dashingline, and the H atoms that are not involved in hydrogen bonding are omitted.
trans-Bis[4-amino-N-(pyrimidin-2- yl)benzenesulfonamidato]dipyridinecobalt(II) hemihydrate top
Crystal data top
[Co(C10H9N4O2S)2(C5H5N)2]·0.5H2OF(000) = 2992
Mr = 724.68Dx = 1.534 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -C 2ycCell parameters from 11616 reflections
a = 39.618 (4) Åθ = 3.0–27.5°
b = 11.2407 (9) ŵ = 0.74 mm1
c = 14.5673 (13) ÅT = 193 K
β = 104.648 (2)°Block, red-brown
V = 6276.4 (10) Å30.44 × 0.15 × 0.12 mm
Z = 8
Data collection top
Rigaku Mercury
diffractometer
7188 independent reflections
Radiation source: fine-focus sealed tube6038 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 7.31 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 5151
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1214
Tmin = 0.738, Tmax = 0.917l = 1815
34520 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.18 w = 1/[σ2(Fo2) + (0.027P)2 + 11.6654P]
where P = (Fo2 + 2Fc2)/3
7188 reflections(Δ/σ)max = 0.001
434 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Co(C10H9N4O2S)2(C5H5N)2]·0.5H2OV = 6276.4 (10) Å3
Mr = 724.68Z = 8
Monoclinic, C2/cMo Kα radiation
a = 39.618 (4) ŵ = 0.74 mm1
b = 11.2407 (9) ÅT = 193 K
c = 14.5673 (13) Å0.44 × 0.15 × 0.12 mm
β = 104.648 (2)°
Data collection top
Rigaku Mercury
diffractometer
7188 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
6038 reflections with I > 2σ(I)
Tmin = 0.738, Tmax = 0.917Rint = 0.051
34520 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.18 w = 1/[σ2(Fo2) + (0.027P)2 + 11.6654P]
where P = (Fo2 + 2Fc2)/3
7188 reflectionsΔρmax = 0.36 e Å3
434 parametersΔρmin = 0.52 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.376102 (9)0.51879 (3)0.36763 (2)0.02249 (10)
S10.316541 (17)0.74751 (6)0.38330 (4)0.02182 (14)
S20.428760 (18)0.28343 (6)0.33767 (4)0.02344 (15)
O10.34287 (5)0.78002 (16)0.46799 (12)0.0283 (4)
O20.28292 (5)0.71697 (16)0.39809 (13)0.0278 (4)
O30.40112 (5)0.26443 (17)0.25308 (13)0.0339 (5)
O40.46383 (5)0.28960 (17)0.32502 (14)0.0327 (5)
O50.50000.1180 (3)0.25000.0491 (9)
N10.34102 (6)0.50839 (19)0.23097 (15)0.0232 (5)
N20.28923 (6)0.6275 (2)0.18964 (16)0.0284 (5)
N30.33361 (6)0.64112 (19)0.33688 (15)0.0230 (5)
N40.29295 (8)1.1427 (3)0.1053 (2)0.0640 (10)
H4A0.31031.17120.08440.077*
H4B0.27181.17240.08450.077*
N50.41670 (6)0.53040 (19)0.49884 (15)0.0235 (5)
N60.46858 (6)0.4129 (2)0.51736 (16)0.0274 (5)
N70.41832 (5)0.40206 (18)0.38452 (14)0.0212 (5)
N80.42558 (9)0.0979 (2)0.6145 (2)0.0587 (9)
H8A0.40580.13310.61450.070*
H8B0.44490.11940.65570.070*
N90.34589 (6)0.3841 (2)0.42168 (16)0.0274 (5)
N100.40774 (6)0.65618 (19)0.32242 (15)0.0239 (5)
C10.31931 (7)0.5951 (2)0.24867 (18)0.0229 (5)
C20.33096 (8)0.4491 (2)0.14931 (19)0.0298 (6)
H20.34540.38750.13570.036*
C30.30007 (8)0.4755 (3)0.0844 (2)0.0339 (7)
H30.29270.43340.02620.041*
C40.28045 (8)0.5663 (3)0.1082 (2)0.0344 (7)
H40.25930.58680.06380.041*
C50.30980 (7)0.8664 (2)0.30240 (18)0.0239 (6)
C60.27690 (8)0.9142 (3)0.2684 (2)0.0373 (7)
H60.25790.88360.29000.045*
C70.27134 (8)1.0056 (3)0.2037 (2)0.0443 (8)
H70.24861.03780.18130.053*
C80.29878 (8)1.0518 (3)0.1703 (2)0.0342 (7)
C90.33169 (8)1.0030 (3)0.2045 (2)0.0348 (7)
H90.35071.03300.18270.042*
C100.33721 (7)0.9114 (3)0.2697 (2)0.0318 (6)
H100.35990.87890.29240.038*
C110.43653 (7)0.4463 (2)0.47028 (17)0.0224 (5)
C120.43111 (8)0.5883 (2)0.57944 (19)0.0296 (6)
H120.41810.64790.60140.036*
C130.46446 (8)0.5632 (3)0.6311 (2)0.0353 (7)
H130.47500.60540.68760.042*
C140.48192 (7)0.4741 (3)0.5973 (2)0.0335 (7)
H140.50480.45490.63290.040*
C150.42831 (7)0.1675 (2)0.41761 (18)0.0235 (5)
C160.45886 (7)0.1330 (2)0.48288 (19)0.0267 (6)
H160.48040.16990.48230.032*
C170.45791 (8)0.0452 (2)0.5484 (2)0.0336 (7)
H170.47880.02160.59260.040*
C180.42632 (9)0.0092 (3)0.5502 (2)0.0376 (7)
C190.39586 (9)0.0261 (3)0.4843 (2)0.0381 (7)
H190.37430.01070.48450.046*
C200.39676 (8)0.1139 (2)0.4190 (2)0.0311 (6)
H200.37590.13790.37480.037*
C210.35814 (8)0.3409 (3)0.5089 (2)0.0326 (7)
H210.37880.37510.54750.039*
C220.34273 (8)0.2498 (3)0.5466 (2)0.0389 (7)
H220.35260.22250.60940.047*
C230.31292 (9)0.1993 (3)0.4922 (3)0.0495 (9)
H230.30170.13590.51610.059*
C240.29964 (10)0.2425 (4)0.4023 (3)0.0661 (12)
H240.27900.20960.36260.079*
C250.31661 (9)0.3340 (3)0.3703 (2)0.0515 (9)
H250.30700.36350.30810.062*
C260.41834 (8)0.6433 (3)0.2431 (2)0.0336 (7)
H260.41180.57320.20640.040*
C270.43829 (9)0.7266 (3)0.2117 (2)0.0426 (8)
H270.44500.71420.15420.051*
C280.44845 (8)0.8276 (3)0.2641 (2)0.0359 (7)
H280.46230.88600.24380.043*
C290.43811 (8)0.8426 (3)0.3469 (2)0.0346 (7)
H290.44480.91130.38520.041*
C300.41771 (8)0.7553 (2)0.3730 (2)0.0307 (6)
H300.41040.76620.42970.037*
H50.5105 (11)0.168 (4)0.219 (3)0.082 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0261 (2)0.02007 (19)0.02013 (18)0.00081 (14)0.00363 (14)0.00073 (14)
S10.0264 (3)0.0205 (3)0.0191 (3)0.0007 (3)0.0067 (3)0.0014 (2)
S20.0288 (4)0.0227 (3)0.0198 (3)0.0009 (3)0.0078 (3)0.0013 (2)
O10.0332 (11)0.0287 (10)0.0203 (9)0.0015 (8)0.0018 (8)0.0045 (8)
O20.0289 (10)0.0292 (10)0.0283 (10)0.0026 (8)0.0126 (8)0.0016 (8)
O30.0420 (12)0.0340 (11)0.0222 (10)0.0031 (9)0.0015 (9)0.0070 (8)
O40.0334 (11)0.0361 (12)0.0338 (11)0.0020 (9)0.0182 (9)0.0035 (9)
O50.070 (3)0.0337 (19)0.054 (2)0.0000.034 (2)0.000
N10.0275 (12)0.0222 (11)0.0201 (11)0.0008 (9)0.0064 (9)0.0005 (9)
N20.0277 (12)0.0318 (13)0.0233 (12)0.0029 (10)0.0017 (10)0.0038 (10)
N30.0259 (12)0.0223 (12)0.0195 (11)0.0035 (9)0.0035 (9)0.0014 (9)
N40.0510 (19)0.072 (2)0.075 (2)0.0204 (16)0.0289 (17)0.0521 (19)
N50.0290 (12)0.0236 (12)0.0182 (11)0.0032 (9)0.0064 (9)0.0018 (9)
N60.0228 (12)0.0341 (13)0.0235 (12)0.0022 (10)0.0028 (9)0.0009 (10)
N70.0240 (12)0.0194 (11)0.0191 (11)0.0002 (8)0.0033 (9)0.0022 (8)
N80.089 (3)0.0385 (17)0.0559 (19)0.0041 (16)0.0324 (18)0.0179 (14)
N90.0274 (12)0.0271 (13)0.0289 (12)0.0007 (9)0.0092 (10)0.0007 (10)
N100.0273 (12)0.0226 (12)0.0214 (11)0.0050 (9)0.0052 (9)0.0018 (9)
C10.0263 (14)0.0207 (13)0.0222 (13)0.0023 (10)0.0071 (11)0.0017 (10)
C20.0361 (16)0.0270 (15)0.0286 (15)0.0002 (12)0.0126 (13)0.0068 (12)
C30.0321 (16)0.0412 (17)0.0257 (14)0.0037 (13)0.0026 (12)0.0109 (13)
C40.0295 (16)0.0438 (18)0.0266 (15)0.0023 (13)0.0010 (12)0.0039 (13)
C50.0282 (14)0.0221 (14)0.0211 (13)0.0010 (11)0.0058 (11)0.0005 (10)
C60.0324 (16)0.0361 (17)0.0483 (19)0.0067 (13)0.0192 (15)0.0154 (14)
C70.0334 (17)0.047 (2)0.056 (2)0.0150 (14)0.0176 (15)0.0235 (16)
C80.0379 (17)0.0331 (16)0.0338 (16)0.0054 (13)0.0135 (13)0.0102 (13)
C90.0321 (16)0.0403 (18)0.0347 (16)0.0015 (13)0.0133 (13)0.0103 (13)
C100.0256 (15)0.0366 (17)0.0329 (16)0.0025 (12)0.0068 (12)0.0068 (13)
C110.0270 (14)0.0214 (13)0.0196 (12)0.0045 (10)0.0075 (11)0.0014 (10)
C120.0392 (17)0.0283 (15)0.0237 (14)0.0078 (12)0.0124 (12)0.0038 (11)
C130.0368 (17)0.0457 (18)0.0219 (14)0.0129 (14)0.0045 (13)0.0094 (13)
C140.0250 (15)0.0484 (18)0.0240 (14)0.0066 (13)0.0005 (12)0.0008 (13)
C150.0296 (14)0.0183 (13)0.0241 (13)0.0004 (10)0.0094 (11)0.0022 (10)
C160.0327 (15)0.0227 (14)0.0261 (14)0.0010 (11)0.0099 (12)0.0024 (11)
C170.0467 (19)0.0267 (15)0.0267 (15)0.0021 (13)0.0078 (13)0.0005 (12)
C180.061 (2)0.0236 (15)0.0347 (17)0.0010 (14)0.0249 (16)0.0014 (12)
C190.0451 (19)0.0239 (15)0.054 (2)0.0077 (13)0.0279 (16)0.0054 (14)
C200.0302 (15)0.0237 (14)0.0411 (17)0.0003 (11)0.0120 (13)0.0040 (12)
C210.0344 (16)0.0353 (17)0.0283 (15)0.0069 (13)0.0083 (13)0.0007 (12)
C220.0427 (18)0.0438 (18)0.0321 (16)0.0025 (14)0.0130 (14)0.0088 (14)
C230.048 (2)0.050 (2)0.050 (2)0.0153 (16)0.0130 (17)0.0136 (17)
C240.054 (2)0.082 (3)0.053 (2)0.042 (2)0.0043 (19)0.023 (2)
C250.040 (2)0.068 (2)0.0388 (19)0.0234 (17)0.0046 (15)0.0137 (17)
C260.0466 (19)0.0306 (16)0.0249 (15)0.0012 (13)0.0116 (13)0.0042 (12)
C270.062 (2)0.0409 (19)0.0319 (17)0.0024 (16)0.0254 (16)0.0008 (14)
C280.0407 (18)0.0327 (16)0.0383 (17)0.0059 (13)0.0174 (14)0.0024 (13)
C290.0436 (18)0.0268 (16)0.0346 (16)0.0079 (13)0.0123 (14)0.0055 (12)
C300.0416 (17)0.0259 (15)0.0271 (15)0.0017 (12)0.0135 (13)0.0041 (11)
Geometric parameters (Å, º) top
Co1—N72.091 (2)C6—C71.374 (4)
Co1—N12.124 (2)C6—H60.9500
Co1—N32.132 (2)C7—C81.398 (4)
Co1—N52.168 (2)C7—H70.9500
Co1—N102.193 (2)C8—C91.386 (4)
Co1—N92.196 (2)C9—C101.381 (4)
S1—O21.4436 (19)C9—H90.9500
S1—O11.4466 (19)C10—H100.9500
S1—N31.605 (2)C12—C131.375 (4)
S1—C51.757 (3)C12—H120.9500
S2—O31.443 (2)C13—C141.376 (4)
S2—O41.449 (2)C13—H130.9500
S2—N71.599 (2)C14—H140.9500
S2—C151.751 (3)C15—C161.392 (4)
O5—H50.89 (4)C15—C201.392 (4)
N1—C21.334 (3)C16—C171.380 (4)
N1—C11.366 (3)C16—H160.9500
N2—C11.332 (3)C17—C181.399 (4)
N2—C41.339 (3)C17—H170.9500
N3—C11.368 (3)C18—C191.396 (5)
N4—C81.373 (4)C19—C201.378 (4)
N4—H4A0.8800C19—H190.9500
N4—H4B0.8800C20—H200.9500
N5—C121.338 (3)C21—C221.376 (4)
N5—C111.360 (3)C21—H210.9500
N6—C111.335 (3)C22—C231.368 (5)
N6—C141.342 (3)C22—H220.9500
N7—C111.368 (3)C23—C241.372 (5)
N8—C181.373 (4)C23—H230.9500
N8—H8A0.8800C24—C251.373 (5)
N8—H8B0.8800C24—H240.9500
N9—C211.332 (4)C25—H250.9500
N9—C251.335 (4)C26—C271.376 (4)
N10—C261.334 (3)C26—H260.9500
N10—C301.339 (3)C27—C281.371 (4)
C2—C31.376 (4)C27—H270.9500
C2—H20.9500C28—C291.379 (4)
C3—C41.379 (4)C28—H280.9500
C3—H30.9500C29—C301.385 (4)
C4—H40.9500C29—H290.9500
C5—C61.380 (4)C30—H300.9500
C5—C101.386 (4)
N7—Co1—N1112.97 (8)C6—C7—H7119.6
N7—Co1—N3174.43 (8)C8—C7—H7119.6
N1—Co1—N362.84 (8)N4—C8—C9121.4 (3)
N7—Co1—N562.69 (8)N4—C8—C7120.4 (3)
N1—Co1—N5173.41 (8)C9—C8—C7118.2 (3)
N3—Co1—N5121.11 (8)C10—C9—C8120.9 (3)
N7—Co1—N1088.64 (8)C10—C9—H9119.6
N1—Co1—N1092.61 (8)C8—C9—H9119.6
N3—Co1—N1087.91 (8)C9—C10—C5120.4 (3)
N5—Co1—N1082.50 (8)C9—C10—H10119.8
N7—Co1—N991.00 (8)C5—C10—H10119.8
N1—Co1—N990.65 (8)N6—C11—N5125.9 (2)
N3—Co1—N992.70 (8)N6—C11—N7125.5 (2)
N5—Co1—N994.33 (8)N5—C11—N7108.6 (2)
N10—Co1—N9176.60 (8)N5—C12—C13121.3 (3)
O2—S1—O1115.23 (11)N5—C12—H12119.4
O2—S1—N3112.88 (11)C13—C12—H12119.4
O1—S1—N3104.94 (11)C12—C13—C14117.0 (3)
O2—S1—C5106.95 (12)C12—C13—H13121.5
O1—S1—C5109.53 (12)C14—C13—H13121.5
N3—S1—C5107.05 (12)N6—C14—C13124.1 (3)
O3—S2—O4116.35 (12)N6—C14—H14117.9
O3—S2—N7105.41 (11)C13—C14—H14117.9
O4—S2—N7111.97 (12)C16—C15—C20119.9 (3)
O3—S2—C15108.95 (12)C16—C15—S2120.6 (2)
O4—S2—C15106.96 (12)C20—C15—S2119.5 (2)
N7—S2—C15106.82 (11)C17—C16—C15120.0 (3)
C2—N1—C1117.7 (2)C17—C16—H16120.0
C2—N1—Co1147.23 (19)C15—C16—H16120.0
C1—N1—Co194.47 (15)C16—C17—C18120.4 (3)
C1—N2—C4114.9 (2)C16—C17—H17119.8
C1—N3—S1123.99 (18)C18—C17—H17119.8
C1—N3—Co194.06 (15)N8—C18—C19120.7 (3)
S1—N3—Co1141.87 (13)N8—C18—C17120.2 (3)
C8—N4—H4A120.0C19—C18—C17119.0 (3)
C8—N4—H4B120.0C20—C19—C18120.6 (3)
H4A—N4—H4B120.0C20—C19—H19119.7
C12—N5—C11117.1 (2)C18—C19—H19119.7
C12—N5—Co1149.3 (2)C19—C20—C15120.0 (3)
C11—N5—Co192.62 (15)C19—C20—H20120.0
C11—N6—C14114.6 (2)C15—C20—H20120.0
C11—N7—S2123.98 (18)N9—C21—C22124.1 (3)
C11—N7—Co195.79 (16)N9—C21—H21117.9
S2—N7—Co1139.33 (12)C22—C21—H21117.9
C18—N8—H8A120.0C23—C22—C21118.9 (3)
C18—N8—H8B120.0C23—C22—H22120.6
H8A—N8—H8B120.0C21—C22—H22120.6
C21—N9—C25115.9 (3)C22—C23—C24118.2 (3)
C21—N9—Co1119.55 (19)C22—C23—H23120.9
C25—N9—Co1124.4 (2)C24—C23—H23120.9
C26—N10—C30117.0 (2)C23—C24—C25119.1 (3)
C26—N10—Co1120.87 (18)C23—C24—H24120.4
C30—N10—Co1122.14 (18)C25—C24—H24120.4
N2—C1—N1125.2 (2)N9—C25—C24123.8 (3)
N2—C1—N3126.4 (2)N9—C25—H25118.1
N1—C1—N3108.4 (2)C24—C25—H25118.1
N1—C2—C3121.2 (3)N10—C26—C27123.2 (3)
N1—C2—H2119.4N10—C26—H26118.4
C3—C2—H2119.4C27—C26—H26118.4
C2—C3—C4116.6 (3)C28—C27—C26119.4 (3)
C2—C3—H3121.7C28—C27—H27120.3
C4—C3—H3121.7C26—C27—H27120.3
N2—C4—C3124.5 (3)C27—C28—C29118.6 (3)
N2—C4—H4117.8C27—C28—H28120.7
C3—C4—H4117.8C29—C28—H28120.7
C6—C5—C10119.0 (3)C28—C29—C30118.5 (3)
C6—C5—S1120.4 (2)C28—C29—H29120.8
C10—C5—S1120.5 (2)C30—C29—H29120.8
C7—C6—C5120.7 (3)N10—C30—C29123.4 (3)
C7—C6—H6119.7N10—C30—H30118.3
C5—C6—H6119.7C29—C30—H30118.3
C6—C7—C8120.8 (3)
N7—Co1—N1—C212.2 (4)Co1—N3—C1—N14.2 (2)
N3—Co1—N1—C2171.9 (4)C1—N1—C2—C31.1 (4)
N10—Co1—N1—C2101.8 (3)Co1—N1—C2—C3168.7 (2)
N9—Co1—N1—C279.2 (3)N1—C2—C3—C40.4 (4)
N7—Co1—N1—C1178.81 (14)C1—N2—C4—C30.4 (4)
N3—Co1—N1—C12.87 (14)C2—C3—C4—N21.1 (5)
N10—Co1—N1—C189.18 (15)O2—S1—C5—C61.9 (3)
N9—Co1—N1—C189.83 (15)O1—S1—C5—C6123.6 (2)
O2—S1—N3—C163.1 (2)N3—S1—C5—C6123.1 (2)
O1—S1—N3—C1170.7 (2)O2—S1—C5—C10176.3 (2)
C5—S1—N3—C154.3 (2)O1—S1—C5—C1058.2 (3)
O2—S1—N3—Co1112.6 (2)N3—S1—C5—C1055.0 (3)
O1—S1—N3—Co113.6 (2)C10—C5—C6—C70.5 (5)
C5—S1—N3—Co1130.0 (2)S1—C5—C6—C7178.7 (3)
N1—Co1—N3—C12.87 (14)C5—C6—C7—C80.4 (5)
N5—Co1—N3—C1176.82 (14)C6—C7—C8—N4179.7 (3)
N10—Co1—N3—C196.88 (15)C6—C7—C8—C90.1 (5)
N9—Co1—N3—C186.47 (16)N4—C8—C9—C10179.8 (3)
N1—Co1—N3—S1179.3 (2)C7—C8—C9—C100.1 (5)
N5—Co1—N3—S16.7 (2)C8—C9—C10—C50.1 (5)
N10—Co1—N3—S186.7 (2)C6—C5—C10—C90.3 (4)
N9—Co1—N3—S190.0 (2)S1—C5—C10—C9178.5 (2)
N7—Co1—N5—C12169.1 (4)C14—N6—C11—N53.2 (4)
N3—Co1—N5—C126.3 (4)C14—N6—C11—N7176.1 (2)
N10—Co1—N5—C1276.7 (4)C12—N5—C11—N62.9 (4)
N9—Co1—N5—C12102.0 (4)Co1—N5—C11—N6174.8 (2)
N7—Co1—N5—C113.19 (14)C12—N5—C11—N7176.5 (2)
N3—Co1—N5—C11172.13 (14)Co1—N5—C11—N74.6 (2)
N10—Co1—N5—C1189.16 (15)S2—N7—C11—N614.3 (4)
N9—Co1—N5—C1192.08 (15)Co1—N7—C11—N6174.6 (2)
O3—S2—N7—C11174.9 (2)S2—N7—C11—N5166.26 (17)
O4—S2—N7—C1157.6 (2)Co1—N7—C11—N54.8 (2)
C15—S2—N7—C1159.1 (2)C11—N5—C12—C130.3 (4)
O3—S2—N7—Co18.7 (2)Co1—N5—C12—C13164.4 (3)
O4—S2—N7—Co1136.13 (18)N5—C12—C13—C141.5 (4)
C15—S2—N7—Co1107.1 (2)C11—N6—C14—C131.2 (4)
N1—Co1—N7—C11171.33 (14)C12—C13—C14—N61.0 (4)
N5—Co1—N7—C113.19 (14)O3—S2—C15—C16151.9 (2)
N10—Co1—N7—C1179.07 (15)O4—S2—C15—C1625.3 (2)
N9—Co1—N7—C1197.55 (15)N7—S2—C15—C1694.7 (2)
N1—Co1—N7—S220.1 (2)O3—S2—C15—C2031.5 (2)
N5—Co1—N7—S2165.4 (2)O4—S2—C15—C20158.0 (2)
N10—Co1—N7—S2112.37 (19)N7—S2—C15—C2081.9 (2)
N9—Co1—N7—S271.01 (19)C20—C15—C16—C170.4 (4)
N7—Co1—N9—C2159.8 (2)S2—C15—C16—C17177.0 (2)
N1—Co1—N9—C21172.8 (2)C15—C16—C17—C180.4 (4)
N3—Co1—N9—C21124.3 (2)C16—C17—C18—N8178.9 (3)
N5—Co1—N9—C212.9 (2)C16—C17—C18—C190.4 (4)
N7—Co1—N9—C25114.9 (3)N8—C18—C19—C20179.1 (3)
N1—Co1—N9—C251.9 (3)C17—C18—C19—C200.5 (4)
N3—Co1—N9—C2560.9 (3)C18—C19—C20—C150.6 (4)
N5—Co1—N9—C25177.6 (3)C16—C15—C20—C190.6 (4)
N7—Co1—N10—C2664.3 (2)S2—C15—C20—C19177.2 (2)
N1—Co1—N10—C2648.6 (2)C25—N9—C21—C220.6 (5)
N3—Co1—N10—C26111.3 (2)Co1—N9—C21—C22174.6 (2)
N5—Co1—N10—C26127.0 (2)N9—C21—C22—C230.0 (5)
N7—Co1—N10—C30114.7 (2)C21—C22—C23—C240.4 (6)
N1—Co1—N10—C30132.3 (2)C22—C23—C24—C250.1 (6)
N3—Co1—N10—C3069.6 (2)C21—N9—C25—C240.9 (6)
N5—Co1—N10—C3052.1 (2)Co1—N9—C25—C24174.0 (3)
C4—N2—C1—N11.2 (4)C23—C24—C25—N90.6 (7)
C4—N2—C1—N3178.2 (3)C30—N10—C26—C270.7 (4)
C2—N1—C1—N21.9 (4)Co1—N10—C26—C27179.8 (2)
Co1—N1—C1—N2175.3 (2)N10—C26—C27—C280.9 (5)
C2—N1—C1—N3177.5 (2)C26—C27—C28—C290.3 (5)
Co1—N1—C1—N34.2 (2)C27—C28—C29—C300.4 (5)
S1—N3—C1—N22.1 (4)C26—N10—C30—C290.1 (4)
Co1—N3—C1—N2175.3 (2)Co1—N10—C30—C29179.0 (2)
S1—N3—C1—N1178.46 (17)C28—C29—C30—N100.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O1i0.882.443.266 (3)157
N4—H4B···O2ii0.882.303.108 (4)152
N8—H8A···O3iii0.882.543.084 (3)120
N8—H8B···O5iv0.882.263.114 (4)162
O5—H5···O4v0.89 (4)1.91 (4)2.785 (3)169 (4)
Symmetry codes: (i) x, y+2, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y, z+1/2; (iv) x+1, y, z+1; (v) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C10H9N4O2S)2(C5H5N)2]·0.5H2O
Mr724.68
Crystal system, space groupMonoclinic, C2/c
Temperature (K)193
a, b, c (Å)39.618 (4), 11.2407 (9), 14.5673 (13)
β (°) 104.648 (2)
V3)6276.4 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.44 × 0.15 × 0.12
Data collection
DiffractometerRigaku Mercury
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.738, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
34520, 7188, 6038
Rint0.051
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.103, 1.18
No. of reflections7188
No. of parameters434
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.027P)2 + 11.6654P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.36, 0.52

Computer programs: CrystalClear (Rigaku, 1999), CrystalStructure (Rigaku/MSC & Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O1i0.882.443.266 (3)156.9
N4—H4B···O2ii0.882.303.108 (4)152.2
N8—H8A···O3iii0.882.543.084 (3)120.3
N8—H8B···O5iv0.882.263.114 (4)162.1
O5—H5···O4v0.89 (4)1.91 (4)2.785 (3)169 (4)
Symmetry codes: (i) x, y+2, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y, z+1/2; (iv) x+1, y, z+1; (v) x+1, y, z+1/2.
 

Acknowledgements

The authors thank the Natural Science Foundation of Guangxi Province of China (No. 0991003) and the Open Foundation of the Key Laboratory for the Chemistry and Mol­ecular Engineering of Medicinal Resources (Ministry of Education of China) for financial support.

References

First citationAjibade, P. A., Kolawole, G. A., O'Brien, P., Helliwell, M. & Raftery, J. (2006). Inorg. Chim. Acta, 359, 3111–3116.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrown, C. J., Cook, D. S. & Sengier, L. (1987). Acta Cryst. C43, 2332–2334.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHossain, G. M. G., Banu, A. & Amoroso, A. J. (2006). Acta Cryst. E62, m2727–m2729.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC & Rigaku (2000). CrystalStrucutre. Rigaku/MSC, The Woodands, Texas, USA, and Rigaku Coporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-S., Huang, X.-F. & Xiong, R.-G. (2005). Chin. J. Inorg. Chem. 21, 1279–1280.  CAS Google Scholar
First citationWang, Y.-F., Li, F.-X., Peng, Y., Chen, Z.-F. & Liang, H. (2009). Acta Cryst. E65, m1584.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYuan, R.-X., Xiong, R.-G., Chen, Z.-F., Zhang, P., Ju, H.-X., Dai, Z., Guo, Z.-J., Fun, H.-K. & You, X.-Z. (2001). J. Chem. Soc. Dalton Trans. pp. 774–776.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds