metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(5,10,15,20-Tetra­phenyl­porphyrinato-κ4N)cobalt(II)–18-crown-6 (1/1)

aDépartement de Chimie, Faculté des Sciences de Monastir, Avenue de l'environnement, 5019 Monastir, Tunisia, and bLaboratoire de Chimie de Coordination, CNRS UPR 8241, 205 route de Norbonne, 31077 Toulouse, Cedex 04, France
*Correspondence e-mail: hnasri1@gmail.com

(Received 18 March 2010; accepted 30 March 2010; online 10 April 2010)

The asymmetric unit of the title compound, [Co(C44H28N4)]·C12H24O6, contains one half of a CoII(TPP) (TPP is tetra­phenyl­porphyrin) complex and one half of an 18-crown-6 mol­ecule of crystallization, both lying on inversion centers. The CoII(TPP) complex exhibits a nearly planar conformation of the porphyrinate core [maximum deviation = 0.069 (2) Å] with an average Co—N distance of 1.971 (4) Å. The distance between the Co atom and the closest O atom of the 18-crown-6 mol­ecule is 2.533 (2) Å, indicating a short non-bonded contact between the Co atom and the crown ether mol­ecule. An ethyl­ene group of the 18-crown-6 mol­ecule is disordered over two sites with occupancies of 0.565 (7) and 0.435 (7).

Related literature

For general background to cobalt porphyrin species and their applications, see: Sanders et al. (2000[Sanders, J.K.M., Bampos N., Clyde-Watson, Z., Kim, H.-J., Mak C. C. & Webb, J. S. (2000). The Porphyrin Handbook, Vol. 3, edited by K. M. Kadish, K. M. Smith & R. Guilard, pp. 1-200. San Diego: Academic Press.]). For the synthesis of Co(II) tetra­phenyl­porphyrin, see: Madure & Scheidt (1976[Madure, P. & Scheidt, W. R. (1976). Inorg. Chem. 15, 3182-3184.]). For related structures, see: Konarev et al. (2003[Konarev, D., Khasanov, S. S., Saito, G., Lybovskaya, R. N., Yoshida, Y. & Otsuka, A. (2003). Chem. Eur. J. 9, 3837-3848.], 2004[Konarev, D., Neretin, I. S., Saito, G., Slovokhotov, Y. L., Otsuka, A. & Lyubovskaya, R. N. (2004). Chem. Eur. J. 9, 1794-1998.]); Nascimento et al. (2007[Nascimento B. F. O, Pineiro M., Gonsalves A. M. d'A. Rocha, Silva M. R., Beja A. M. & Paixão A. J. (2007). J. Porphyrins Phthalocyanines, 11, 77-84.]); Smirnov et al. (1998[Smirnov, V. V., Woller, E. K. & DiMagno, S. G. (1998). Inorg. Chem. 37, 4771-4778.]); Lee et al. (2002[Lee, U., Joo, H.-C. & Cho, M.-A. (2002). Acta Cryst. E58, m599-m601.]); Iimura et al. (1988[Iimura, Y., Sakurai, T. & Yamamoto, K. (1988). Bull. Chem. Soc. Jpn, 61, 821-826.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For the SIMU/ISOR restraints used in the refinement, see: McArdle (1995[McArdle, P. (1995). J. Appl. Cryst. 28, 65.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C44H28N4)]·C12H24O6

  • Mr = 935.95

  • Triclinic, [P \overline 1]

  • a = 10.1464 (4) Å

  • b = 11.0890 (6) Å

  • c = 11.7570 (5) Å

  • α = 104.327 (4)°

  • β = 105.842 (4)°

  • γ = 108.284 (4)°

  • V = 1125.12 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 180 K

  • 0.25 × 0.24 × 0.21 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrystAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.927, Tmax = 1.000

  • 8862 measured reflections

  • 4589 independent reflections

  • 3977 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.100

  • S = 1.10

  • 4589 reflections

  • 323 parameters

  • 30 restraints

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrystAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrystAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Cobalt atom in metalloporphyrines is commonly used as a qualitatively acceptable substitute for iron atom in high-spin five-coordinate hemes of deoxyhemoglobin and in the low-spin oxygenated hemes of oxyhemoglobin. The metalation of a porphyrin by cobalt (using CoCl2.6H2O salt) yields the stable [CoII(Porph)] (Porph = porphyrin) complex used as starting material in the preparation of five and six-coordinated Co(II) and Co(III) metalloporphyrines (Sanders et al., (2000). In the Cambridge Structural Database (CSD, version 5.31; Allen 2002) there are three structures of tetra-coordinated cobalt(II) tetraphenylporphyrin (TPP) complexes: IKUDOH (Konarev et al., 2003), IXIKIJ (Konarev et al., 2004) and TPORCP12 (Nascimento et al., 2007). Herein we report the struture of the title compound,(I), which has been prepared in our laboratory.

The asymmetric unit of (I), contains one half [CoII(TPP)] complex and one half crystallographically independent 18-crown-6 molecule of crystallization both lying on inversion centers (Fig. 1).

The distance between the cobalt(II) ion and the symmetry related O1 and O1' atoms (Fig. 2) of the two closest crown ether molecules is 2.533 (2 ) Å. This distance is significantly longer than the CoII—O(THF) bond length [2.204 (4) Å] in the [CoII(F8TPP)(THF)2] derivative (where F8TPP is the tetrakis(pentafluorophenylporphyrin)) (Smirnov et al., 1998) and the CoII—O(H2O) bond distance in the [CoII(H2O)6]2+ species [ 2.062 (4)- 2.141 (4) Å] (Lee et al., 2002). This indicates that in (I) there is a short non-bonded contact between the cobalt ion and the crown ether molecule.

It has been noticed that there is a relationship between the ruffling of the porphyrinato core and the mean equatorial Co(II)—Np distance (Np = pyrrol N atom); the porphyrinato core is ruffled as the Co—Np distance decreases, (Iimura et al., 1988). Thus, the average distance Co—Np in (I), 1.971 (4) Å, is longer than those of the three other reported [CoII(TPP)] structures quoted above [1.923 (3) – 1.969 (6) Å]. The porphyrin core in (I) presents a planar conformation with maximum and minimum deviations from the C20N4 least-squares plane of 0.069 (2) and -0.068 (2) Å for C6 and C8 atoms, respectively, while the Co2+ cation is basically in the porphyrin plane with a Co—Ct distance of 0.004 (1) Å (where Ct is the center of the C20N4 plane).

Related literature top

For general background to cobalt porphyrin species and their applications, see: Sanders et al. (2000). For the synthesis of Co(II) tetraphenylporphyrin, see: Madure & Scheidt (1976). For related structures, see: Konarev et al. (2003, 2004); Nascimento et al. (2007); Smirnov et al. (1998); Lee et al. (2002); Iimura et al. (1988). For a description of the Cambridge Structural Database, see: Allen (2002). For the SIMU/ISOR restraints used in the refinement, see: McArdle (1995).

Experimental top

To a solution of [CoII(TPP)] (Madure & Scheidt 1976) (100 mg, 0.067 mmol) in chlorobenzene (10 ml) was added an excess of 18-crown-6 (150 mg, 0.567 mmol) and sodium methanolate (100 mg, 3.225 mmol). The reaction mixture was stirred at room temperature until reddisd-green solution was formed. The resulting material was crystallized by diffusion of hexanes through the chlorobenzene solution which yielded [CoII(TPP)].(18-C-6) crystals as an impurity.

Refinement top

All H atoms were placed in geometrically idealized positions (C—H = 0.93-0.97 Å) and constrained to ride on their parent atoms, with U(H) = 1.2Ueq(C). An ethylene group [C24 – C25] of the 18-crown-6 molecule was disordered over two sites with occupancies of 0.565 (7) and 0.435 (7). For this fragment, some anisotropic displacement ellipsoids were rather elongated which led us to use the SIMU/ISOR restraints (McArdle, 1995, Sheldrick, 2008). Alerts B and C for short intramolecular contacts H···H may be explained by the fact that C24 and C25 carbon atoms are disordered.

Structure description top

Cobalt atom in metalloporphyrines is commonly used as a qualitatively acceptable substitute for iron atom in high-spin five-coordinate hemes of deoxyhemoglobin and in the low-spin oxygenated hemes of oxyhemoglobin. The metalation of a porphyrin by cobalt (using CoCl2.6H2O salt) yields the stable [CoII(Porph)] (Porph = porphyrin) complex used as starting material in the preparation of five and six-coordinated Co(II) and Co(III) metalloporphyrines (Sanders et al., (2000). In the Cambridge Structural Database (CSD, version 5.31; Allen 2002) there are three structures of tetra-coordinated cobalt(II) tetraphenylporphyrin (TPP) complexes: IKUDOH (Konarev et al., 2003), IXIKIJ (Konarev et al., 2004) and TPORCP12 (Nascimento et al., 2007). Herein we report the struture of the title compound,(I), which has been prepared in our laboratory.

The asymmetric unit of (I), contains one half [CoII(TPP)] complex and one half crystallographically independent 18-crown-6 molecule of crystallization both lying on inversion centers (Fig. 1).

The distance between the cobalt(II) ion and the symmetry related O1 and O1' atoms (Fig. 2) of the two closest crown ether molecules is 2.533 (2 ) Å. This distance is significantly longer than the CoII—O(THF) bond length [2.204 (4) Å] in the [CoII(F8TPP)(THF)2] derivative (where F8TPP is the tetrakis(pentafluorophenylporphyrin)) (Smirnov et al., 1998) and the CoII—O(H2O) bond distance in the [CoII(H2O)6]2+ species [ 2.062 (4)- 2.141 (4) Å] (Lee et al., 2002). This indicates that in (I) there is a short non-bonded contact between the cobalt ion and the crown ether molecule.

It has been noticed that there is a relationship between the ruffling of the porphyrinato core and the mean equatorial Co(II)—Np distance (Np = pyrrol N atom); the porphyrinato core is ruffled as the Co—Np distance decreases, (Iimura et al., 1988). Thus, the average distance Co—Np in (I), 1.971 (4) Å, is longer than those of the three other reported [CoII(TPP)] structures quoted above [1.923 (3) – 1.969 (6) Å]. The porphyrin core in (I) presents a planar conformation with maximum and minimum deviations from the C20N4 least-squares plane of 0.069 (2) and -0.068 (2) Å for C6 and C8 atoms, respectively, while the Co2+ cation is basically in the porphyrin plane with a Co—Ct distance of 0.004 (1) Å (where Ct is the center of the C20N4 plane).

For general background to cobalt porphyrin species and their applications, see: Sanders et al. (2000). For the synthesis of Co(II) tetraphenylporphyrin, see: Madure & Scheidt (1976). For related structures, see: Konarev et al. (2003, 2004); Nascimento et al. (2007); Smirnov et al. (1998); Lee et al. (2002); Iimura et al. (1988). For a description of the Cambridge Structural Database, see: Allen (2002). For the SIMU/ISOR restraints used in the refinement, see: McArdle (1995).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, m1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of (I), with the atom-numbering scheme. Unlabeled atoms are related by an inversion center to the labeled atoms. Displacement ellipsoids are drawn at 50%. The H atoms and the minor positions of the disordered C24 and C25 atoms have been omitted for clarity.
[Figure 2] Fig. 2. A unit-cell packing of (I). The short non-bonded contacts between the cobalt and the symmetry related O1 and O1' atoms of the two closest crown ether molecues, are drawn by dashed lines. The H atoms and the minor positions of the disordered C24 and C25 atoms have been omitted for clarity.
(5,10,15,20-Tetraphenylporphyrinato-κ4N)cobalt(II)–18-crown-6 (1/1) top
Crystal data top
[Co(C44H28N4)]·C12H24O6Z = 1
Mr = 935.95F(000) = 491
Triclinic, P1Dx = 1.381 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.1464 (4) ÅCell parameters from 6796 reflections
b = 11.0890 (6) Åθ = 3.1–32.2°
c = 11.7570 (5) ŵ = 0.44 mm1
α = 104.327 (4)°T = 180 K
β = 105.842 (4)°Prism, dark purple
γ = 108.284 (4)°0.25 × 0.24 × 0.21 mm
V = 1125.12 (9) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer
4589 independent reflections
Radiation source: fine-focus sealed tube3977 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 8.2632 pixels mm-1θmax = 26.4°, θmin = 3.3°
ω and φ scansh = 1212
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 139
Tmin = 0.927, Tmax = 1.000l = 1414
8862 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.05322P)2 + 0.3421P]
where P = (Fo2 + 2Fc2)/3
4589 reflections(Δ/σ)max < 0.001
323 parametersΔρmax = 0.79 e Å3
30 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Co(C44H28N4)]·C12H24O6γ = 108.284 (4)°
Mr = 935.95V = 1125.12 (9) Å3
Triclinic, P1Z = 1
a = 10.1464 (4) ÅMo Kα radiation
b = 11.0890 (6) ŵ = 0.44 mm1
c = 11.7570 (5) ÅT = 180 K
α = 104.327 (4)°0.25 × 0.24 × 0.21 mm
β = 105.842 (4)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
4589 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
3977 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 1.000Rint = 0.019
8862 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03730 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.10Δρmax = 0.79 e Å3
4589 reflectionsΔρmin = 0.44 e Å3
323 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F\^2\^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F\^2\^, conventional R-factors R are based on F, with F set to zero for negative F\^2\^. The threshold expression of F\^2\^ > σ(F\^2\^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F\^2\^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co0.00000.50000.50000.01992 (11)
N10.10600 (16)0.51602 (15)0.34011 (13)0.0205 (3)
N20.19511 (16)0.39511 (15)0.50211 (13)0.0202 (3)
C10.04208 (19)0.58671 (18)0.27400 (16)0.0207 (4)
C20.1554 (2)0.57948 (19)0.16553 (17)0.0250 (4)
H20.13980.61870.10640.030*
C30.2885 (2)0.50553 (19)0.16529 (17)0.0256 (4)
H30.38260.48380.10590.031*
C40.25852 (19)0.46615 (18)0.27385 (16)0.0213 (4)
C50.36903 (19)0.39375 (18)0.30882 (16)0.0217 (4)
C60.33699 (19)0.36035 (18)0.41648 (16)0.0216 (4)
C70.4490 (2)0.2741 (2)0.44746 (18)0.0268 (4)
H70.55250.23830.40420.032*
C80.3764 (2)0.2551 (2)0.55053 (18)0.0276 (4)
H80.41990.20240.59170.033*
C90.21943 (19)0.33090 (18)0.58552 (16)0.0217 (4)
C100.1099 (2)0.66163 (18)0.30894 (16)0.0213 (4)
C110.15851 (19)0.74003 (18)0.23032 (16)0.0224 (4)
C120.1820 (2)0.6798 (2)0.12439 (18)0.0293 (4)
H120.16560.58830.10030.035*
C130.2294 (2)0.7541 (2)0.05387 (19)0.0339 (5)
H130.24560.71250.01690.041*
C140.2529 (2)0.8891 (2)0.08771 (19)0.0322 (4)
H140.28480.93900.04010.039*
C150.2289 (3)0.9494 (2)0.1922 (2)0.0387 (5)
H150.24391.04060.21530.046*
C160.1824 (3)0.8759 (2)0.26378 (19)0.0347 (5)
H160.16720.91810.33490.042*
C170.52953 (19)0.34897 (18)0.22752 (17)0.0229 (4)
C180.5921 (2)0.2539 (2)0.10469 (18)0.0277 (4)
H180.53270.21830.07220.033*
C190.7417 (2)0.2114 (2)0.03001 (19)0.0346 (5)
H190.78230.14760.05220.042*
C200.8304 (2)0.2635 (2)0.0775 (2)0.0371 (5)
H200.93120.23430.02790.045*
C210.7694 (2)0.3590 (2)0.1985 (2)0.0372 (5)
H210.82890.39490.23040.045*
C220.6198 (2)0.4018 (2)0.27297 (19)0.0308 (4)
H220.57930.46680.35450.037*
O11.00507 (17)0.72687 (17)0.61845 (14)0.0415 (4)
O20.7723 (2)0.8744 (2)0.46275 (19)0.0633 (5)
O30.75479 (18)0.98421 (16)0.26483 (16)0.0438 (4)
C231.1145 (3)0.8022 (2)0.7438 (2)0.0399 (5)
H23A1.13400.73880.78280.048*
H23B1.07390.85340.79300.048*
C24A0.8779 (5)0.7518 (5)0.5733 (4)0.0333 (11)0.565 (7)
H24A0.84630.78170.64190.040*0.565 (7)
H24B0.79620.66910.50840.040*0.565 (7)
C25A0.9181 (5)0.8618 (5)0.5181 (5)0.0465 (14)0.565 (7)
H25A0.99360.94740.58370.056*0.565 (7)
H25B0.95570.83530.45280.056*0.565 (7)
C24B0.9331 (11)0.8256 (10)0.5946 (9)0.071 (2)0.435 (7)
H24C0.90260.85630.66390.085*0.435 (7)
H24D1.00630.90490.59210.085*0.435 (7)
C25B0.8162 (10)0.7669 (8)0.4875 (8)0.075 (3)0.435 (7)
H25C0.73470.69820.49420.089*0.435 (7)
H25D0.84150.72340.41930.089*0.435 (7)
C260.6814 (3)0.8027 (2)0.3354 (3)0.0493 (6)
H26A0.59470.72620.32640.059*
H26B0.73660.76760.29050.059*
C270.6318 (3)0.8965 (3)0.2809 (2)0.0465 (6)
H27A0.54810.84450.19980.056*
H27B0.59970.94930.33780.056*
C280.7410 (3)1.1016 (2)0.2499 (2)0.0396 (5)
H28A0.71351.14540.31640.048*
H28B0.66231.07680.16870.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.01575 (17)0.0281 (2)0.01649 (18)0.00707 (14)0.00525 (13)0.01245 (14)
N10.0169 (7)0.0242 (8)0.0186 (7)0.0062 (6)0.0053 (6)0.0095 (6)
N20.0202 (7)0.0235 (8)0.0168 (7)0.0083 (6)0.0053 (6)0.0097 (6)
C10.0227 (9)0.0237 (9)0.0171 (8)0.0096 (7)0.0075 (7)0.0100 (7)
C20.0272 (9)0.0296 (10)0.0191 (9)0.0111 (8)0.0067 (7)0.0136 (8)
C30.0230 (9)0.0310 (10)0.0207 (9)0.0104 (8)0.0037 (7)0.0120 (8)
C40.0204 (8)0.0243 (9)0.0177 (8)0.0092 (7)0.0043 (7)0.0086 (7)
C50.0185 (8)0.0234 (9)0.0194 (8)0.0072 (7)0.0039 (7)0.0073 (7)
C60.0173 (8)0.0242 (9)0.0199 (9)0.0063 (7)0.0050 (7)0.0077 (7)
C70.0176 (8)0.0329 (10)0.0262 (9)0.0054 (8)0.0068 (7)0.0132 (8)
C80.0220 (9)0.0337 (10)0.0260 (9)0.0057 (8)0.0097 (8)0.0161 (8)
C90.0201 (8)0.0248 (9)0.0199 (9)0.0070 (7)0.0084 (7)0.0098 (7)
C100.0244 (9)0.0231 (9)0.0187 (8)0.0094 (7)0.0095 (7)0.0100 (7)
C110.0193 (8)0.0274 (9)0.0194 (8)0.0066 (7)0.0056 (7)0.0124 (7)
C120.0378 (11)0.0312 (10)0.0279 (10)0.0178 (9)0.0161 (8)0.0163 (8)
C130.0407 (12)0.0461 (13)0.0285 (10)0.0223 (10)0.0206 (9)0.0215 (10)
C140.0288 (10)0.0374 (11)0.0275 (10)0.0053 (9)0.0080 (8)0.0211 (9)
C150.0509 (13)0.0244 (10)0.0315 (11)0.0065 (9)0.0108 (10)0.0123 (9)
C160.0486 (12)0.0299 (11)0.0245 (10)0.0126 (9)0.0159 (9)0.0103 (8)
C170.0196 (8)0.0249 (9)0.0233 (9)0.0071 (7)0.0049 (7)0.0138 (8)
C180.0258 (9)0.0305 (10)0.0242 (9)0.0102 (8)0.0063 (8)0.0113 (8)
C190.0292 (10)0.0346 (11)0.0259 (10)0.0033 (9)0.0010 (8)0.0139 (9)
C200.0183 (9)0.0468 (13)0.0425 (12)0.0075 (9)0.0014 (8)0.0290 (11)
C210.0258 (10)0.0482 (13)0.0492 (13)0.0203 (10)0.0163 (9)0.0272 (11)
C220.0269 (10)0.0347 (11)0.0297 (10)0.0121 (8)0.0093 (8)0.0122 (9)
O10.0360 (8)0.0523 (10)0.0342 (8)0.0179 (7)0.0067 (7)0.0202 (7)
O20.0793 (12)0.0724 (11)0.0566 (10)0.0555 (10)0.0198 (9)0.0282 (9)
O30.0461 (9)0.0420 (9)0.0594 (11)0.0225 (8)0.0307 (8)0.0269 (8)
C230.0528 (14)0.0367 (12)0.0284 (11)0.0177 (11)0.0121 (10)0.0137 (9)
C24A0.032 (2)0.036 (2)0.035 (2)0.0101 (18)0.0153 (17)0.0186 (18)
C25A0.034 (2)0.042 (3)0.051 (3)0.0053 (19)0.0043 (19)0.024 (2)
C24B0.070 (3)0.066 (3)0.075 (3)0.030 (2)0.0147 (19)0.035 (2)
C25B0.074 (3)0.068 (3)0.080 (3)0.035 (2)0.0159 (19)0.032 (2)
C260.0573 (15)0.0349 (13)0.0629 (17)0.0176 (11)0.0343 (13)0.0181 (12)
C270.0293 (11)0.0565 (15)0.0486 (14)0.0107 (10)0.0121 (10)0.0230 (12)
C280.0430 (13)0.0389 (12)0.0328 (11)0.0201 (10)0.0071 (10)0.0104 (10)
Geometric parameters (Å, º) top
Co—N21.9669 (14)C18—C191.385 (3)
Co—N2i1.9669 (14)C18—H180.9300
Co—N1i1.9757 (14)C19—C201.377 (3)
Co—N11.9757 (14)C19—H190.9300
N1—C11.377 (2)C20—C211.375 (3)
N1—C41.378 (2)C20—H200.9300
N2—C91.377 (2)C21—C221.383 (3)
N2—C61.379 (2)C21—H210.9300
C1—C101.385 (2)C22—H220.9300
C1—C21.430 (2)O1—C24A1.394 (4)
C2—C31.341 (3)O1—C231.420 (3)
C2—H20.9300O1—C24B1.534 (8)
C3—C41.435 (2)O2—C261.385 (3)
C3—H30.9300O2—C25B1.462 (7)
C4—C51.386 (2)O2—C25A1.510 (5)
C5—C61.388 (2)O3—C281.399 (3)
C5—C171.490 (2)O3—C271.413 (3)
C6—C71.434 (2)C23—C28ii1.488 (3)
C7—C81.339 (3)C23—H23A0.9700
C7—H70.9300C23—H23B0.9700
C8—C91.429 (2)C24A—C25A1.517 (6)
C8—H80.9300C24A—H24A0.9700
C9—C10i1.386 (2)C24A—H24B0.9700
C10—C9i1.386 (2)C25A—H25A0.9700
C10—C111.494 (2)C25A—H25B0.9700
C11—C121.380 (3)C24B—C25B1.308 (12)
C11—C161.381 (3)C24B—H24C0.9700
C12—C131.380 (3)C24B—H24D0.9700
C12—H120.9300C25B—H25C0.9700
C13—C141.373 (3)C25B—H25D0.9700
C13—H130.9300C26—C271.493 (3)
C14—C151.370 (3)C26—H26A0.9700
C14—H140.9300C26—H26B0.9700
C15—C161.382 (3)C27—H27A0.9700
C15—H150.9300C27—H27B0.9700
C16—H160.9300C28—C23ii1.488 (3)
C17—C221.384 (3)C28—H28A0.9700
C17—C181.388 (3)C28—H28B0.9700
N2—Co—N2i180.0C20—C19—C18119.9 (2)
N2—Co—N1i90.63 (6)C20—C19—H19120.0
N2i—Co—N1i89.37 (6)C18—C19—H19120.0
N2—Co—N189.37 (6)C21—C20—C19119.82 (18)
N2i—Co—N190.63 (6)C21—C20—H20120.1
N1i—Co—N1180.0C19—C20—H20120.1
C1—N1—C4104.78 (14)C20—C21—C22120.2 (2)
C1—N1—Co126.92 (12)C20—C21—H21119.9
C4—N1—Co128.22 (12)C22—C21—H21119.9
C9—N2—C6104.48 (14)C21—C22—C17120.75 (19)
C9—N2—Co126.91 (12)C21—C22—H22119.6
C6—N2—Co128.44 (12)C17—C22—H22119.6
N1—C1—C10125.90 (16)C24A—O1—C23122.1 (2)
N1—C1—C2110.67 (15)C23—O1—C24B102.2 (4)
C10—C1—C2123.35 (16)C26—O2—C25B97.5 (4)
C3—C2—C1107.06 (16)C26—O2—C25A120.3 (3)
C3—C2—H2126.5C28—O3—C27114.26 (18)
C1—C2—H2126.5O1—C23—C28ii113.86 (18)
C2—C3—C4107.11 (16)O1—C23—H23A108.8
C2—C3—H3126.4C28ii—C23—H23A108.8
C4—C3—H3126.4O1—C23—H23B108.8
N1—C4—C5125.58 (16)C28ii—C23—H23B108.8
N1—C4—C3110.38 (15)H23A—C23—H23B107.7
C5—C4—C3123.97 (16)O1—C24A—C25A107.9 (3)
C4—C5—C6122.88 (16)O1—C24A—H24A110.1
C4—C5—C17118.89 (16)C25A—C24A—H24A110.1
C6—C5—C17118.23 (16)O1—C24A—H24B110.1
N2—C6—C5125.50 (16)C25A—C24A—H24B110.1
N2—C6—C7110.62 (15)H24A—C24A—H24B108.4
C5—C6—C7123.69 (16)O2—C25A—C24A104.3 (3)
C8—C7—C6106.93 (16)O2—C25A—H25A110.9
C8—C7—H7126.5C24A—C25A—H25A110.9
C6—C7—H7126.5O2—C25A—H25B110.9
C7—C8—C9107.22 (16)C24A—C25A—H25B110.9
C7—C8—H8126.4H25A—C25A—H25B108.9
C9—C8—H8126.4C25B—C24B—O1111.0 (8)
N2—C9—C10i126.03 (16)C25B—C24B—H24C109.4
N2—C9—C8110.74 (15)O1—C24B—H24C109.4
C10i—C9—C8123.23 (16)C25B—C24B—H24D109.4
C1—C10—C9i123.25 (16)O1—C24B—H24D109.4
C1—C10—C11118.58 (15)H24C—C24B—H24D108.0
C9i—C10—C11118.16 (16)C24B—C25B—O2106.7 (7)
C12—C11—C16118.63 (17)C24B—C25B—H25C110.4
C12—C11—C10121.28 (17)O2—C25B—H25C110.4
C16—C11—C10120.09 (17)C24B—C25B—H25D110.4
C11—C12—C13120.67 (18)O2—C25B—H25D110.4
C11—C12—H12119.7H25C—C25B—H25D108.6
C13—C12—H12119.7O2—C26—C27108.8 (2)
C14—C13—C12120.34 (19)O2—C26—H26A109.9
C14—C13—H13119.8C27—C26—H26A109.9
C12—C13—H13119.8O2—C26—H26B109.9
C15—C14—C13119.39 (18)C27—C26—H26B109.9
C15—C14—H14120.3H26A—C26—H26B108.3
C13—C14—H14120.3O3—C27—C26107.81 (19)
C14—C15—C16120.54 (19)O3—C27—H27A110.1
C14—C15—H15119.7C26—C27—H27A110.1
C16—C15—H15119.7O3—C27—H27B110.1
C11—C16—C15120.43 (19)C26—C27—H27B110.1
C11—C16—H16119.8H27A—C27—H27B108.5
C15—C16—H16119.8O3—C28—C23ii110.08 (18)
C22—C17—C18118.42 (17)O3—C28—H28A109.6
C22—C17—C5120.57 (17)C23ii—C28—H28A109.6
C18—C17—C5121.01 (17)O3—C28—H28B109.6
C19—C18—C17120.81 (19)C23ii—C28—H28B109.6
C19—C18—H18119.6H28A—C28—H28B108.2
C17—C18—H18119.6
Symmetry codes: (i) x, y+1, z+1; (ii) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Co(C44H28N4)]·C12H24O6
Mr935.95
Crystal system, space groupTriclinic, P1
Temperature (K)180
a, b, c (Å)10.1464 (4), 11.0890 (6), 11.7570 (5)
α, β, γ (°)104.327 (4), 105.842 (4), 108.284 (4)
V3)1125.12 (9)
Z1
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.25 × 0.24 × 0.21
Data collection
DiffractometerOxford Diffraction Xcalibur
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.927, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8862, 4589, 3977
Rint0.019
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.10
No. of reflections4589
No. of parameters323
No. of restraints30
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.44

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, m1997).

 

Acknowledgements

The authors gratefully acknowledge financial support from the Ministry of Higher Education, Scientific Research and Technology of Tunisia.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationIimura, Y., Sakurai, T. & Yamamoto, K. (1988). Bull. Chem. Soc. Jpn, 61, 821–826.  CrossRef CAS Web of Science Google Scholar
First citationKonarev, D., Khasanov, S. S., Saito, G., Lybovskaya, R. N., Yoshida, Y. & Otsuka, A. (2003). Chem. Eur. J. 9, 3837–3848.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKonarev, D., Neretin, I. S., Saito, G., Slovokhotov, Y. L., Otsuka, A. & Lyubovskaya, R. N. (2004). Chem. Eur. J. 9, 1794–1998.  CrossRef Google Scholar
First citationLee, U., Joo, H.-C. & Cho, M.-A. (2002). Acta Cryst. E58, m599–m601.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMadure, P. & Scheidt, W. R. (1976). Inorg. Chem. 15, 3182–3184.  Google Scholar
First citationMcArdle, P. (1995). J. Appl. Cryst. 28, 65.  CrossRef IUCr Journals Google Scholar
First citationNascimento B. F. O, Pineiro M., Gonsalves A. M. d'A. Rocha, Silva M. R., Beja A. M. & Paixão A. J. (2007). J. Porphyrins Phthalocyanines, 11, 77–84.  Google Scholar
First citationOxford Diffraction (2008). CrystAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSanders, J.K.M., Bampos N., Clyde-Watson, Z., Kim, H.-J., Mak C. C. & Webb, J. S. (2000). The Porphyrin Handbook, Vol. 3, edited by K. M. Kadish, K. M. Smith & R. Guilard, pp. 1–200. San Diego: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmirnov, V. V., Woller, E. K. & DiMagno, S. G. (1998). Inorg. Chem. 37, 4771–4778.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds