metal-organic compounds
(5,10,15,20-Tetraphenylporphyrinato-κ4N)cobalt(II)–18-crown-6 (1/1)
aDépartement de Chimie, Faculté des Sciences de Monastir, Avenue de l'environnement, 5019 Monastir, Tunisia, and bLaboratoire de Chimie de Coordination, CNRS UPR 8241, 205 route de Norbonne, 31077 Toulouse, Cedex 04, France
*Correspondence e-mail: hnasri1@gmail.com
The 44H28N4)]·C12H24O6, contains one half of a CoII(TPP) (TPP is tetraphenylporphyrin) complex and one half of an 18-crown-6 molecule of crystallization, both lying on inversion centers. The CoII(TPP) complex exhibits a nearly planar conformation of the porphyrinate core [maximum deviation = 0.069 (2) Å] with an average Co—N distance of 1.971 (4) Å. The distance between the Co atom and the closest O atom of the 18-crown-6 molecule is 2.533 (2) Å, indicating a short non-bonded contact between the Co atom and the crown ether molecule. An ethylene group of the 18-crown-6 molecule is disordered over two sites with occupancies of 0.565 (7) and 0.435 (7).
of the title compound, [Co(CRelated literature
For general background to cobalt porphyrin species and their applications, see: Sanders et al. (2000). For the synthesis of Co(II) tetraphenylporphyrin, see: Madure & Scheidt (1976). For related structures, see: Konarev et al. (2003, 2004); Nascimento et al. (2007); Smirnov et al. (1998); Lee et al. (2002); Iimura et al. (1988). For a description of the Cambridge Structural Database, see: Allen (2002). For the SIMU/ISOR restraints used in the see: McArdle (1995).
Experimental
Crystal data
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810012080/pv2268sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810012080/pv2268Isup2.hkl
To a solution of [CoII(TPP)] (Madure & Scheidt 1976) (100 mg, 0.067 mmol) in chlorobenzene (10 ml) was added an excess of 18-crown-6 (150 mg, 0.567 mmol) and sodium methanolate (100 mg, 3.225 mmol). The reaction mixture was stirred at room temperature until reddisd-green solution was formed. The resulting material was crystallized by diffusion of hexanes through the chlorobenzene solution which yielded [CoII(TPP)].(18-C-6) crystals as an impurity.
All H atoms were placed in geometrically idealized positions (C—H = 0.93-0.97 Å) and constrained to ride on their parent atoms, with U(H) = 1.2Ueq(C). An ethylene group [C24 – C25] of the 18-crown-6 molecule was disordered over two sites with occupancies of 0.565 (7) and 0.435 (7). For this fragment, some anisotropic displacement ellipsoids were rather elongated which led us to use the SIMU/ISOR restraints (McArdle, 1995, Sheldrick, 2008). Alerts B and C for short intramolecular contacts H···H may be explained by the fact that C24 and C25 carbon atoms are disordered.
Cobalt atom in metalloporphyrines is commonly used as a qualitatively acceptable substitute for iron atom in high-spin five-coordinate hemes of deoxyhemoglobin and in the low-spin oxygenated hemes of oxyhemoglobin. The metalation of a porphyrin by cobalt (using CoCl2.6H2O salt) yields the stable [CoII(Porph)] (Porph = porphyrin) complex used as starting material in the preparation of five and six-coordinated Co(II) and Co(III) metalloporphyrines (Sanders et al., (2000). In the Cambridge Structural Database (CSD, version 5.31; Allen 2002) there are three structures of tetra-coordinated cobalt(II) tetraphenylporphyrin (TPP) complexes: IKUDOH (Konarev et al., 2003), IXIKIJ (Konarev et al., 2004) and TPORCP12 (Nascimento et al., 2007). Herein we report the struture of the title compound,(I), which has been prepared in our laboratory.
The
of (I), contains one half [CoII(TPP)] complex and one half crystallographically independent 18-crown-6 molecule of crystallization both lying on inversion centers (Fig. 1).The distance between the cobalt(II) ion and the symmetry related O1 and O1' atoms (Fig. 2) of the two closest crown ether molecules is 2.533 (2 ) Å. This distance is significantly longer than the CoII—O(THF) bond length [2.204 (4) Å] in the [CoII(F8TPP)(THF)2] derivative (where F8TPP is the tetrakis(pentafluorophenylporphyrin)) (Smirnov et al., 1998) and the CoII—O(H2O) bond distance in the [CoII(H2O)6]2+ species [ 2.062 (4)- 2.141 (4) Å] (Lee et al., 2002). This indicates that in (I) there is a short non-bonded contact between the cobalt ion and the crown ether molecule.
It has been noticed that there is a relationship between the ruffling of the porphyrinato core and the mean equatorial Co(II)—Np distance (Np = pyrrol N atom); the porphyrinato core is ruffled as the Co—Np distance decreases, (Iimura et al., 1988). Thus, the average distance Co—Np in (I), 1.971 (4) Å, is longer than those of the three other reported [CoII(TPP)] structures quoted above [1.923 (3) – 1.969 (6) Å]. The porphyrin core in (I) presents a planar conformation with maximum and minimum deviations from the C20N4 least-squares plane of 0.069 (2) and -0.068 (2) Å for C6 and C8 atoms, respectively, while the Co2+ cation is basically in the porphyrin plane with a Co—Ct distance of 0.004 (1) Å (where Ct is the center of the C20N4 plane).
For general background to cobalt porphyrin species and their applications, see: Sanders et al. (2000). For the synthesis of Co(II) tetraphenylporphyrin, see: Madure & Scheidt (1976). For related structures, see: Konarev et al. (2003, 2004); Nascimento et al. (2007); Smirnov et al. (1998); Lee et al. (2002); Iimura et al. (1988). For a description of the Cambridge Structural Database, see: Allen (2002). For the SIMU/ISOR restraints used in the
see: McArdle (1995).Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, m1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Co(C44H28N4)]·C12H24O6 | Z = 1 |
Mr = 935.95 | F(000) = 491 |
Triclinic, P1 | Dx = 1.381 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 10.1464 (4) Å | Cell parameters from 6796 reflections |
b = 11.0890 (6) Å | θ = 3.1–32.2° |
c = 11.7570 (5) Å | µ = 0.44 mm−1 |
α = 104.327 (4)° | T = 180 K |
β = 105.842 (4)° | Prism, dark purple |
γ = 108.284 (4)° | 0.25 × 0.24 × 0.21 mm |
V = 1125.12 (9) Å3 |
Oxford Diffraction Xcalibur diffractometer | 4589 independent reflections |
Radiation source: fine-focus sealed tube | 3977 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
Detector resolution: 8.2632 pixels mm-1 | θmax = 26.4°, θmin = 3.3° |
ω and φ scans | h = −12→12 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | k = −13→9 |
Tmin = 0.927, Tmax = 1.000 | l = −14→14 |
8862 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.05322P)2 + 0.3421P] where P = (Fo2 + 2Fc2)/3 |
4589 reflections | (Δ/σ)max < 0.001 |
323 parameters | Δρmax = 0.79 e Å−3 |
30 restraints | Δρmin = −0.44 e Å−3 |
[Co(C44H28N4)]·C12H24O6 | γ = 108.284 (4)° |
Mr = 935.95 | V = 1125.12 (9) Å3 |
Triclinic, P1 | Z = 1 |
a = 10.1464 (4) Å | Mo Kα radiation |
b = 11.0890 (6) Å | µ = 0.44 mm−1 |
c = 11.7570 (5) Å | T = 180 K |
α = 104.327 (4)° | 0.25 × 0.24 × 0.21 mm |
β = 105.842 (4)° |
Oxford Diffraction Xcalibur diffractometer | 4589 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | 3977 reflections with I > 2σ(I) |
Tmin = 0.927, Tmax = 1.000 | Rint = 0.019 |
8862 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 30 restraints |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.79 e Å−3 |
4589 reflections | Δρmin = −0.44 e Å−3 |
323 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F\^2\^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F\^2\^, conventional R-factors R are based on F, with F set to zero for negative F\^2\^. The threshold expression of F\^2\^ > σ(F\^2\^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F\^2\^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Co | 0.0000 | 0.5000 | 0.5000 | 0.01992 (11) | |
N1 | −0.10600 (16) | 0.51602 (15) | 0.34011 (13) | 0.0205 (3) | |
N2 | −0.19511 (16) | 0.39511 (15) | 0.50211 (13) | 0.0202 (3) | |
C1 | −0.04208 (19) | 0.58671 (18) | 0.27400 (16) | 0.0207 (4) | |
C2 | −0.1554 (2) | 0.57948 (19) | 0.16553 (17) | 0.0250 (4) | |
H2 | −0.1398 | 0.6187 | 0.1064 | 0.030* | |
C3 | −0.2885 (2) | 0.50553 (19) | 0.16529 (17) | 0.0256 (4) | |
H3 | −0.3826 | 0.4838 | 0.1059 | 0.031* | |
C4 | −0.25852 (19) | 0.46615 (18) | 0.27385 (16) | 0.0213 (4) | |
C5 | −0.36903 (19) | 0.39375 (18) | 0.30882 (16) | 0.0217 (4) | |
C6 | −0.33699 (19) | 0.36035 (18) | 0.41648 (16) | 0.0216 (4) | |
C7 | −0.4490 (2) | 0.2741 (2) | 0.44746 (18) | 0.0268 (4) | |
H7 | −0.5525 | 0.2383 | 0.4042 | 0.032* | |
C8 | −0.3764 (2) | 0.2551 (2) | 0.55053 (18) | 0.0276 (4) | |
H8 | −0.4199 | 0.2024 | 0.5917 | 0.033* | |
C9 | −0.21943 (19) | 0.33090 (18) | 0.58552 (16) | 0.0217 (4) | |
C10 | 0.1099 (2) | 0.66163 (18) | 0.30894 (16) | 0.0213 (4) | |
C11 | 0.15851 (19) | 0.74003 (18) | 0.23032 (16) | 0.0224 (4) | |
C12 | 0.1820 (2) | 0.6798 (2) | 0.12439 (18) | 0.0293 (4) | |
H12 | 0.1656 | 0.5883 | 0.1003 | 0.035* | |
C13 | 0.2294 (2) | 0.7541 (2) | 0.05387 (19) | 0.0339 (5) | |
H13 | 0.2456 | 0.7125 | −0.0169 | 0.041* | |
C14 | 0.2529 (2) | 0.8891 (2) | 0.08771 (19) | 0.0322 (4) | |
H14 | 0.2848 | 0.9390 | 0.0401 | 0.039* | |
C15 | 0.2289 (3) | 0.9494 (2) | 0.1922 (2) | 0.0387 (5) | |
H15 | 0.2439 | 1.0406 | 0.2153 | 0.046* | |
C16 | 0.1824 (3) | 0.8759 (2) | 0.26378 (19) | 0.0347 (5) | |
H16 | 0.1672 | 0.9181 | 0.3349 | 0.042* | |
C17 | −0.52953 (19) | 0.34897 (18) | 0.22752 (17) | 0.0229 (4) | |
C18 | −0.5921 (2) | 0.2539 (2) | 0.10469 (18) | 0.0277 (4) | |
H18 | −0.5327 | 0.2183 | 0.0722 | 0.033* | |
C19 | −0.7417 (2) | 0.2114 (2) | 0.03001 (19) | 0.0346 (5) | |
H19 | −0.7823 | 0.1476 | −0.0522 | 0.042* | |
C20 | −0.8304 (2) | 0.2635 (2) | 0.0775 (2) | 0.0371 (5) | |
H20 | −0.9312 | 0.2343 | 0.0279 | 0.045* | |
C21 | −0.7694 (2) | 0.3590 (2) | 0.1985 (2) | 0.0372 (5) | |
H21 | −0.8289 | 0.3949 | 0.2304 | 0.045* | |
C22 | −0.6198 (2) | 0.4018 (2) | 0.27297 (19) | 0.0308 (4) | |
H22 | −0.5793 | 0.4668 | 0.3545 | 0.037* | |
O1 | 1.00507 (17) | 0.72687 (17) | 0.61845 (14) | 0.0415 (4) | |
O2 | 0.7723 (2) | 0.8744 (2) | 0.46275 (19) | 0.0633 (5) | |
O3 | 0.75479 (18) | 0.98421 (16) | 0.26483 (16) | 0.0438 (4) | |
C23 | 1.1145 (3) | 0.8022 (2) | 0.7438 (2) | 0.0399 (5) | |
H23A | 1.1340 | 0.7388 | 0.7828 | 0.048* | |
H23B | 1.0739 | 0.8534 | 0.7930 | 0.048* | |
C24A | 0.8779 (5) | 0.7518 (5) | 0.5733 (4) | 0.0333 (11) | 0.565 (7) |
H24A | 0.8463 | 0.7817 | 0.6419 | 0.040* | 0.565 (7) |
H24B | 0.7962 | 0.6691 | 0.5084 | 0.040* | 0.565 (7) |
C25A | 0.9181 (5) | 0.8618 (5) | 0.5181 (5) | 0.0465 (14) | 0.565 (7) |
H25A | 0.9936 | 0.9474 | 0.5837 | 0.056* | 0.565 (7) |
H25B | 0.9557 | 0.8353 | 0.4528 | 0.056* | 0.565 (7) |
C24B | 0.9331 (11) | 0.8256 (10) | 0.5946 (9) | 0.071 (2) | 0.435 (7) |
H24C | 0.9026 | 0.8563 | 0.6639 | 0.085* | 0.435 (7) |
H24D | 1.0063 | 0.9049 | 0.5921 | 0.085* | 0.435 (7) |
C25B | 0.8162 (10) | 0.7669 (8) | 0.4875 (8) | 0.075 (3) | 0.435 (7) |
H25C | 0.7347 | 0.6982 | 0.4942 | 0.089* | 0.435 (7) |
H25D | 0.8415 | 0.7234 | 0.4193 | 0.089* | 0.435 (7) |
C26 | 0.6814 (3) | 0.8027 (2) | 0.3354 (3) | 0.0493 (6) | |
H26A | 0.5947 | 0.7262 | 0.3264 | 0.059* | |
H26B | 0.7366 | 0.7676 | 0.2905 | 0.059* | |
C27 | 0.6318 (3) | 0.8965 (3) | 0.2809 (2) | 0.0465 (6) | |
H27A | 0.5481 | 0.8445 | 0.1998 | 0.056* | |
H27B | 0.5997 | 0.9493 | 0.3378 | 0.056* | |
C28 | 0.7410 (3) | 1.1016 (2) | 0.2499 (2) | 0.0396 (5) | |
H28A | 0.7135 | 1.1454 | 0.3164 | 0.048* | |
H28B | 0.6623 | 1.0768 | 0.1687 | 0.048* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co | 0.01575 (17) | 0.0281 (2) | 0.01649 (18) | 0.00707 (14) | 0.00525 (13) | 0.01245 (14) |
N1 | 0.0169 (7) | 0.0242 (8) | 0.0186 (7) | 0.0062 (6) | 0.0053 (6) | 0.0095 (6) |
N2 | 0.0202 (7) | 0.0235 (8) | 0.0168 (7) | 0.0083 (6) | 0.0053 (6) | 0.0097 (6) |
C1 | 0.0227 (9) | 0.0237 (9) | 0.0171 (8) | 0.0096 (7) | 0.0075 (7) | 0.0100 (7) |
C2 | 0.0272 (9) | 0.0296 (10) | 0.0191 (9) | 0.0111 (8) | 0.0067 (7) | 0.0136 (8) |
C3 | 0.0230 (9) | 0.0310 (10) | 0.0207 (9) | 0.0104 (8) | 0.0037 (7) | 0.0120 (8) |
C4 | 0.0204 (8) | 0.0243 (9) | 0.0177 (8) | 0.0092 (7) | 0.0043 (7) | 0.0086 (7) |
C5 | 0.0185 (8) | 0.0234 (9) | 0.0194 (8) | 0.0072 (7) | 0.0039 (7) | 0.0073 (7) |
C6 | 0.0173 (8) | 0.0242 (9) | 0.0199 (9) | 0.0063 (7) | 0.0050 (7) | 0.0077 (7) |
C7 | 0.0176 (8) | 0.0329 (10) | 0.0262 (9) | 0.0054 (8) | 0.0068 (7) | 0.0132 (8) |
C8 | 0.0220 (9) | 0.0337 (10) | 0.0260 (9) | 0.0057 (8) | 0.0097 (8) | 0.0161 (8) |
C9 | 0.0201 (8) | 0.0248 (9) | 0.0199 (9) | 0.0070 (7) | 0.0084 (7) | 0.0098 (7) |
C10 | 0.0244 (9) | 0.0231 (9) | 0.0187 (8) | 0.0094 (7) | 0.0095 (7) | 0.0100 (7) |
C11 | 0.0193 (8) | 0.0274 (9) | 0.0194 (8) | 0.0066 (7) | 0.0056 (7) | 0.0124 (7) |
C12 | 0.0378 (11) | 0.0312 (10) | 0.0279 (10) | 0.0178 (9) | 0.0161 (8) | 0.0163 (8) |
C13 | 0.0407 (12) | 0.0461 (13) | 0.0285 (10) | 0.0223 (10) | 0.0206 (9) | 0.0215 (10) |
C14 | 0.0288 (10) | 0.0374 (11) | 0.0275 (10) | 0.0053 (9) | 0.0080 (8) | 0.0211 (9) |
C15 | 0.0509 (13) | 0.0244 (10) | 0.0315 (11) | 0.0065 (9) | 0.0108 (10) | 0.0123 (9) |
C16 | 0.0486 (12) | 0.0299 (11) | 0.0245 (10) | 0.0126 (9) | 0.0159 (9) | 0.0103 (8) |
C17 | 0.0196 (8) | 0.0249 (9) | 0.0233 (9) | 0.0071 (7) | 0.0049 (7) | 0.0138 (8) |
C18 | 0.0258 (9) | 0.0305 (10) | 0.0242 (9) | 0.0102 (8) | 0.0063 (8) | 0.0113 (8) |
C19 | 0.0292 (10) | 0.0346 (11) | 0.0259 (10) | 0.0033 (9) | −0.0010 (8) | 0.0139 (9) |
C20 | 0.0183 (9) | 0.0468 (13) | 0.0425 (12) | 0.0075 (9) | 0.0014 (8) | 0.0290 (11) |
C21 | 0.0258 (10) | 0.0482 (13) | 0.0492 (13) | 0.0203 (10) | 0.0163 (9) | 0.0272 (11) |
C22 | 0.0269 (10) | 0.0347 (11) | 0.0297 (10) | 0.0121 (8) | 0.0093 (8) | 0.0122 (9) |
O1 | 0.0360 (8) | 0.0523 (10) | 0.0342 (8) | 0.0179 (7) | 0.0067 (7) | 0.0202 (7) |
O2 | 0.0793 (12) | 0.0724 (11) | 0.0566 (10) | 0.0555 (10) | 0.0198 (9) | 0.0282 (9) |
O3 | 0.0461 (9) | 0.0420 (9) | 0.0594 (11) | 0.0225 (8) | 0.0307 (8) | 0.0269 (8) |
C23 | 0.0528 (14) | 0.0367 (12) | 0.0284 (11) | 0.0177 (11) | 0.0121 (10) | 0.0137 (9) |
C24A | 0.032 (2) | 0.036 (2) | 0.035 (2) | 0.0101 (18) | 0.0153 (17) | 0.0186 (18) |
C25A | 0.034 (2) | 0.042 (3) | 0.051 (3) | 0.0053 (19) | 0.0043 (19) | 0.024 (2) |
C24B | 0.070 (3) | 0.066 (3) | 0.075 (3) | 0.030 (2) | 0.0147 (19) | 0.035 (2) |
C25B | 0.074 (3) | 0.068 (3) | 0.080 (3) | 0.035 (2) | 0.0159 (19) | 0.032 (2) |
C26 | 0.0573 (15) | 0.0349 (13) | 0.0629 (17) | 0.0176 (11) | 0.0343 (13) | 0.0181 (12) |
C27 | 0.0293 (11) | 0.0565 (15) | 0.0486 (14) | 0.0107 (10) | 0.0121 (10) | 0.0230 (12) |
C28 | 0.0430 (13) | 0.0389 (12) | 0.0328 (11) | 0.0201 (10) | 0.0071 (10) | 0.0104 (10) |
Co—N2 | 1.9669 (14) | C18—C19 | 1.385 (3) |
Co—N2i | 1.9669 (14) | C18—H18 | 0.9300 |
Co—N1i | 1.9757 (14) | C19—C20 | 1.377 (3) |
Co—N1 | 1.9757 (14) | C19—H19 | 0.9300 |
N1—C1 | 1.377 (2) | C20—C21 | 1.375 (3) |
N1—C4 | 1.378 (2) | C20—H20 | 0.9300 |
N2—C9 | 1.377 (2) | C21—C22 | 1.383 (3) |
N2—C6 | 1.379 (2) | C21—H21 | 0.9300 |
C1—C10 | 1.385 (2) | C22—H22 | 0.9300 |
C1—C2 | 1.430 (2) | O1—C24A | 1.394 (4) |
C2—C3 | 1.341 (3) | O1—C23 | 1.420 (3) |
C2—H2 | 0.9300 | O1—C24B | 1.534 (8) |
C3—C4 | 1.435 (2) | O2—C26 | 1.385 (3) |
C3—H3 | 0.9300 | O2—C25B | 1.462 (7) |
C4—C5 | 1.386 (2) | O2—C25A | 1.510 (5) |
C5—C6 | 1.388 (2) | O3—C28 | 1.399 (3) |
C5—C17 | 1.490 (2) | O3—C27 | 1.413 (3) |
C6—C7 | 1.434 (2) | C23—C28ii | 1.488 (3) |
C7—C8 | 1.339 (3) | C23—H23A | 0.9700 |
C7—H7 | 0.9300 | C23—H23B | 0.9700 |
C8—C9 | 1.429 (2) | C24A—C25A | 1.517 (6) |
C8—H8 | 0.9300 | C24A—H24A | 0.9700 |
C9—C10i | 1.386 (2) | C24A—H24B | 0.9700 |
C10—C9i | 1.386 (2) | C25A—H25A | 0.9700 |
C10—C11 | 1.494 (2) | C25A—H25B | 0.9700 |
C11—C12 | 1.380 (3) | C24B—C25B | 1.308 (12) |
C11—C16 | 1.381 (3) | C24B—H24C | 0.9700 |
C12—C13 | 1.380 (3) | C24B—H24D | 0.9700 |
C12—H12 | 0.9300 | C25B—H25C | 0.9700 |
C13—C14 | 1.373 (3) | C25B—H25D | 0.9700 |
C13—H13 | 0.9300 | C26—C27 | 1.493 (3) |
C14—C15 | 1.370 (3) | C26—H26A | 0.9700 |
C14—H14 | 0.9300 | C26—H26B | 0.9700 |
C15—C16 | 1.382 (3) | C27—H27A | 0.9700 |
C15—H15 | 0.9300 | C27—H27B | 0.9700 |
C16—H16 | 0.9300 | C28—C23ii | 1.488 (3) |
C17—C22 | 1.384 (3) | C28—H28A | 0.9700 |
C17—C18 | 1.388 (3) | C28—H28B | 0.9700 |
N2—Co—N2i | 180.0 | C20—C19—C18 | 119.9 (2) |
N2—Co—N1i | 90.63 (6) | C20—C19—H19 | 120.0 |
N2i—Co—N1i | 89.37 (6) | C18—C19—H19 | 120.0 |
N2—Co—N1 | 89.37 (6) | C21—C20—C19 | 119.82 (18) |
N2i—Co—N1 | 90.63 (6) | C21—C20—H20 | 120.1 |
N1i—Co—N1 | 180.0 | C19—C20—H20 | 120.1 |
C1—N1—C4 | 104.78 (14) | C20—C21—C22 | 120.2 (2) |
C1—N1—Co | 126.92 (12) | C20—C21—H21 | 119.9 |
C4—N1—Co | 128.22 (12) | C22—C21—H21 | 119.9 |
C9—N2—C6 | 104.48 (14) | C21—C22—C17 | 120.75 (19) |
C9—N2—Co | 126.91 (12) | C21—C22—H22 | 119.6 |
C6—N2—Co | 128.44 (12) | C17—C22—H22 | 119.6 |
N1—C1—C10 | 125.90 (16) | C24A—O1—C23 | 122.1 (2) |
N1—C1—C2 | 110.67 (15) | C23—O1—C24B | 102.2 (4) |
C10—C1—C2 | 123.35 (16) | C26—O2—C25B | 97.5 (4) |
C3—C2—C1 | 107.06 (16) | C26—O2—C25A | 120.3 (3) |
C3—C2—H2 | 126.5 | C28—O3—C27 | 114.26 (18) |
C1—C2—H2 | 126.5 | O1—C23—C28ii | 113.86 (18) |
C2—C3—C4 | 107.11 (16) | O1—C23—H23A | 108.8 |
C2—C3—H3 | 126.4 | C28ii—C23—H23A | 108.8 |
C4—C3—H3 | 126.4 | O1—C23—H23B | 108.8 |
N1—C4—C5 | 125.58 (16) | C28ii—C23—H23B | 108.8 |
N1—C4—C3 | 110.38 (15) | H23A—C23—H23B | 107.7 |
C5—C4—C3 | 123.97 (16) | O1—C24A—C25A | 107.9 (3) |
C4—C5—C6 | 122.88 (16) | O1—C24A—H24A | 110.1 |
C4—C5—C17 | 118.89 (16) | C25A—C24A—H24A | 110.1 |
C6—C5—C17 | 118.23 (16) | O1—C24A—H24B | 110.1 |
N2—C6—C5 | 125.50 (16) | C25A—C24A—H24B | 110.1 |
N2—C6—C7 | 110.62 (15) | H24A—C24A—H24B | 108.4 |
C5—C6—C7 | 123.69 (16) | O2—C25A—C24A | 104.3 (3) |
C8—C7—C6 | 106.93 (16) | O2—C25A—H25A | 110.9 |
C8—C7—H7 | 126.5 | C24A—C25A—H25A | 110.9 |
C6—C7—H7 | 126.5 | O2—C25A—H25B | 110.9 |
C7—C8—C9 | 107.22 (16) | C24A—C25A—H25B | 110.9 |
C7—C8—H8 | 126.4 | H25A—C25A—H25B | 108.9 |
C9—C8—H8 | 126.4 | C25B—C24B—O1 | 111.0 (8) |
N2—C9—C10i | 126.03 (16) | C25B—C24B—H24C | 109.4 |
N2—C9—C8 | 110.74 (15) | O1—C24B—H24C | 109.4 |
C10i—C9—C8 | 123.23 (16) | C25B—C24B—H24D | 109.4 |
C1—C10—C9i | 123.25 (16) | O1—C24B—H24D | 109.4 |
C1—C10—C11 | 118.58 (15) | H24C—C24B—H24D | 108.0 |
C9i—C10—C11 | 118.16 (16) | C24B—C25B—O2 | 106.7 (7) |
C12—C11—C16 | 118.63 (17) | C24B—C25B—H25C | 110.4 |
C12—C11—C10 | 121.28 (17) | O2—C25B—H25C | 110.4 |
C16—C11—C10 | 120.09 (17) | C24B—C25B—H25D | 110.4 |
C11—C12—C13 | 120.67 (18) | O2—C25B—H25D | 110.4 |
C11—C12—H12 | 119.7 | H25C—C25B—H25D | 108.6 |
C13—C12—H12 | 119.7 | O2—C26—C27 | 108.8 (2) |
C14—C13—C12 | 120.34 (19) | O2—C26—H26A | 109.9 |
C14—C13—H13 | 119.8 | C27—C26—H26A | 109.9 |
C12—C13—H13 | 119.8 | O2—C26—H26B | 109.9 |
C15—C14—C13 | 119.39 (18) | C27—C26—H26B | 109.9 |
C15—C14—H14 | 120.3 | H26A—C26—H26B | 108.3 |
C13—C14—H14 | 120.3 | O3—C27—C26 | 107.81 (19) |
C14—C15—C16 | 120.54 (19) | O3—C27—H27A | 110.1 |
C14—C15—H15 | 119.7 | C26—C27—H27A | 110.1 |
C16—C15—H15 | 119.7 | O3—C27—H27B | 110.1 |
C11—C16—C15 | 120.43 (19) | C26—C27—H27B | 110.1 |
C11—C16—H16 | 119.8 | H27A—C27—H27B | 108.5 |
C15—C16—H16 | 119.8 | O3—C28—C23ii | 110.08 (18) |
C22—C17—C18 | 118.42 (17) | O3—C28—H28A | 109.6 |
C22—C17—C5 | 120.57 (17) | C23ii—C28—H28A | 109.6 |
C18—C17—C5 | 121.01 (17) | O3—C28—H28B | 109.6 |
C19—C18—C17 | 120.81 (19) | C23ii—C28—H28B | 109.6 |
C19—C18—H18 | 119.6 | H28A—C28—H28B | 108.2 |
C17—C18—H18 | 119.6 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+2, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Co(C44H28N4)]·C12H24O6 |
Mr | 935.95 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 180 |
a, b, c (Å) | 10.1464 (4), 11.0890 (6), 11.7570 (5) |
α, β, γ (°) | 104.327 (4), 105.842 (4), 108.284 (4) |
V (Å3) | 1125.12 (9) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.44 |
Crystal size (mm) | 0.25 × 0.24 × 0.21 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2008) |
Tmin, Tmax | 0.927, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8862, 4589, 3977 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.100, 1.10 |
No. of reflections | 4589 |
No. of parameters | 323 |
No. of restraints | 30 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.79, −0.44 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, m1997).
Acknowledgements
The authors gratefully acknowledge financial support from the Ministry of Higher Education, Scientific Research and Technology of Tunisia.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Iimura, Y., Sakurai, T. & Yamamoto, K. (1988). Bull. Chem. Soc. Jpn, 61, 821–826. CrossRef CAS Web of Science Google Scholar
Konarev, D., Khasanov, S. S., Saito, G., Lybovskaya, R. N., Yoshida, Y. & Otsuka, A. (2003). Chem. Eur. J. 9, 3837–3848. Web of Science CSD CrossRef PubMed CAS Google Scholar
Konarev, D., Neretin, I. S., Saito, G., Slovokhotov, Y. L., Otsuka, A. & Lyubovskaya, R. N. (2004). Chem. Eur. J. 9, 1794–1998. CrossRef Google Scholar
Lee, U., Joo, H.-C. & Cho, M.-A. (2002). Acta Cryst. E58, m599–m601. Web of Science CSD CrossRef IUCr Journals Google Scholar
Madure, P. & Scheidt, W. R. (1976). Inorg. Chem. 15, 3182–3184. Google Scholar
McArdle, P. (1995). J. Appl. Cryst. 28, 65. CrossRef IUCr Journals Google Scholar
Nascimento B. F. O, Pineiro M., Gonsalves A. M. d'A. Rocha, Silva M. R., Beja A. M. & Paixão A. J. (2007). J. Porphyrins Phthalocyanines, 11, 77–84. Google Scholar
Oxford Diffraction (2008). CrystAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sanders, J.K.M., Bampos N., Clyde-Watson, Z., Kim, H.-J., Mak C. C. & Webb, J. S. (2000). The Porphyrin Handbook, Vol. 3, edited by K. M. Kadish, K. M. Smith & R. Guilard, pp. 1–200. San Diego: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smirnov, V. V., Woller, E. K. & DiMagno, S. G. (1998). Inorg. Chem. 37, 4771–4778. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Cobalt atom in metalloporphyrines is commonly used as a qualitatively acceptable substitute for iron atom in high-spin five-coordinate hemes of deoxyhemoglobin and in the low-spin oxygenated hemes of oxyhemoglobin. The metalation of a porphyrin by cobalt (using CoCl2.6H2O salt) yields the stable [CoII(Porph)] (Porph = porphyrin) complex used as starting material in the preparation of five and six-coordinated Co(II) and Co(III) metalloporphyrines (Sanders et al., (2000). In the Cambridge Structural Database (CSD, version 5.31; Allen 2002) there are three structures of tetra-coordinated cobalt(II) tetraphenylporphyrin (TPP) complexes: IKUDOH (Konarev et al., 2003), IXIKIJ (Konarev et al., 2004) and TPORCP12 (Nascimento et al., 2007). Herein we report the struture of the title compound,(I), which has been prepared in our laboratory.
The asymmetric unit of (I), contains one half [CoII(TPP)] complex and one half crystallographically independent 18-crown-6 molecule of crystallization both lying on inversion centers (Fig. 1).
The distance between the cobalt(II) ion and the symmetry related O1 and O1' atoms (Fig. 2) of the two closest crown ether molecules is 2.533 (2 ) Å. This distance is significantly longer than the CoII—O(THF) bond length [2.204 (4) Å] in the [CoII(F8TPP)(THF)2] derivative (where F8TPP is the tetrakis(pentafluorophenylporphyrin)) (Smirnov et al., 1998) and the CoII—O(H2O) bond distance in the [CoII(H2O)6]2+ species [ 2.062 (4)- 2.141 (4) Å] (Lee et al., 2002). This indicates that in (I) there is a short non-bonded contact between the cobalt ion and the crown ether molecule.
It has been noticed that there is a relationship between the ruffling of the porphyrinato core and the mean equatorial Co(II)—Np distance (Np = pyrrol N atom); the porphyrinato core is ruffled as the Co—Np distance decreases, (Iimura et al., 1988). Thus, the average distance Co—Np in (I), 1.971 (4) Å, is longer than those of the three other reported [CoII(TPP)] structures quoted above [1.923 (3) – 1.969 (6) Å]. The porphyrin core in (I) presents a planar conformation with maximum and minimum deviations from the C20N4 least-squares plane of 0.069 (2) and -0.068 (2) Å for C6 and C8 atoms, respectively, while the Co2+ cation is basically in the porphyrin plane with a Co—Ct distance of 0.004 (1) Å (where Ct is the center of the C20N4 plane).