organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Bromo­phen­yl)-2-methyl-2,3-di­hydro­quinazolin-4(1H)-one

aKey Laboratory of Biotechnology for Medical Plants of Jiangsu Province, Xuzhou Normal University, Xuzhou, Jiangsu 221116, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
*Correspondence e-mail: xswang1974@yahoo.com

(Received 27 March 2010; accepted 4 April 2010; online 14 April 2010)

In the title compound, C15H13BrN2O, the pyrimidine ring adopts a skew boat conformation. The amino H atom forms an inter­molecular hydrogen bond with the carbonyl O atom of an adjacent mol­ecule, forming an inversion dimer. Another lone pair of electrons on the same carbonyl O atom acts as acceptor for another N—H⋯O inter­molecular hydrogen bond with a neighbouring mol­ecule, forming chains along the c axis.

Related literature

For biological properties of quinazolinone derivatives, see: Alagarsamy et al. (2006[Alagarsamy, V., Giridhar, R., Yadav, M. R., Revathi, R., Ruckmani, K. & De Clercq, E. (2006). Indian J. Pharm. Sci. 68, 532-535.], 2007[Alagarsamy, V., Raja, S. V. & Dhanabal, K. (2007). Bioorg. Med. Chem. 15, 235-241.]); Hwang et al. (2008[Hwang, S. H., Rait, A., Pirollo, K. F., Zhou, Q., Yenugonda, V. M., Chinigo, G. M., Brown, M. L. & Chang, E. H. (2008). Mol. Cancer Ther. 7, 559-568.]); Na et al. (2008[Na, Y. H., Hong, S. H., Lee, J. H., Park, W.-K., Baek, D.-J., Koh, H. Y., Cho, Y. S., Choo, H. & Pae, A. N. (2008). Bioorg. Med. Chem. 16, 2570-2578.]); Nandy et al. (2006[Nandy, P., Vishalakshi, M. T. & Bhat, A. R. (2006). Indian J. Heterocycl. Chem. 15, 293-294.]). For related structures, see: Wang et al. (2008[Wang, H.-L., Yang, X.-H. & Wu, M.-H. (2008). Acta Cryst. E64, o2325.]); Zhang et al. (2009[Zhang, G.-F., Ma, Z. & Yang, X.-H. (2009). Acta Cryst. E65, o34-o35.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13BrN2O

  • Mr = 317.18

  • Monoclinic, P 21 /c

  • a = 12.2106 (3) Å

  • b = 9.0507 (2) Å

  • c = 12.4046 (3) Å

  • β = 101.719 (1)°

  • V = 1342.31 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.06 mm−1

  • T = 296 K

  • 0.39 × 0.31 × 0.07 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.343, Tmax = 0.801

  • 16905 measured reflections

  • 2369 independent reflections

  • 2068 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.087

  • S = 1.05

  • 2369 reflections

  • 181 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.86 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.85 (1) 2.08 (1) 2.932 (3) 179 (3)
N2—H2⋯O1ii 0.85 (1) 2.04 (1) 2.870 (3) 164 (3)
Symmetry codes: (i) -x, -y+1, -z; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The synthesis of quinazolinone derivatives has been the focus of great interest, because it was reported that its derivatives possessed a broad spectrum of biological properties. Some of these activities include antidepressant (Na et al., 2008), anticancer (Hwang et al., 2008), anti-inflammatory (Alagarsamy, et al., 2007), antibacterial (Alagarsamy et al., 2006), and antitubercular activity (Nandy et al., 2006). The title compound may be used as a new precursor for obtaining bioactive molecules. We report here the crystal structure of the title compound, (I).

In the title molecule the pyrimidine ring of the quinazolinone moiety is slightly distorted and adopts a skew conformation (Fig. 1). The atoms C1 and N1 deviate from the basal plane defined by the atoms C2/C3/C8/N2 by 0.631 (4) and 0.222 (4) Å, respectively. Similar structures were observed in the structures of 2-(4-chloroanilino)-3-(2-hydroxyethyl)-quinazolin-4(3H)-one (Wang et al., 2008) and 3-(2-hydroxyethyl)-2-(p-tolylamino)-quinazolin-4(3H)-one (Zhang et al., 2009). In (I), the basal plane of the pyrimidine ring is nearly parallel to the phenyl ring C3/C4/C5/C6/C7/C8, forming a dihedral angle of 4.5 (2)°, and is nearly perpendicular to another 4-bromophenyl ring, forming a dihedral angle of 82.2 (1)°.

Intermolecular N1—H1···O1 hydrogen bonds (Table 1) are formed between the amino and carbonyl groups, and link the moleclues forming dimers (Fig. 2). Another intermolecular N2—H2···O1 hydrogen bond links the neighbouring molecules forming polymeric chains along the c-axis.

Related literature top

For biological properties of quinazolinone derivatives, see: Alagarsamy et al. (2006, 2007); Hwang et al. (2008); Na et al. (2008); Nandy et al. (2006). For related structures, see: Wang et al. (2008); Zhang et al. (2009).

Experimental top

The title compound was prepared by the reaction of 2-aminobenzamide (0.272 g, 2 mmol) and 4'-bromoacetophenone (0.398 g, 2 mmol) in the presence of iodine (0.026 g) in tetrahydrofuran at 323 K for 6 h (yield 86%, m.p. 494–496 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a dimethylformamide solution.

Refinement top

The H atoms bonded to C atoms were included at geometrically idealized positions and refined in riding-model approximation with C—H = 0.93 and 0.96 Å, for aryl and methyl H atoms, respectively; the H atoms bonded to N atoms were allowed to refine. The Uiso(H) were allowed at 1.2Ueq(parent atoms). The final difference map was essentially featurless with the residual electron density located in the close proximity of the Br1 atom.

Structure description top

The synthesis of quinazolinone derivatives has been the focus of great interest, because it was reported that its derivatives possessed a broad spectrum of biological properties. Some of these activities include antidepressant (Na et al., 2008), anticancer (Hwang et al., 2008), anti-inflammatory (Alagarsamy, et al., 2007), antibacterial (Alagarsamy et al., 2006), and antitubercular activity (Nandy et al., 2006). The title compound may be used as a new precursor for obtaining bioactive molecules. We report here the crystal structure of the title compound, (I).

In the title molecule the pyrimidine ring of the quinazolinone moiety is slightly distorted and adopts a skew conformation (Fig. 1). The atoms C1 and N1 deviate from the basal plane defined by the atoms C2/C3/C8/N2 by 0.631 (4) and 0.222 (4) Å, respectively. Similar structures were observed in the structures of 2-(4-chloroanilino)-3-(2-hydroxyethyl)-quinazolin-4(3H)-one (Wang et al., 2008) and 3-(2-hydroxyethyl)-2-(p-tolylamino)-quinazolin-4(3H)-one (Zhang et al., 2009). In (I), the basal plane of the pyrimidine ring is nearly parallel to the phenyl ring C3/C4/C5/C6/C7/C8, forming a dihedral angle of 4.5 (2)°, and is nearly perpendicular to another 4-bromophenyl ring, forming a dihedral angle of 82.2 (1)°.

Intermolecular N1—H1···O1 hydrogen bonds (Table 1) are formed between the amino and carbonyl groups, and link the moleclues forming dimers (Fig. 2). Another intermolecular N2—H2···O1 hydrogen bond links the neighbouring molecules forming polymeric chains along the c-axis.

For biological properties of quinazolinone derivatives, see: Alagarsamy et al. (2006, 2007); Hwang et al. (2008); Na et al. (2008); Nandy et al. (2006). For related structures, see: Wang et al. (2008); Zhang et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure drawing for (I) showing 30% probability of displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The molecular packing diagram of (I).
2-(4-Bromophenyl)-2-methyl-2,3-dihydroquinazolin-4(1H)-one top
Crystal data top
C15H13BrN2OF(000) = 640
Mr = 317.18Dx = 1.570 Mg m3
Monoclinic, P21/cMelting point = 494–496 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.2106 (3) ÅCell parameters from 7144 reflections
b = 9.0507 (2) Åθ = 2.8–27.1°
c = 12.4046 (3) ŵ = 3.06 mm1
β = 101.719 (1)°T = 296 K
V = 1342.31 (5) Å3Block, colourless
Z = 40.39 × 0.31 × 0.07 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2369 independent reflections
Radiation source: fine-focus sealed tube2068 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1414
Tmin = 0.343, Tmax = 0.801k = 1010
16905 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0402P)2 + 1.4299P]
where P = (Fo2 + 2Fc2)/3
2369 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.89 e Å3
2 restraintsΔρmin = 0.86 e Å3
Crystal data top
C15H13BrN2OV = 1342.31 (5) Å3
Mr = 317.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.2106 (3) ŵ = 3.06 mm1
b = 9.0507 (2) ÅT = 296 K
c = 12.4046 (3) Å0.39 × 0.31 × 0.07 mm
β = 101.719 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2369 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
2068 reflections with I > 2σ(I)
Tmin = 0.343, Tmax = 0.801Rint = 0.025
16905 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0342 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.89 e Å3
2369 reflectionsΔρmin = 0.86 e Å3
181 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.39200 (3)0.15530 (4)0.53610 (3)0.06231 (16)
O10.12331 (16)0.5903 (2)0.02983 (14)0.0438 (5)
N20.14117 (19)0.7611 (2)0.27005 (18)0.0356 (5)
C20.1400 (2)0.6296 (3)0.0687 (2)0.0331 (6)
C100.1575 (2)0.4972 (3)0.3192 (2)0.0305 (5)
N10.07053 (18)0.5872 (3)0.13329 (17)0.0341 (5)
C150.1462 (2)0.4648 (3)0.4258 (2)0.0423 (6)
H15A0.09180.51360.45500.051*
C80.2278 (2)0.7955 (3)0.2193 (2)0.0339 (6)
C70.3078 (2)0.9022 (3)0.2615 (2)0.0430 (7)
H7A0.30470.95010.32710.052*
C110.2387 (2)0.4209 (3)0.2788 (2)0.0371 (6)
H11A0.24710.43910.20710.045*
C30.2318 (2)0.7284 (3)0.1177 (2)0.0342 (6)
C90.0294 (2)0.6307 (3)0.2795 (2)0.0418 (6)
H9A0.07520.69530.22780.050*
H9B0.02240.66990.35250.050*
H9C0.06330.53460.27600.050*
C10.0863 (2)0.6182 (3)0.2514 (2)0.0312 (5)
C130.2944 (2)0.2903 (3)0.4473 (2)0.0396 (6)
C140.2138 (3)0.3620 (3)0.4894 (2)0.0462 (7)
H14A0.20460.34150.56050.055*
C40.3171 (2)0.7652 (3)0.0637 (2)0.0417 (6)
H4A0.32020.71990.00300.050*
C50.3972 (2)0.8676 (4)0.1070 (3)0.0494 (7)
H5A0.45460.89060.07070.059*
C120.3077 (2)0.3185 (3)0.3416 (2)0.0416 (6)
H12A0.36230.26930.31290.050*
C60.3913 (3)0.9364 (3)0.2060 (3)0.0500 (7)
H6A0.44471.00670.23520.060*
H20.146 (2)0.794 (3)0.3350 (12)0.042 (8)*
H10.0147 (16)0.535 (3)0.103 (2)0.035 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0575 (2)0.0674 (3)0.0598 (2)0.01474 (16)0.00690 (16)0.02754 (17)
O10.0550 (12)0.0520 (12)0.0237 (10)0.0116 (9)0.0066 (8)0.0021 (8)
N20.0477 (13)0.0326 (11)0.0280 (12)0.0021 (10)0.0111 (10)0.0048 (9)
C20.0381 (14)0.0331 (13)0.0269 (13)0.0041 (11)0.0038 (10)0.0031 (10)
C100.0313 (12)0.0325 (13)0.0277 (13)0.0051 (10)0.0064 (10)0.0031 (10)
N10.0361 (12)0.0392 (12)0.0257 (11)0.0056 (10)0.0030 (9)0.0014 (9)
C150.0455 (16)0.0506 (17)0.0340 (15)0.0063 (13)0.0156 (12)0.0007 (13)
C80.0374 (14)0.0318 (13)0.0311 (14)0.0028 (11)0.0036 (11)0.0024 (11)
C70.0515 (17)0.0393 (15)0.0359 (15)0.0041 (13)0.0030 (12)0.0031 (12)
C110.0417 (14)0.0418 (15)0.0301 (14)0.0035 (12)0.0129 (11)0.0039 (11)
C30.0374 (14)0.0353 (13)0.0294 (13)0.0018 (11)0.0057 (11)0.0016 (11)
C90.0376 (14)0.0474 (16)0.0416 (16)0.0047 (12)0.0111 (12)0.0009 (13)
C10.0346 (13)0.0338 (13)0.0257 (13)0.0010 (10)0.0075 (10)0.0022 (10)
C130.0366 (14)0.0401 (15)0.0394 (15)0.0012 (12)0.0013 (11)0.0088 (12)
C140.0519 (17)0.0572 (18)0.0307 (15)0.0038 (14)0.0116 (13)0.0083 (13)
C40.0403 (15)0.0485 (16)0.0370 (15)0.0016 (13)0.0100 (12)0.0010 (12)
C50.0365 (15)0.0568 (19)0.056 (2)0.0031 (13)0.0116 (13)0.0052 (15)
C120.0381 (15)0.0444 (15)0.0438 (16)0.0054 (12)0.0120 (12)0.0021 (13)
C60.0428 (16)0.0477 (17)0.0556 (19)0.0108 (13)0.0011 (14)0.0004 (14)
Geometric parameters (Å, º) top
Br1—C131.896 (3)C7—H7A0.9300
O1—C21.249 (3)C11—C121.382 (4)
N2—C81.372 (3)C11—H11A0.9300
N2—C11.453 (3)C3—C41.389 (4)
N2—H20.851 (10)C9—C11.526 (4)
C2—N11.336 (3)C9—H9A0.9600
C2—C31.466 (4)C9—H9B0.9600
C10—C111.384 (4)C9—H9C0.9600
C10—C151.388 (4)C13—C141.368 (4)
C10—C11.538 (3)C13—C121.378 (4)
N1—C11.466 (3)C14—H14A0.9300
N1—H10.854 (10)C4—C51.375 (4)
C15—C141.381 (4)C4—H4A0.9300
C15—H15A0.9300C5—C61.391 (4)
C8—C71.397 (4)C5—H5A0.9300
C8—C31.409 (4)C12—H12A0.9300
C7—C61.376 (4)C6—H6A0.9300
C8—N2—C1120.2 (2)H9A—C9—H9B109.5
C8—N2—H2116 (2)C1—C9—H9C109.5
C1—N2—H2114 (2)H9A—C9—H9C109.5
O1—C2—N1120.5 (2)H9B—C9—H9C109.5
O1—C2—C3122.6 (2)N2—C1—N1107.0 (2)
N1—C2—C3116.8 (2)N2—C1—C9108.4 (2)
C11—C10—C15117.2 (2)N1—C1—C9107.6 (2)
C11—C10—C1121.6 (2)N2—C1—C10110.9 (2)
C15—C10—C1121.1 (2)N1—C1—C10110.8 (2)
C2—N1—C1125.0 (2)C9—C1—C10112.0 (2)
C2—N1—H1116.3 (19)C14—C13—C12120.6 (3)
C1—N1—H1118.5 (19)C14—C13—Br1120.0 (2)
C14—C15—C10121.6 (3)C12—C13—Br1119.4 (2)
C14—C15—H15A119.2C13—C14—C15119.6 (3)
C10—C15—H15A119.2C13—C14—H14A120.2
N2—C8—C7122.1 (2)C15—C14—H14A120.2
N2—C8—C3118.9 (2)C5—C4—C3121.1 (3)
C7—C8—C3118.9 (2)C5—C4—H4A119.5
C6—C7—C8120.1 (3)C3—C4—H4A119.5
C6—C7—H7A120.0C4—C5—C6119.1 (3)
C8—C7—H7A120.0C4—C5—H5A120.4
C12—C11—C10122.0 (2)C6—C5—H5A120.4
C12—C11—H11A119.0C13—C12—C11119.0 (3)
C10—C11—H11A119.0C13—C12—H12A120.5
C4—C3—C8119.6 (2)C11—C12—H12A120.5
C4—C3—C2122.1 (2)C7—C6—C5121.1 (3)
C8—C3—C2118.1 (2)C7—C6—H6A119.4
C1—C9—H9A109.5C5—C6—H6A119.4
C1—C9—H9B109.5
O1—C2—N1—C1175.6 (2)C2—N1—C1—N233.1 (3)
C3—C2—N1—C17.2 (4)C2—N1—C1—C9149.4 (2)
C11—C10—C15—C140.6 (4)C2—N1—C1—C1087.8 (3)
C1—C10—C15—C14176.5 (3)C11—C10—C1—N288.1 (3)
C1—N2—C8—C7156.5 (2)C15—C10—C1—N288.9 (3)
C1—N2—C8—C327.8 (4)C11—C10—C1—N130.5 (3)
N2—C8—C7—C6178.0 (3)C15—C10—C1—N1152.5 (2)
C3—C8—C7—C62.4 (4)C11—C10—C1—C9150.7 (2)
C15—C10—C11—C121.2 (4)C15—C10—C1—C932.4 (3)
C1—C10—C11—C12175.9 (2)C12—C13—C14—C150.8 (5)
N2—C8—C3—C4178.1 (2)Br1—C13—C14—C15177.2 (2)
C7—C8—C3—C42.4 (4)C10—C15—C14—C130.4 (5)
N2—C8—C3—C22.7 (4)C8—C3—C4—C50.8 (4)
C7—C8—C3—C2173.1 (2)C2—C3—C4—C5174.5 (3)
O1—C2—C3—C411.0 (4)C3—C4—C5—C60.8 (4)
N1—C2—C3—C4171.9 (2)C14—C13—C12—C110.3 (4)
O1—C2—C3—C8164.4 (2)Br1—C13—C12—C11177.8 (2)
N1—C2—C3—C812.8 (3)C10—C11—C12—C130.7 (4)
C8—N2—C1—N143.0 (3)C8—C7—C6—C50.8 (5)
C8—N2—C1—C9158.8 (2)C4—C5—C6—C70.8 (5)
C8—N2—C1—C1077.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.85 (1)2.08 (1)2.932 (3)179 (3)
N2—H2···O1ii0.85 (1)2.04 (1)2.870 (3)164 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H13BrN2O
Mr317.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.2106 (3), 9.0507 (2), 12.4046 (3)
β (°) 101.719 (1)
V3)1342.31 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.06
Crystal size (mm)0.39 × 0.31 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.343, 0.801
No. of measured, independent and
observed [I > 2σ(I)] reflections
16905, 2369, 2068
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.087, 1.05
No. of reflections2369
No. of parameters181
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.89, 0.86

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.854 (10)2.078 (11)2.932 (3)179 (3)
N2—H2···O1ii0.851 (10)2.041 (13)2.870 (3)164 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Natural Science Foundation (grant No. 08KJD150019) and the Qing Lan Project (grant No. 08QLT001) of the Jiangsu Education Committee for financial support.

References

First citationAlagarsamy, V., Giridhar, R., Yadav, M. R., Revathi, R., Ruckmani, K. & De Clercq, E. (2006). Indian J. Pharm. Sci. 68, 532–535.  CrossRef CAS Google Scholar
First citationAlagarsamy, V., Raja, S. V. & Dhanabal, K. (2007). Bioorg. Med. Chem. 15, 235–241.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHwang, S. H., Rait, A., Pirollo, K. F., Zhou, Q., Yenugonda, V. M., Chinigo, G. M., Brown, M. L. & Chang, E. H. (2008). Mol. Cancer Ther. 7, 559–568.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNa, Y. H., Hong, S. H., Lee, J. H., Park, W.-K., Baek, D.-J., Koh, H. Y., Cho, Y. S., Choo, H. & Pae, A. N. (2008). Bioorg. Med. Chem. 16, 2570–2578.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNandy, P., Vishalakshi, M. T. & Bhat, A. R. (2006). Indian J. Heterocycl. Chem. 15, 293–294.  CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H.-L., Yang, X.-H. & Wu, M.-H. (2008). Acta Cryst. E64, o2325.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, G.-F., Ma, Z. & Yang, X.-H. (2009). Acta Cryst. E65, o34–o35.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds