organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Chloro­phen­yl)-3-(2-fur­yl)-1,2,4-triazolo[3,4-a]iso­quinoline

aOrganic and Medicinal Chemistry Research Laboratory, Organic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 3 April 2010; accepted 7 April 2010; online 14 April 2010)

In the title mol­ecule, C20H12ClN3O, the triazoloisoquinoline ring system is nearly planar, with an r.m.s. deviation of 0.018 (3) Å and a maximum deviation of 0.034 (3) Å from the mean plane for the triazole ring C atom which is bonded to the benzene ring. The furan and benzene rings are twisted by 59.71 (14) and 66.95 (10)°, respectively, with respect to the mean plane of the triazoloisoquinoline ring system. The mol­ecular conformation is stabilized by an intra­molecular ππ inter­action [centroid-to-centroid distance = 3.5262 (18) Å]. The crystal packing is stabilized by weak C—H⋯π inter­actions and weak ππ inter­actions [centroid-to-centroid distance = 3.9431 (17) Å].

Related literature

For a related crystal structure, see: Khan et al. (2010[Khan, F. N., Manivel, P., Prabakaran, K., Hathwar, V. R. & Ng, S. W. (2010). Acta Cryst. E66, o488.]).

[Scheme 1]

Experimental

Crystal data
  • C20H12ClN3O

  • Mr = 345.78

  • Orthorhombic, P 21 21 21

  • a = 9.0281 (9) Å

  • b = 12.6034 (11) Å

  • c = 14.6444 (15) Å

  • V = 1666.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 290 K

  • 0.32 × 0.24 × 0.15 mm

Data collection
  • Oxford Xcalibur Eos (Nova) CCD detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.933, Tmax = 0.964

  • 9280 measured reflections

  • 3029 independent reflections

  • 1831 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.082

  • S = 0.85

  • 3029 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1245 Freidel pairs

  • Flack parameter: 0.00 (8)

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the N1–N3/C1/C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯Cg2i 0.93 2.95 3.273 (4) 102
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of our search for new isoquinoline analogues (Khan et al., 2010), we focused on synthesis of the title compound and its crystal structure is reported in this article.

In the title molecule (I), Fig. 1, the triazoloisoquinoline ring system (N1–N3/C1–C9/C16) is nearly planar, with an r.m.s. deviation of 0.018 (3) Å and a maximum deviation of 0.034 (3) Å from the mean plane for the triazole ring C16 atom which is bonded to the benzene ring. The furan (O1/C17–C20) and benzene (C10–C15) rings are twisted by 59.71 (14) and 66.95 (10)°, respectively, with respect to the mean plane of the triazoloisoquinoline ring system. The furan (O1/C17–C20) and benzene (C10–C15) rings make a dihedral angle of 21.76 (16)° with each other. The molecular conformation is stabilized by an intramolecular ππ interaction [Cg1···Cg5(x, y, z) = 3.5262 (18) Å; Cg1 and Cg5 are the centroids of the O1/C17–C20 and C10–C15 rings, respectively]. In the crystal structure, there is no classical hydrogen bonds. The crystal packing is stabilized by weak C—H···π interactions (Table 1) and weak ππ interactions [Cg1···Cg2(1/2 + x, 3/2 - y, 1 - z) = 3.9431 (17) Å; Cg2 is the centroid of the N1–N3/C1/C16 ring]. Fig. 2 shows the packing diagram of (I) viewing down the a axis.

Related literature top

For a related crystal structure, see: Khan et al. (2010).

Experimental top

2-(3-(4-Chlorophenylisoquinolin-1-yl)hydrazine (1 mmol) was condensed with furan-2-carbaldehyde (1.1 mmol) under refluxing conditions in isopropanol (10 ml) solvent to give the corresponding hydrazone in high yield. After removal of solvent the compound was then oxidatively cyclized in nitrobenzene (10 ml) at 473 K. The product was recrystallized from dichlomethane to give block-shaped crystals.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93 Å and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C).

Structure description top

As part of our search for new isoquinoline analogues (Khan et al., 2010), we focused on synthesis of the title compound and its crystal structure is reported in this article.

In the title molecule (I), Fig. 1, the triazoloisoquinoline ring system (N1–N3/C1–C9/C16) is nearly planar, with an r.m.s. deviation of 0.018 (3) Å and a maximum deviation of 0.034 (3) Å from the mean plane for the triazole ring C16 atom which is bonded to the benzene ring. The furan (O1/C17–C20) and benzene (C10–C15) rings are twisted by 59.71 (14) and 66.95 (10)°, respectively, with respect to the mean plane of the triazoloisoquinoline ring system. The furan (O1/C17–C20) and benzene (C10–C15) rings make a dihedral angle of 21.76 (16)° with each other. The molecular conformation is stabilized by an intramolecular ππ interaction [Cg1···Cg5(x, y, z) = 3.5262 (18) Å; Cg1 and Cg5 are the centroids of the O1/C17–C20 and C10–C15 rings, respectively]. In the crystal structure, there is no classical hydrogen bonds. The crystal packing is stabilized by weak C—H···π interactions (Table 1) and weak ππ interactions [Cg1···Cg2(1/2 + x, 3/2 - y, 1 - z) = 3.9431 (17) Å; Cg2 is the centroid of the N1–N3/C1/C16 ring]. Fig. 2 shows the packing diagram of (I) viewing down the a axis.

For a related crystal structure, see: Khan et al. (2010).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing diagram of (I) viewing down the a axis. H atoms have been omitted for clarity.
5-(4-Chlorophenyl)-3-(2-furyl)-1,2,4-triazolo[3,4-a]isoquinoline top
Crystal data top
C20H12ClN3OF(000) = 712
Mr = 345.78Dx = 1.378 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1165 reflections
a = 9.0281 (9) Åθ = 1.7–20.6°
b = 12.6034 (11) ŵ = 0.24 mm1
c = 14.6444 (15) ÅT = 290 K
V = 1666.3 (3) Å3Block, colourless
Z = 40.32 × 0.24 × 0.15 mm
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
3029 independent reflections
Radiation source: Enhance (Mo) X-ray Source1831 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
ω scansθmax = 25.5°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 810
Tmin = 0.933, Tmax = 0.964k = 1415
9280 measured reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0329P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082(Δ/σ)max = 0.001
S = 0.85Δρmax = 0.13 e Å3
3029 reflectionsΔρmin = 0.14 e Å3
227 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc* = kFc[1+0.001Fc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0109 (10)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), with 1245 Freidel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.00 (8)
Crystal data top
C20H12ClN3OV = 1666.3 (3) Å3
Mr = 345.78Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.0281 (9) ŵ = 0.24 mm1
b = 12.6034 (11) ÅT = 290 K
c = 14.6444 (15) Å0.32 × 0.24 × 0.15 mm
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
3029 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1831 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 0.964Rint = 0.071
9280 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.082Δρmax = 0.13 e Å3
S = 0.85Δρmin = 0.14 e Å3
3029 reflectionsAbsolute structure: Flack (1983), with 1245 Freidel pairs
227 parametersAbsolute structure parameter: 0.00 (8)
0 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.33125 (9)1.00293 (7)0.16049 (6)0.0937 (3)
O10.5357 (2)0.77175 (16)0.41053 (13)0.0713 (8)
N10.3343 (2)0.56533 (14)0.42785 (13)0.0434 (7)
N20.4295 (2)0.58135 (18)0.56552 (15)0.0607 (9)
N30.3791 (3)0.47806 (17)0.55611 (15)0.0588 (8)
C10.3237 (3)0.46973 (19)0.47266 (18)0.0485 (9)
C20.2614 (3)0.3788 (2)0.42840 (18)0.0494 (9)
C30.2546 (3)0.2798 (2)0.4715 (2)0.0667 (11)
C40.1926 (4)0.1962 (2)0.4261 (2)0.0837 (14)
C50.1397 (4)0.2076 (3)0.3387 (2)0.0833 (16)
C60.1482 (3)0.3040 (2)0.29456 (19)0.0675 (11)
C70.2094 (3)0.39175 (19)0.33964 (18)0.0500 (10)
C80.2207 (3)0.4941 (2)0.29680 (17)0.0520 (9)
C90.2803 (2)0.57833 (19)0.33756 (16)0.0420 (8)
C100.2922 (3)0.68419 (19)0.29424 (16)0.0440 (9)
C110.2102 (3)0.7688 (2)0.32553 (17)0.0512 (10)
C120.2214 (3)0.8674 (2)0.28522 (19)0.0600 (11)
C130.3148 (3)0.8789 (2)0.21205 (19)0.0574 (10)
C140.3970 (3)0.7960 (2)0.17858 (18)0.0598 (11)
C150.3843 (3)0.6977 (2)0.21980 (17)0.0552 (10)
C160.4029 (3)0.6318 (2)0.48920 (17)0.0491 (9)
C170.4389 (3)0.7432 (2)0.47754 (19)0.0538 (10)
C180.3987 (3)0.8269 (2)0.5256 (2)0.0627 (11)
C190.4689 (4)0.9155 (3)0.4879 (2)0.0837 (14)
C200.5505 (4)0.8809 (3)0.4193 (3)0.0800 (14)
H30.291700.271100.530300.0800*
H40.186100.130600.454900.1000*
H50.097800.149700.309000.1000*
H60.113500.310900.235100.0810*
H80.184600.501900.237700.0620*
H110.146300.759400.374700.0610*
H120.166900.924600.307100.0720*
H140.460200.805800.129100.0720*
H150.438100.640500.197300.0660*
H180.335200.826900.575500.0750*
H190.459800.985400.507400.1010*
H200.609400.923500.382200.0960*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0975 (6)0.0700 (5)0.1137 (7)0.0069 (5)0.0076 (5)0.0403 (6)
O10.0635 (12)0.0737 (15)0.0768 (14)0.0078 (11)0.0015 (12)0.0030 (13)
N10.0512 (13)0.0416 (12)0.0374 (11)0.0028 (11)0.0005 (11)0.0017 (11)
N20.0728 (15)0.0637 (16)0.0455 (14)0.0032 (13)0.0107 (12)0.0025 (14)
N30.0732 (15)0.0575 (16)0.0457 (13)0.0034 (12)0.0032 (12)0.0029 (12)
C10.0557 (17)0.0445 (16)0.0453 (16)0.0088 (13)0.0062 (15)0.0033 (14)
C20.0567 (17)0.0442 (16)0.0472 (16)0.0006 (13)0.0102 (14)0.0012 (15)
C30.080 (2)0.0570 (19)0.0632 (19)0.0034 (15)0.0079 (17)0.0130 (18)
C40.109 (3)0.054 (2)0.088 (2)0.0159 (19)0.010 (2)0.010 (2)
C50.104 (3)0.054 (2)0.092 (3)0.0220 (19)0.002 (2)0.011 (2)
C60.076 (2)0.060 (2)0.0665 (19)0.0110 (17)0.0065 (17)0.0052 (18)
C70.0521 (17)0.0433 (16)0.0547 (18)0.0020 (13)0.0042 (14)0.0043 (15)
C80.0570 (16)0.0545 (17)0.0444 (16)0.0003 (14)0.0038 (13)0.0045 (15)
C90.0442 (14)0.0477 (16)0.0341 (14)0.0027 (12)0.0006 (12)0.0005 (14)
C100.0465 (15)0.0498 (16)0.0358 (14)0.0018 (13)0.0030 (13)0.0016 (13)
C110.0491 (17)0.0550 (17)0.0495 (16)0.0003 (13)0.0083 (13)0.0052 (15)
C120.0600 (18)0.0530 (18)0.067 (2)0.0057 (14)0.0012 (16)0.0066 (16)
C130.0597 (18)0.0538 (17)0.0587 (18)0.0109 (16)0.0070 (16)0.0193 (16)
C140.0611 (19)0.067 (2)0.0513 (17)0.0080 (15)0.0113 (14)0.0033 (17)
C150.0623 (17)0.0530 (18)0.0504 (16)0.0013 (14)0.0093 (15)0.0030 (15)
C160.0546 (16)0.0521 (17)0.0407 (16)0.0045 (14)0.0016 (13)0.0055 (15)
C170.0525 (17)0.0586 (19)0.0502 (18)0.0028 (15)0.0081 (15)0.0001 (17)
C180.0672 (19)0.0539 (18)0.0670 (19)0.0022 (16)0.0031 (16)0.0094 (17)
C190.088 (2)0.060 (2)0.103 (3)0.000 (2)0.018 (2)0.018 (2)
C200.073 (2)0.064 (2)0.103 (3)0.0245 (19)0.019 (2)0.016 (2)
Geometric parameters (Å, º) top
Cl1—C131.742 (3)C11—C121.380 (4)
O1—C171.362 (3)C12—C131.371 (4)
O1—C201.388 (4)C13—C141.372 (4)
N1—C11.375 (3)C14—C151.383 (4)
N1—C91.419 (3)C16—C171.451 (4)
N1—C161.376 (3)C17—C181.319 (4)
N2—N31.386 (3)C18—C191.398 (4)
N2—C161.308 (3)C19—C201.320 (5)
N3—C11.325 (3)C3—H30.9300
C1—C21.432 (4)C4—H40.9300
C2—C31.400 (4)C5—H50.9300
C2—C71.392 (4)C6—H60.9300
C3—C41.366 (4)C8—H80.9300
C4—C51.374 (4)C11—H110.9300
C5—C61.378 (4)C12—H120.9300
C6—C71.402 (4)C14—H140.9300
C7—C81.438 (4)C15—H150.9300
C8—C91.332 (3)C18—H180.9300
C9—C101.481 (3)C19—H190.9300
C10—C111.377 (4)C20—H200.9300
C10—C151.382 (4)
Cl1···C18i3.579 (3)C16···C113.428 (4)
Cl1···C16ii3.634 (3)C17···C113.053 (4)
Cl1···N1ii3.378 (2)C17···C103.084 (4)
Cl1···C9ii3.634 (2)C18···Cl1viii3.579 (3)
Cl1···H18i2.9000C18···C113.467 (4)
O1···N13.184 (3)C19···C1v3.562 (5)
O1···C102.992 (3)C20···C16v3.456 (5)
O1···C113.192 (3)C20···C123.565 (5)
O1···C153.247 (3)C20···C1v3.483 (5)
N1···O13.184 (3)C2···H14iii2.8100
N1···N22.201 (3)C3···H14iii2.9800
N1···Cl1iii3.378 (2)C8···H153.0600
N2···N12.201 (3)C14···H3vii2.8900
N3···N12.214 (3)C15···H83.0700
N2···H6iv2.8600C17···H113.0500
N2···H11v2.9400C17···H11v2.8600
N2···H12v2.8400C18···H11v2.8800
N2···H8iv2.9200H3···N32.7500
N3···H32.7500H3···C14iv2.8900
N3···H8iv2.7300H6···H82.4900
N3···H20vi2.8800H6···N2vii2.8600
C1···C19vi3.562 (5)H8···C153.0700
C1···C20vi3.483 (5)H8···H62.4900
C3···C14iv3.462 (4)H8···N2vii2.9200
C9···Cl1iii3.634 (2)H8···N3vii2.7300
C10···C173.084 (4)H11···C173.0500
C10···O12.992 (3)H11···N2vi2.9400
C11···O13.192 (3)H11···C17vi2.8600
C11···C173.053 (4)H11···C18vi2.8800
C11···C183.467 (4)H12···N2vi2.8400
C11···C163.428 (4)H14···C2ii2.8100
C12···C203.565 (5)H14···C3ii2.9800
C14···C3vii3.462 (4)H15···C83.0600
C15···O13.247 (3)H18···Cl1viii2.9000
C16···Cl1iii3.634 (3)H20···N3v2.8800
C16···C20vi3.456 (5)
C17—O1—C20104.9 (2)N1—C16—N2110.2 (2)
C1—N1—C9121.46 (19)N1—C16—C17127.8 (2)
C1—N1—C16104.7 (2)N2—C16—C17122.0 (2)
C9—N1—C16133.9 (2)O1—C17—C16118.9 (2)
N3—N2—C16108.1 (2)O1—C17—C18110.5 (2)
N2—N3—C1106.9 (2)C16—C17—C18130.5 (3)
N1—C1—N3110.2 (2)C17—C18—C19107.7 (3)
N1—C1—C2120.8 (2)C18—C19—C20106.9 (3)
N3—C1—C2129.0 (2)O1—C20—C19110.1 (3)
C1—C2—C3121.8 (2)C2—C3—H3120.00
C1—C2—C7117.5 (2)C4—C3—H3120.00
C3—C2—C7120.7 (2)C3—C4—H4119.00
C2—C3—C4119.1 (3)C5—C4—H4120.00
C3—C4—C5121.0 (3)C4—C5—H5120.00
C4—C5—C6120.7 (3)C6—C5—H5120.00
C5—C6—C7119.8 (3)C5—C6—H6120.00
C2—C7—C6118.7 (2)C7—C6—H6120.00
C2—C7—C8119.3 (2)C7—C8—H8118.00
C6—C7—C8122.0 (2)C9—C8—H8118.00
C7—C8—C9123.3 (2)C10—C11—H11120.00
N1—C9—C8117.7 (2)C12—C11—H11119.00
N1—C9—C10118.6 (2)C11—C12—H12121.00
C8—C9—C10123.7 (2)C13—C12—H12121.00
C9—C10—C11121.1 (2)C13—C14—H14121.00
C9—C10—C15119.5 (2)C15—C14—H14121.00
C11—C10—C15119.4 (2)C10—C15—H15120.00
C10—C11—C12121.1 (2)C14—C15—H15120.00
C11—C12—C13118.3 (2)C17—C18—H18126.00
Cl1—C13—C12119.1 (2)C19—C18—H18126.00
Cl1—C13—C14118.8 (2)C18—C19—H19127.00
C12—C13—C14122.1 (2)C20—C19—H19127.00
C13—C14—C15118.8 (2)O1—C20—H20125.00
C10—C15—C14120.3 (2)C19—C20—H20125.00
C20—O1—C17—C16177.9 (3)C3—C4—C5—C60.1 (5)
C20—O1—C17—C181.2 (3)C4—C5—C6—C70.9 (5)
C17—O1—C20—C190.6 (4)C5—C6—C7—C20.5 (4)
C9—N1—C1—N3178.9 (2)C5—C6—C7—C8179.9 (3)
C9—N1—C1—C21.9 (4)C2—C7—C8—C90.7 (4)
C16—N1—C1—N31.2 (3)C6—C7—C8—C9179.0 (3)
C16—N1—C1—C2178.0 (2)C7—C8—C9—N10.3 (4)
C1—N1—C9—C81.0 (3)C7—C8—C9—C10179.8 (2)
C1—N1—C9—C10178.6 (2)N1—C9—C10—C1167.9 (3)
C16—N1—C9—C8178.8 (3)N1—C9—C10—C15113.7 (3)
C16—N1—C9—C101.6 (4)C8—C9—C10—C11111.7 (3)
C1—N1—C16—N21.0 (3)C8—C9—C10—C1566.7 (3)
C1—N1—C16—C17178.7 (3)C9—C10—C11—C12179.9 (2)
C9—N1—C16—N2179.1 (2)C15—C10—C11—C121.7 (4)
C9—N1—C16—C171.4 (4)C9—C10—C15—C14179.9 (2)
C16—N2—N3—C10.4 (3)C11—C10—C15—C141.7 (4)
N3—N2—C16—N10.4 (3)C10—C11—C12—C131.0 (4)
N3—N2—C16—C17178.3 (2)C11—C12—C13—Cl1179.7 (2)
N2—N3—C1—N11.0 (3)C11—C12—C13—C140.3 (4)
N2—N3—C1—C2178.2 (3)Cl1—C13—C14—C15179.7 (2)
N1—C1—C2—C3177.6 (2)C12—C13—C14—C150.4 (4)
N1—C1—C2—C71.4 (4)C13—C14—C15—C101.1 (4)
N3—C1—C2—C31.5 (5)N1—C16—C17—O162.7 (4)
N3—C1—C2—C7179.5 (3)N1—C16—C17—C18121.5 (3)
C1—C2—C3—C4179.4 (3)N2—C16—C17—O1119.9 (3)
C7—C2—C3—C41.7 (4)N2—C16—C17—C1856.0 (4)
C1—C2—C7—C6179.8 (2)O1—C17—C18—C191.4 (3)
C1—C2—C7—C80.2 (4)C16—C17—C18—C19177.5 (3)
C3—C2—C7—C60.8 (4)C17—C18—C19—C200.9 (4)
C3—C2—C7—C8178.8 (3)C18—C19—C20—O10.2 (4)
C2—C3—C4—C51.2 (5)
Symmetry codes: (i) x+1/2, y+2, z1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1/2, y+1, z+1/2; (v) x+1/2, y+3/2, z+1; (vi) x1/2, y+3/2, z+1; (vii) x+1/2, y+1, z1/2; (viii) x+1/2, y+2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···Cg2v0.932.953.273 (4)102
Symmetry code: (v) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC20H12ClN3O
Mr345.78
Crystal system, space groupOrthorhombic, P212121
Temperature (K)290
a, b, c (Å)9.0281 (9), 12.6034 (11), 14.6444 (15)
V3)1666.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.32 × 0.24 × 0.15
Data collection
DiffractometerOxford Xcalibur Eos (Nova) CCD detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.933, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
9280, 3029, 1831
Rint0.071
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.082, 0.85
No. of reflections3029
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.14
Absolute structureFlack (1983), with 1245 Freidel pairs
Absolute structure parameter0.00 (8)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···Cg2i0.932.953.273 (4)102
Symmetry code: (i) x+1/2, y+3/2, z+1.
 

Acknowledgements

The authors thank the FIST programme for the data collection on the Oxford single-crystal diffractometer at the SSCU, IISc, Bangalore. We thank Professor T. N. Guru Row, IISc, Bangalore, for his help with the data collection. FNK thanks the DST for Fast Track Proposal funding.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKhan, F. N., Manivel, P., Prabakaran, K., Hathwar, V. R. & Ng, S. W. (2010). Acta Cryst. E66, o488.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds