organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1R,2R)-N,N′-Bis[1-(2-pyrid­yl)ethyl­­idene]cyclo­hexane-1,2-di­amine

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and bDepartment of Physics, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@perdana.um.edu.my

(Received 7 April 2010; accepted 13 April 2010; online 17 April 2010)

In the title compound, C20H24N4, the cyclo­hexane ring adopts a chair conformation with the two imine groups linked at equatorial positions. The two halves of the mol­ecule are related by a crystallographic twofold rotation axis. The dihedral angle between the pyridine rings is 75.73 (3)°.

Related literature

For the crystal structures of some Schiff bases derived from cyclo­hexane-1,2-diamine, see: Aslantaş et al. (2007[Aslantaş, M., Tümer, M., Şahin, E. & Tümer, F. (2007). Acta Cryst. E63, o644-o645.]); Glidewell et al. (2005[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. E61, o1699-o1701.]); Liu et al. (2006[Liu, B., Zhang, M.-J., Cui, J. & Zhu, J. (2006). Acta Cryst. E62, o5359-o5360.]).

[Scheme 1]

Experimental

Crystal data
  • C20H24N4

  • Mr = 320.43

  • Monoclinic, C 2/c

  • a = 18.0605 (3) Å

  • b = 8.9371 (1) Å

  • c = 11.1076 (2) Å

  • β = 97.970 (1)°

  • V = 1775.54 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.49 × 0.37 × 0.35 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.965, Tmax = 0.975

  • 8186 measured reflections

  • 2044 independent reflections

  • 1833 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.121

  • S = 1.06

  • 2044 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

The stucture of the title compound is presented in Fig. 1. The cyclohexane ring adopts a chair conformation with the two imines linked at equatorial positions. The two halves of the molecule are realted by a two-fold rotation. The dihedral angel between the two pyridine rings is 75.73 (3)°. The crystal structure is devoid of any inter- or intra- molecular interactions.

The bond distances and angles in the title molecule are in agreement with the corresponding bond distances and angles reported in some related structures (Aslantaş et al., 2007; Glidewell et al., 2005; Liu et al., 2006).

Related literature top

For the crystal structures of some Schiff bases derived from cyclohexane-1,2-diamine, see: Aslantaş et al. (2007); Glidewell et al. (2005); Liu et al. (2006).

Experimental top

A mixture of 2-acetylpyiridine (0.444 g, 4 mmol) and 1,2-diaminocyclohexane (0.224, 2 mmol) was refluxed in ethanol (50 ml) for 2 hours. The solution was then set aside overnight whereupon the yellow crystals of the title compound were formed.

Refinement top

Hydrogen atoms were placed at calculated positions (C—H 0.95-1.00 Å), and were treated as riding on their parent atoms with Uiso(H) set to 1.2-1.5 Ueq(C).

Structure description top

The stucture of the title compound is presented in Fig. 1. The cyclohexane ring adopts a chair conformation with the two imines linked at equatorial positions. The two halves of the molecule are realted by a two-fold rotation. The dihedral angel between the two pyridine rings is 75.73 (3)°. The crystal structure is devoid of any inter- or intra- molecular interactions.

The bond distances and angles in the title molecule are in agreement with the corresponding bond distances and angles reported in some related structures (Aslantaş et al., 2007; Glidewell et al., 2005; Liu et al., 2006).

For the crystal structures of some Schiff bases derived from cyclohexane-1,2-diamine, see: Aslantaş et al. (2007); Glidewell et al. (2005); Liu et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound at 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. Symmetry code for the unlabeled atoms: -x, y, -z+3/2.
(1R,2R)-N,N'-Bis[1-(2- pyridyl)ethylidene]cyclohexane-1,2-diamine top
Crystal data top
C20H24N4F(000) = 688
Mr = 320.43Dx = 1.199 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4367 reflections
a = 18.0605 (3) Åθ = 2.3–30.3°
b = 8.9371 (1) ŵ = 0.07 mm1
c = 11.1076 (2) ÅT = 100 K
β = 97.970 (1)°Block, pale yellow
V = 1775.54 (5) Å30.49 × 0.37 × 0.35 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2044 independent reflections
Radiation source: fine-focus sealed tube1833 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
φ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2322
Tmin = 0.965, Tmax = 0.975k = 1111
8186 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0714P)2 + 1.0614P]
where P = (Fo2 + 2Fc2)/3
2044 reflections(Δ/σ)max < 0.001
110 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C20H24N4V = 1775.54 (5) Å3
Mr = 320.43Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.0605 (3) ŵ = 0.07 mm1
b = 8.9371 (1) ÅT = 100 K
c = 11.1076 (2) Å0.49 × 0.37 × 0.35 mm
β = 97.970 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2044 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1833 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.975Rint = 0.019
8186 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.06Δρmax = 0.33 e Å3
2044 reflectionsΔρmin = 0.23 e Å3
110 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.07952 (5)0.04557 (10)0.74621 (8)0.0160 (2)
N20.19413 (5)0.35854 (10)0.82811 (8)0.0188 (2)
C10.22757 (6)0.47046 (13)0.77554 (10)0.0214 (3)
H10.26350.52940.82520.026*
C20.21265 (6)0.50475 (13)0.65292 (10)0.0212 (3)
H20.23680.58650.61990.025*
C30.16173 (7)0.41697 (13)0.57979 (10)0.0233 (3)
H30.15040.43720.49530.028*
C40.12752 (6)0.29891 (12)0.63160 (10)0.0208 (3)
H40.09290.23620.58310.025*
C50.14487 (6)0.27409 (11)0.75622 (9)0.0154 (2)
C60.10752 (6)0.14970 (11)0.81635 (9)0.0160 (2)
C70.10754 (7)0.16392 (14)0.95159 (10)0.0269 (3)
H7A0.07340.24430.96790.040*
H7B0.15820.18730.99090.040*
H7C0.09100.06940.98380.040*
C80.03861 (5)0.08031 (11)0.78929 (9)0.0151 (2)
H80.03270.06500.87660.018*
C90.08258 (6)0.22419 (11)0.77538 (9)0.0169 (2)
H9A0.09780.22720.69310.020*
H9B0.12850.22420.83540.020*
C100.03633 (6)0.36338 (12)0.79419 (10)0.0188 (3)
H10A0.06560.45420.78120.023*
H10B0.02480.36530.87870.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0176 (4)0.0139 (4)0.0170 (4)0.0002 (3)0.0038 (3)0.0006 (3)
N20.0187 (5)0.0183 (5)0.0191 (4)0.0021 (3)0.0020 (3)0.0008 (3)
C10.0197 (5)0.0199 (6)0.0239 (5)0.0045 (4)0.0007 (4)0.0011 (4)
C20.0208 (5)0.0178 (5)0.0253 (6)0.0030 (4)0.0040 (4)0.0038 (4)
C30.0283 (6)0.0224 (6)0.0186 (5)0.0045 (4)0.0011 (4)0.0038 (4)
C40.0244 (6)0.0186 (5)0.0184 (5)0.0052 (4)0.0002 (4)0.0000 (4)
C50.0154 (5)0.0127 (5)0.0184 (5)0.0017 (4)0.0039 (4)0.0007 (4)
C60.0155 (5)0.0157 (5)0.0173 (5)0.0013 (4)0.0039 (4)0.0001 (4)
C70.0362 (7)0.0279 (6)0.0176 (5)0.0114 (5)0.0075 (5)0.0030 (4)
C80.0179 (5)0.0134 (5)0.0140 (4)0.0012 (4)0.0027 (4)0.0004 (4)
C90.0176 (5)0.0152 (5)0.0179 (5)0.0008 (4)0.0023 (4)0.0010 (4)
C100.0215 (6)0.0136 (5)0.0211 (5)0.0015 (4)0.0020 (4)0.0019 (4)
Geometric parameters (Å, º) top
N1—C61.2726 (14)C6—C71.5075 (15)
N1—C81.4623 (12)C7—H7A0.9800
N2—C51.3422 (14)C7—H7B0.9800
N2—C11.3432 (14)C7—H7C0.9800
C1—C21.3856 (16)C8—C91.5304 (14)
C1—H10.9500C8—C8i1.5392 (19)
C2—C31.3833 (16)C8—H81.0000
C2—H20.9500C9—C101.5288 (14)
C3—C41.3874 (15)C9—H9A0.9900
C3—H30.9500C9—H9B0.9900
C4—C51.3940 (15)C10—C10i1.526 (2)
C4—H40.9500C10—H10A0.9900
C5—C61.5039 (14)C10—H10B0.9900
C6—N1—C8122.56 (9)H7A—C7—H7B109.5
C5—N2—C1117.45 (9)C6—C7—H7C109.5
N2—C1—C2123.65 (10)H7A—C7—H7C109.5
N2—C1—H1118.2H7B—C7—H7C109.5
C2—C1—H1118.2N1—C8—C9108.70 (8)
C3—C2—C1118.33 (10)N1—C8—C8i105.88 (7)
C3—C2—H2120.8C9—C8—C8i112.63 (6)
C1—C2—H2120.8N1—C8—H8109.8
C2—C3—C4119.06 (10)C9—C8—H8109.8
C2—C3—H3120.5C8i—C8—H8109.8
C4—C3—H3120.5C10—C9—C8111.64 (8)
C3—C4—C5118.76 (10)C10—C9—H9A109.3
C3—C4—H4120.6C8—C9—H9A109.3
C5—C4—H4120.6C10—C9—H9B109.3
N2—C5—C4122.72 (10)C8—C9—H9B109.3
N2—C5—C6116.91 (9)H9A—C9—H9B108.0
C4—C5—C6120.37 (9)C10i—C10—C9110.46 (7)
N1—C6—C5115.68 (9)C10i—C10—H10A109.6
N1—C6—C7128.08 (10)C9—C10—H10A109.6
C5—C6—C7116.23 (9)C10i—C10—H10B109.6
C6—C7—H7A109.5C9—C10—H10B109.6
C6—C7—H7B109.5H10A—C10—H10B108.1
Symmetry code: (i) x, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC20H24N4
Mr320.43
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)18.0605 (3), 8.9371 (1), 11.1076 (2)
β (°) 97.970 (1)
V3)1775.54 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.49 × 0.37 × 0.35
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.965, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
8186, 2044, 1833
Rint0.019
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.121, 1.06
No. of reflections2044
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.23

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the University of Malaya for funding this study (FRGS grant No. FP009/2008 C).

References

First citationAslantaş, M., Tümer, M., Şahin, E. & Tümer, F. (2007). Acta Cryst. E63, o644–o645.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. E61, o1699–o1701.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, B., Zhang, M.-J., Cui, J. & Zhu, J. (2006). Acta Cryst. E62, o5359–o5360.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds