organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(2-Chloro-3-quinol­yl)meth­yl]indoline-2,3-dione

aOrganic Chemistry Division, School of Science, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
*Correspondence e-mail: khawar_rauf@hotmail.com

(Received 11 April 2010; accepted 15 April 2010; online 24 April 2010)

In the title compound, C18H11ClN2O2, the isatin and 2-chloro-3-methyl­quinoline units are both almost planar, with r.m.s. deviations of 0.0075 and 0.0086 Å, respectively, and the dihedral angle between the mean planes of the two units is 83.13 (7)°. In the crystal, a weak inter­molecular C—H⋯ O inter­action links the mol­ecules into chains along the c axis.

Related literature

For background to the use of N-substituted indole-2,3-diones as inter­mediates and synthetic precursors for the preparation of heterocyclic compounds, see: Silaicheva et al. (2009[Silaicheva, P. S., Alievb, Z. G. & Maslivetsa, A. N. (2009). Russ. J. Org. Chem. 45, 126-130.]). For the biological activity of N-substituted indole-2,3-diones, see: Vine et al. (2007[Vine, K. L., Locke, J. M., Ranson, M., Pyne, S. G. & Bremner, J. B. (2007). J. Med. Chem. 50, 5109-5117.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H11ClN2O2

  • Mr = 322.74

  • Monoclinic, P 21 /c

  • a = 21.4984 (8) Å

  • b = 5.3061 (2) Å

  • c = 13.0356 (4) Å

  • β = 99.718 (3)°

  • V = 1465.67 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.33 × 0.30 × 0.27 mm

Data collection
  • Oxford Diffraction Excalibur diffractometer

  • 17920 measured reflections

  • 2724 independent reflections

  • 1731 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.085

  • S = 0.90

  • 2724 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O2i 0.93 2.48 3.367 (3) 160
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

N-substituted indole-2,3-diones have been frequently used as intermediates and synthetic precursors for the preparation of a wide variety of heterocyclic compounds (Silaicheva et al., 2009). In addition, they possess different biological activities such as cytotoxicity, antiviral activity and selective caspase inhibitions, etc. (Vine et al., 2007). We have synthesized a novel isatin derivative and determined its crystal structure which is presented in this article.

In the title molecule, the atoms (C11—C18/N2/O1/O2) of the isatin moiety and 2-chloro-3-methylquinoline group (C1—C8/N1/Cl1) are individually planar with maximum r.m.s. deviations of 0.0075 and 0.0086 Å, respectively, from their mean-planes. The dihedral angle between the two ring systems is 83.13 (7)°. The bond distances and angles in the title compound are as expected (Allen et al., 1987). There is a weak intermolecular interaction C17—H17··· O2 linking the molecules into chains along the c-axis.

Related literature top

For background to the use of N-substituted indole-2,3-diones as intermediates and synthetic precursors for the preparation of heterocyclic compounds, see: Silaicheva et al. (2009). For the biological activity of N-substituted indole-2,3-diones, see: Vine et al. (2007). For reference bond lengths, see: Allen et al. (1987).

Experimental top

2-Chloro-3-chloromethylquinoline (210 mg, 1 mmol), KOtBu (112 mg, 1 mmol) and isatin (147 mg, 1 mmol) in tetrahydrofuran (10 ml) were taken in a round bottemed flask and the mixture was refluxed at 70 W for 3 min. Ethylacetate (30 ml) was poured into the reaction mixture and filtered off. The filtrate was subjected to column chromatography packed with silica and ethyl acetate/petroleum ether was used as the eluant (4:1). Crystals of suitable quality were grown by slow evaporation from a solution of the title compound in dichloromethane.

Refinement top

Hydrogen atoms were placed in calculated positions at C—H = 0.93 and 0.97 Å, for aryl and methylene type H atoms, respectively, and were included in the refinement in riding model approximation, with Uiso(H) set to 1.2Ueq(C).

Structure description top

N-substituted indole-2,3-diones have been frequently used as intermediates and synthetic precursors for the preparation of a wide variety of heterocyclic compounds (Silaicheva et al., 2009). In addition, they possess different biological activities such as cytotoxicity, antiviral activity and selective caspase inhibitions, etc. (Vine et al., 2007). We have synthesized a novel isatin derivative and determined its crystal structure which is presented in this article.

In the title molecule, the atoms (C11—C18/N2/O1/O2) of the isatin moiety and 2-chloro-3-methylquinoline group (C1—C8/N1/Cl1) are individually planar with maximum r.m.s. deviations of 0.0075 and 0.0086 Å, respectively, from their mean-planes. The dihedral angle between the two ring systems is 83.13 (7)°. The bond distances and angles in the title compound are as expected (Allen et al., 1987). There is a weak intermolecular interaction C17—H17··· O2 linking the molecules into chains along the c-axis.

For background to the use of N-substituted indole-2,3-diones as intermediates and synthetic precursors for the preparation of heterocyclic compounds, see: Silaicheva et al. (2009). For the biological activity of N-substituted indole-2,3-diones, see: Vine et al. (2007). For reference bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Perspective view of the molecular packing of the title compound in the unit cell down the b-axis.
1-[(2-Chloro-3-quinolyl)methyl]indoline-2,3-dione top
Crystal data top
C18H11ClN2O2F(000) = 664
Mr = 322.74Dx = 1.463 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2724 reflections
a = 21.4984 (8) Åθ = 2.9–25.5°
b = 5.3061 (2) ŵ = 0.27 mm1
c = 13.0356 (4) ÅT = 293 K
β = 99.718 (3)°Block, orange
V = 1465.67 (9) Å30.33 × 0.30 × 0.27 mm
Z = 4
Data collection top
Oxford Diffraction Excalibur
diffractometer
1731 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
Graphite monochromatorθmax = 25.5°, θmin = 2.9°
Detector resolution: 0 pixels mm-1h = 2626
ω scansk = 66
17920 measured reflectionsl = 1515
2724 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0447P)2]
where P = (Fo2 + 2Fc2)/3
2724 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C18H11ClN2O2V = 1465.67 (9) Å3
Mr = 322.74Z = 4
Monoclinic, P21/cMo Kα radiation
a = 21.4984 (8) ŵ = 0.27 mm1
b = 5.3061 (2) ÅT = 293 K
c = 13.0356 (4) Å0.33 × 0.30 × 0.27 mm
β = 99.718 (3)°
Data collection top
Oxford Diffraction Excalibur
diffractometer
1731 reflections with I > 2σ(I)
17920 measured reflectionsRint = 0.050
2724 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 0.90Δρmax = 0.21 e Å3
2724 reflectionsΔρmin = 0.23 e Å3
208 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.32510 (3)1.40527 (10)0.51979 (4)0.0614 (2)
N10.38948 (7)1.0493 (3)0.45048 (11)0.0458 (4)
C20.28707 (8)1.1294 (3)0.34507 (13)0.0360 (4)
C30.29797 (8)0.9460 (3)0.27719 (13)0.0379 (4)
H30.26750.91210.21920.046*
N20.18214 (7)1.2157 (3)0.24049 (11)0.0398 (4)
C130.10081 (8)1.0002 (3)0.13973 (13)0.0376 (4)
C10.33623 (9)1.1692 (3)0.43088 (13)0.0406 (5)
C140.13853 (8)1.0147 (3)0.23746 (14)0.0377 (4)
C80.39988 (8)0.8632 (3)0.38138 (14)0.0407 (5)
O10.20473 (6)1.5156 (3)0.12348 (11)0.0579 (4)
C40.36754 (9)0.6131 (3)0.22547 (15)0.0481 (5)
H40.33820.57510.16660.058*
O20.10171 (7)1.2586 (3)0.01339 (11)0.0635 (4)
C100.22789 (9)1.2877 (3)0.33140 (14)0.0463 (5)
H10A0.20851.27170.39310.056*
H10B0.23921.46320.32490.056*
C90.35465 (8)0.8066 (3)0.29322 (13)0.0375 (4)
C150.05482 (9)0.8170 (4)0.11805 (15)0.0477 (5)
H150.03000.80640.05250.057*
C120.12083 (8)1.1985 (3)0.07592 (15)0.0423 (5)
C70.45672 (9)0.7252 (4)0.39988 (16)0.0547 (6)
H70.48710.76160.45760.066*
C50.42260 (10)0.4820 (4)0.24572 (18)0.0587 (6)
H50.43060.35410.20100.070*
C110.17522 (9)1.3370 (4)0.14680 (15)0.0418 (5)
C60.46691 (10)0.5389 (4)0.33319 (19)0.0588 (6)
H60.50430.44750.34630.071*
C180.13105 (9)0.8492 (4)0.31574 (15)0.0476 (5)
H180.15610.85860.38120.057*
C160.04657 (9)0.6503 (4)0.19561 (18)0.0542 (6)
H160.01560.52640.18290.065*
C170.08426 (10)0.6670 (4)0.29230 (18)0.0552 (6)
H170.07810.55240.34360.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0765 (4)0.0609 (4)0.0442 (3)0.0082 (3)0.0028 (3)0.0161 (2)
N10.0427 (10)0.0504 (10)0.0406 (9)0.0072 (8)0.0039 (8)0.0046 (8)
C20.0363 (10)0.0362 (10)0.0346 (10)0.0046 (9)0.0038 (8)0.0006 (8)
C30.0337 (10)0.0422 (11)0.0359 (10)0.0036 (9)0.0000 (8)0.0003 (9)
N20.0341 (9)0.0400 (9)0.0425 (10)0.0007 (7)0.0016 (7)0.0043 (7)
C130.0320 (10)0.0364 (10)0.0436 (12)0.0019 (9)0.0040 (9)0.0000 (9)
C10.0460 (12)0.0415 (11)0.0335 (11)0.0096 (10)0.0042 (9)0.0009 (9)
C140.0340 (11)0.0335 (10)0.0461 (12)0.0066 (9)0.0078 (9)0.0017 (9)
C80.0319 (11)0.0430 (11)0.0457 (12)0.0052 (9)0.0027 (9)0.0079 (9)
O10.0489 (9)0.0526 (9)0.0719 (10)0.0123 (7)0.0092 (7)0.0042 (7)
C40.0427 (12)0.0496 (12)0.0520 (13)0.0032 (10)0.0078 (10)0.0040 (10)
O20.0690 (10)0.0721 (10)0.0457 (9)0.0133 (8)0.0013 (8)0.0077 (7)
C100.0439 (12)0.0458 (11)0.0465 (12)0.0017 (10)0.0004 (10)0.0106 (9)
C90.0326 (11)0.0405 (10)0.0388 (11)0.0039 (9)0.0045 (9)0.0038 (9)
C150.0394 (12)0.0460 (11)0.0554 (13)0.0005 (10)0.0008 (10)0.0040 (10)
C120.0402 (12)0.0448 (11)0.0410 (12)0.0026 (9)0.0045 (10)0.0006 (10)
C70.0337 (12)0.0623 (14)0.0632 (14)0.0041 (11)0.0062 (10)0.0136 (12)
C50.0492 (14)0.0546 (13)0.0741 (16)0.0050 (11)0.0160 (12)0.0028 (11)
C110.0330 (11)0.0405 (11)0.0516 (13)0.0026 (10)0.0069 (9)0.0001 (10)
C60.0395 (13)0.0548 (14)0.0824 (17)0.0074 (11)0.0107 (12)0.0099 (12)
C180.0476 (13)0.0477 (12)0.0477 (12)0.0142 (11)0.0087 (10)0.0045 (10)
C160.0413 (13)0.0421 (12)0.0810 (17)0.0023 (10)0.0155 (12)0.0007 (12)
C170.0576 (14)0.0415 (12)0.0726 (16)0.0104 (11)0.0282 (13)0.0122 (11)
Geometric parameters (Å, º) top
Cl1—C11.7503 (18)C4—C91.412 (2)
N1—C11.297 (2)C4—H40.9300
N1—C81.380 (2)O2—C121.210 (2)
C2—C31.362 (2)C10—H10A0.9700
C2—C11.419 (3)C10—H10B0.9700
C2—C101.510 (2)C15—C161.377 (3)
C3—C91.411 (2)C15—H150.9300
C3—H30.9300C12—C111.548 (3)
N2—C111.366 (2)C7—C61.358 (3)
N2—C141.416 (2)C7—H70.9300
N2—C101.457 (2)C5—C61.390 (3)
C13—C151.381 (2)C5—H50.9300
C13—C141.392 (2)C6—H60.9300
C13—C121.451 (3)C18—C171.391 (3)
C14—C181.376 (2)C18—H180.9300
C8—C91.407 (2)C16—C171.381 (3)
C8—C71.410 (3)C16—H160.9300
O1—C111.208 (2)C17—H170.9300
C4—C51.360 (3)
C1—N1—C8117.22 (16)C8—C9—C3118.02 (17)
C3—C2—C1115.56 (17)C8—C9—C4118.98 (17)
C3—C2—C10123.70 (16)C3—C9—C4123.00 (17)
C1—C2—C10120.73 (16)C16—C15—C13118.58 (18)
C2—C3—C9121.17 (17)C16—C15—H15120.7
C2—C3—H3119.4C13—C15—H15120.7
C9—C3—H3119.4O2—C12—C13131.09 (18)
C11—N2—C14110.98 (15)O2—C12—C11123.28 (17)
C11—N2—C10124.07 (15)C13—C12—C11105.62 (16)
C14—N2—C10124.94 (15)C6—C7—C8119.8 (2)
C15—C13—C14120.82 (16)C6—C7—H7120.1
C15—C13—C12131.64 (17)C8—C7—H7120.1
C14—C13—C12107.54 (16)C4—C5—C6120.1 (2)
N1—C1—C2126.69 (17)C4—C5—H5119.9
N1—C1—Cl1115.82 (14)C6—C5—H5119.9
C2—C1—Cl1117.49 (15)O1—C11—N2127.74 (18)
C18—C14—C13121.36 (17)O1—C11—C12126.75 (18)
C18—C14—N2128.29 (17)N2—C11—C12105.50 (16)
C13—C14—N2110.35 (15)C7—C6—C5121.4 (2)
N1—C8—C9121.33 (17)C7—C6—H6119.3
N1—C8—C7119.42 (18)C5—C6—H6119.3
C9—C8—C7119.24 (18)C14—C18—C17116.82 (19)
C5—C4—C9120.46 (19)C14—C18—H18121.6
C5—C4—H4119.8C17—C18—H18121.6
C9—C4—H4119.8C15—C16—C17120.00 (19)
N2—C10—C2112.95 (14)C15—C16—H16120.0
N2—C10—H10A109.0C17—C16—H16120.0
C2—C10—H10A109.0C16—C17—C18122.42 (19)
N2—C10—H10B109.0C16—C17—H17118.8
C2—C10—H10B109.0C18—C17—H17118.8
H10A—C10—H10B107.8
C1—C2—C3—C90.3 (2)C2—C3—C9—C4179.27 (16)
C10—C2—C3—C9179.03 (16)C5—C4—C9—C80.6 (3)
C8—N1—C1—C20.1 (3)C5—C4—C9—C3178.91 (17)
C8—N1—C1—Cl1179.53 (12)C14—C13—C15—C160.7 (3)
C3—C2—C1—N10.2 (3)C12—C13—C15—C16179.68 (17)
C10—C2—C1—N1178.90 (17)C15—C13—C12—O21.3 (3)
C3—C2—C1—Cl1179.28 (12)C14—C13—C12—O2179.6 (2)
C10—C2—C1—Cl10.5 (2)C15—C13—C12—C11179.36 (18)
C15—C13—C14—C180.5 (3)C14—C13—C12—C110.28 (18)
C12—C13—C14—C18179.71 (16)N1—C8—C7—C6178.92 (17)
C15—C13—C14—N2179.64 (15)C9—C8—C7—C60.5 (3)
C12—C13—C14—N20.45 (19)C9—C4—C5—C60.4 (3)
C11—N2—C14—C18179.71 (17)C14—N2—C11—O1179.81 (17)
C10—N2—C14—C181.1 (3)C10—N2—C11—O10.6 (3)
C11—N2—C14—C130.46 (19)C14—N2—C11—C120.25 (18)
C10—N2—C14—C13178.72 (15)C10—N2—C11—C12178.93 (15)
C1—N1—C8—C90.2 (3)O2—C12—C11—O10.2 (3)
C1—N1—C8—C7179.23 (16)C13—C12—C11—O1179.55 (17)
C11—N2—C10—C298.40 (18)O2—C12—C11—N2179.41 (17)
C14—N2—C10—C282.5 (2)C13—C12—C11—N20.02 (18)
C3—C2—C10—N22.8 (2)C8—C7—C6—C50.7 (3)
C1—C2—C10—N2178.58 (16)C4—C5—C6—C70.2 (3)
N1—C8—C9—C30.0 (3)C13—C14—C18—C170.2 (3)
C7—C8—C9—C3179.40 (16)N2—C14—C18—C17180.00 (16)
N1—C8—C9—C4179.55 (15)C13—C15—C16—C170.6 (3)
C7—C8—C9—C40.2 (3)C15—C16—C17—C180.3 (3)
C2—C3—C9—C80.3 (2)C14—C18—C17—C160.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N20.932.492.842 (2)102
C17—H17···O2i0.932.483.367 (3)160
Symmetry code: (i) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H11ClN2O2
Mr322.74
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)21.4984 (8), 5.3061 (2), 13.0356 (4)
β (°) 99.718 (3)
V3)1465.67 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.33 × 0.30 × 0.27
Data collection
DiffractometerOxford Diffraction Excalibur
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
17920, 2724, 1731
Rint0.050
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.085, 0.90
No. of reflections2724
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.23

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N20.932.492.842 (2)102
C17—H17···O2i0.932.483.367 (3)160
Symmetry code: (i) x, y+3/2, z+1/2.
 

Acknowledgements

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the FIST–DST program at SSCU, IISc. We also thank Professor T. N. Guru Row, IISc, Bangalore, for his help with the data collection. FNK thanks the DST for Fast Track Proposal funding.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilaicheva, P. S., Alievb, Z. G. & Maslivetsa, A. N. (2009). Russ. J. Org. Chem. 45, 126–130.  Google Scholar
First citationVine, K. L., Locke, J. M., Ranson, M., Pyne, S. G. & Bremner, J. B. (2007). J. Med. Chem. 50, 5109–5117.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds