metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido[(R,R)-N1,N1,N2-tri­benzyl­cyclo­hexane-1,2-di­amine-κ2N1,N2]copper(II)

aDepartment of Chemistry, Kyungpook National University, Taegu 702-701, Republic of Korea
*Correspondence e-mail: jeongjh@knu.ac.kr

(Received 26 March 2010; accepted 16 April 2010; online 24 April 2010)

In the title compound, [CuCl2(C27H32N2)], which bears a chiral diamine ligand, viz (R,R)-N,N,N′′- tribenzyl­cyclo­hexane-1,2-diamine, the CuII ion is ligated by two N and two Cl atoms in a distorted square-planar geometry. The coordination of the ligands to the CuII ion results in the formation of a five-membered heterocyclic ring and a chiral center at the monosubstituted nitro­gen in an (S)-configuration. The catalytic capacity of the complex for the asymmetric nitro­aldol reaction is promising (49% ee).

Related literature

For the synthesis of N,N,N′′-tribenzyl-(R,R)-1,2-diamino­cyclo­hexane, see: Tye et al. (2002[Tye, H., Eldred, C. & Wills, M. (2002). Tetrahedron Lett. 43, 155-158.]); Boyd et al. (2005[Boyd, E., Coumbarides, G. S., Eames, J., Jones, R. V. H., Stenson, R. A. & Suggate, M. J. (2005). Tetrahedron Lett. 46, 3479-3484.]). For related structures, see: Alexakis et al. (2001[Alexakis, A., Chauvin, A. S., Stouvenel, R., Vrancken, E., Mutti, S. & Mangeney, P. (2001). Tetrahedron: Asymmetry, 12, 1171-1178.]); Tye et al. (2002[Tye, H., Eldred, C. & Wills, M. (2002). Tetrahedron Lett. 43, 155-158.]); Boyd et al. (2005[Boyd, E., Coumbarides, G. S., Eames, J., Jones, R. V. H., Stenson, R. A. & Suggate, M. J. (2005). Tetrahedron Lett. 46, 3479-3484.], 2006[Boyd, E., Coumbarides, G. S., Eames, J., Jones, R. V. H., Motevalli, M., Stenson, R. A. & Suggate, M. J. (2006). J. Chem. Crystallogr. 36, 263-269.]); Arjan et al. (2005[Arjan, H., Boyd, E., Coumbarides, G. S., Eames, J., Jones, R. V. H., Stenson, R. A. & Suggate, M. J. (2005). Tetrahedron Lett. 46, 1921-1925.]); Brethon et al. (2004[Brethon, A., Moreau, J. J. E. & Man, M. W. C. (2004). Tetrahedron: Asymmetry, 15, 495-502.]); Jones & Mahon (2008[Jones, M. D. & Mahon, M. F. (2008). J. Organomet. Chem. 693, 2377-2382.]); Evans & Seidel (2005[Evans, D. A. & Seidel, D. (2005). J. Am. Chem. Soc. 127, 9958-9959.]); Evans et al. (2007[Evans, D. A., Mito, S. & Seidel, D. (2007). J. Am. Chem. Soc. 129, 11583-11592.]); Roh et al. (2004[Roh, S. G., Yoon, J. U. & Jeong, J. H. (2004). Polyhedron, 23, 2063-2067.]); Nguyen & Jeong (2008a[Nguyen, Q. T. & Jeong, J. H. (2008a). Bull. Korean Chem. Soc. 29, 483-486.],b[Nguyen, Q. T. & Jeong, J. H. (2008b). Polyhedron, 27, 3227-3230.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl2(C27H32N2)]

  • Mr = 519.00

  • Orthorhombic, P 21 21 21

  • a = 10.5806 (7) Å

  • b = 15.4409 (8) Å

  • c = 16.2579 (12) Å

  • V = 2656.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 295 K

  • 0.40 × 0.40 × 0.40 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: analytical (ABSCALC; McArdle & Daly, 1999[McArdle, P. & Daly, P. (1999). ABSCALC. National University of Ireland, Galway, Ireland.]) Tmin = 0.660, Tmax = 0.666

  • 5793 measured reflections

  • 4931 independent reflections

  • 3885 reflections with I > 2σ(I)

  • Rint = 0.019

  • 3 standard reflections every 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.083

  • S = 1.06

  • 4931 reflections

  • 292 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Flack parameter: −0.017 (13)

Data collection: CAD4 (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD4; data reduction: XCAD (McArdle, 1999[McArdle, P. (1999). XCAD. National University of Ireland, Galway, Ireland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Disubstituted, trisubstituted and tetrasubstituted (R,R)-1,2- diaminocyclohexane were synthesized (Alexakis et al., 2001; Tye et al., 2002; Boyd et al., 2005, 2006; Arjan et al., 2005). Especially disubstituted chiral diamine ligands with Rh (Brethon et al., 2004; Jones & Mahon, 2008), Ni (Evans & Seidel, 2005; Evans et al., 2007), Zn (Roh et al., 2004; Nguyen & Jeong, 2008a), Cu (Nguyen & Jeong, 2008b) were extensively applied in asymmetric synthesis. However, the coordination chemistry and application of asymmetric trisubstituted chiral 1,2-diaminocyclohexanes containing a secondary and a tertiary amines had not attended much. In this study, a new complex of Cu(II) containing N,N,N'-tribenzyl-(R,R)-1,2- diaminocyclohexane (Tye et al., 2002; Boyd et al., 2005) was synthesized and its molecular and crystal structures were determined.

Also, capability of the complex as an enantioselective catalyst for asymmetric nitroaldol reaction was examined. The copper ion was ligated by two nitrogen and two chloride atoms in distorted square-planar geometry. The coordination of the ligands to the Cu ion induced a 5–membered heterocyclic ring and a chiral center at monosubstituted nitrogen in (S)-configuration. Catalytic capacity of the complex for asymmetric nitroaldol reaction was promising (49% ee {ee = [R - S/ R+S] x 100 or [S - R/ R+S] x 100}).

Related literature top

For the synthesis of N,N,N'-tribenzyl-(R,R)-1,2- diaminocyclohexane, see: Tye et al. (2002); Boyd et al. (2005). For related structures, see: Alexakis et al. (2001); Tye et al. (2002); Boyd et al. (2005, 2006); Arjan et al. (2005); Brethon et al. (2004); Jones & Mahon (2008); Evans & Seidel (2005); Evans et al. (2007); Roh et al. (2004); Nguyen & Jeong (2008a,b).

Experimental top

A solution of N,N,N'-tribenzyl-(R,R)- 1,2-diaminocyclohexane (1.57 g, 4.08 mmol) in ethanol (5 ml) was added slowly to a solution of CuCl2.2H2O (0.69 g, 4.01 mmol) in ethanol (10 ml) Tye et al., (2002); Boyd et al., (2005). The mixture was stirred overnight at ambient temperature. The solvent was removed to yield blue solids. The product was re–crystallized from anhydrous ethanol to afford blue crystals (1.64 g, yield 79%). Anal. Calc. for C27H32Cl2CuN2: C 62.48, H 6.21, N 5.40 and found: C 62.20, H 6.30, N 5.46%.

Refinement top

H–atom of N—H was refined with Uiso(H) = 1.2Ueq(N). All H–atoms placed on C atoms were positioned geometrically and refined using a riding model with C—H = 0.97Å for methylene, C—H = 0.98Å for methine, C—H = 0.93Å for aromatic H atoms. For all H atoms Uiso(H) = 1.2Ueq(C).

In the crystal structure was found 'accessible void' with volume 54.00Å3.

Structure description top

Disubstituted, trisubstituted and tetrasubstituted (R,R)-1,2- diaminocyclohexane were synthesized (Alexakis et al., 2001; Tye et al., 2002; Boyd et al., 2005, 2006; Arjan et al., 2005). Especially disubstituted chiral diamine ligands with Rh (Brethon et al., 2004; Jones & Mahon, 2008), Ni (Evans & Seidel, 2005; Evans et al., 2007), Zn (Roh et al., 2004; Nguyen & Jeong, 2008a), Cu (Nguyen & Jeong, 2008b) were extensively applied in asymmetric synthesis. However, the coordination chemistry and application of asymmetric trisubstituted chiral 1,2-diaminocyclohexanes containing a secondary and a tertiary amines had not attended much. In this study, a new complex of Cu(II) containing N,N,N'-tribenzyl-(R,R)-1,2- diaminocyclohexane (Tye et al., 2002; Boyd et al., 2005) was synthesized and its molecular and crystal structures were determined.

Also, capability of the complex as an enantioselective catalyst for asymmetric nitroaldol reaction was examined. The copper ion was ligated by two nitrogen and two chloride atoms in distorted square-planar geometry. The coordination of the ligands to the Cu ion induced a 5–membered heterocyclic ring and a chiral center at monosubstituted nitrogen in (S)-configuration. Catalytic capacity of the complex for asymmetric nitroaldol reaction was promising (49% ee {ee = [R - S/ R+S] x 100 or [S - R/ R+S] x 100}).

For the synthesis of N,N,N'-tribenzyl-(R,R)-1,2- diaminocyclohexane, see: Tye et al. (2002); Boyd et al. (2005). For related structures, see: Alexakis et al. (2001); Tye et al. (2002); Boyd et al. (2005, 2006); Arjan et al. (2005); Brethon et al. (2004); Jones & Mahon (2008); Evans & Seidel (2005); Evans et al. (2007); Roh et al. (2004); Nguyen & Jeong (2008a,b).

Computing details top

Data collection: CAD4 (Enraf–Nonius, 1989); cell refinement: CAD4 (Enraf–Nonius, 1989); data reduction: XCAD (McArdle, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 [SHELXL97?] (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of title compound molecule with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are presented as a small spheres of arbitrary radius.
Dichlorido[(R,R)-N1,N1,N2- tribenzylcyclohexane-1,2-diamine-κ2N1,N2]copper(II) top
Crystal data top
[CuCl2(C27H32N2)]F(000) = 1084
Mr = 519.00Dx = 1.298 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 10.5806 (7) Åθ = 10–13°
b = 15.4409 (8) ŵ = 1.04 mm1
c = 16.2579 (12) ÅT = 295 K
V = 2656.1 (3) Å3Block, blue
Z = 40.40 × 0.40 × 0.40 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
3885 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 25.5°, θmin = 1.8°
ω/2θ scansh = 1212
Absorption correction: analytical
(ABSCALC; McArdle & Daly, 1999)
k = 1818
Tmin = 0.660, Tmax = 0.666l = 1919
5793 measured reflections3 standard reflections every 60 min
4931 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0488P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4931 reflectionsΔρmax = 0.33 e Å3
292 parametersΔρmin = 0.24 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.017 (13)
Crystal data top
[CuCl2(C27H32N2)]V = 2656.1 (3) Å3
Mr = 519.00Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.5806 (7) ŵ = 1.04 mm1
b = 15.4409 (8) ÅT = 295 K
c = 16.2579 (12) Å0.40 × 0.40 × 0.40 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
3885 reflections with I > 2σ(I)
Absorption correction: analytical
(ABSCALC; McArdle & Daly, 1999)
Rint = 0.019
Tmin = 0.660, Tmax = 0.6663 standard reflections every 60 min
5793 measured reflections intensity decay: none
4931 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083Δρmax = 0.33 e Å3
S = 1.06Δρmin = 0.24 e Å3
4931 reflectionsAbsolute structure: Flack (1983)
292 parametersAbsolute structure parameter: 0.017 (13)
0 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.03338 (3)0.43742 (2)0.76295 (2)0.03853 (10)
Cl10.03484 (8)0.33981 (5)0.85529 (5)0.05231 (19)
Cl20.10262 (9)0.40812 (6)0.66326 (6)0.0609 (2)
N10.0744 (2)0.56146 (15)0.72591 (14)0.0361 (5)
N20.2032 (2)0.43863 (17)0.81961 (17)0.0403 (5)
H20.193 (3)0.438 (2)0.871 (2)0.048*
C10.1701 (3)0.59164 (18)0.78886 (17)0.0352 (6)
H10.12340.59820.84060.042*
C20.2323 (3)0.67928 (19)0.7726 (2)0.0476 (7)
H2A0.28620.67550.72450.057*
H2B0.16790.72260.76210.057*
C30.3099 (4)0.7054 (2)0.8468 (2)0.0561 (9)
H3A0.34900.76120.83680.067*
H3B0.25520.71080.89440.067*
C40.4109 (3)0.6388 (2)0.8639 (2)0.0602 (9)
H4A0.45810.65560.91250.072*
H4B0.46920.63660.81790.072*
C50.3532 (3)0.5492 (2)0.8772 (2)0.0489 (8)
H5A0.30280.54980.92710.059*
H5B0.42040.50720.88450.059*
C60.2699 (3)0.52161 (18)0.8048 (2)0.0373 (7)
H60.32290.51560.75570.045*
C70.0463 (3)0.61569 (18)0.73180 (19)0.0433 (7)
H7A0.02670.67390.71350.052*
H7B0.10750.59190.69360.052*
C80.1073 (3)0.62181 (19)0.8143 (2)0.0428 (7)
C90.1934 (3)0.5605 (2)0.8410 (2)0.0544 (8)
H90.20950.51220.80850.065*
C100.2553 (3)0.5697 (3)0.9143 (3)0.0645 (10)
H100.31080.52670.93170.077*
C110.2371 (4)0.6404 (3)0.9621 (2)0.0628 (10)
H110.28120.64691.01120.075*
C120.1515 (4)0.7031 (3)0.9366 (2)0.0609 (10)
H120.13730.75170.96920.073*
C130.0880 (4)0.6938 (2)0.8638 (2)0.0530 (9)
H130.03120.73640.84730.064*
C140.1132 (3)0.5719 (2)0.63786 (17)0.0465 (7)
H14A0.12320.63330.62730.056*
H14B0.04380.55180.60380.056*
C150.2318 (3)0.5269 (2)0.60886 (19)0.0502 (8)
C160.2368 (4)0.4375 (3)0.59948 (19)0.0564 (8)
H160.16690.40390.61270.068*
C170.3453 (4)0.3988 (3)0.5705 (3)0.0759 (12)
H170.34950.33880.56640.091*
C180.4472 (5)0.4482 (4)0.5478 (3)0.1003 (17)
H180.52020.42160.52840.120*
C190.4416 (5)0.5367 (4)0.5536 (3)0.0976 (17)
H190.50980.57030.53680.117*
C200.3350 (4)0.5754 (3)0.5844 (2)0.0744 (12)
H200.33200.63540.58880.089*
C210.2727 (3)0.3570 (2)0.7986 (2)0.0551 (9)
H21A0.21840.30820.81140.066*
H21B0.28740.35620.73970.066*
C220.3962 (3)0.34379 (19)0.8410 (2)0.0432 (7)
C230.4030 (4)0.3147 (3)0.9210 (2)0.0631 (10)
H230.32920.30160.94950.076*
C240.5196 (5)0.3048 (2)0.9596 (2)0.0737 (12)
H240.52380.28491.01350.088*
C250.6279 (4)0.3247 (3)0.9178 (3)0.0705 (12)
H250.70560.31970.94400.085*
C260.6229 (3)0.3515 (2)0.8387 (3)0.0621 (10)
H260.69700.36280.80990.075*
C270.5094 (3)0.3617 (2)0.8020 (2)0.0517 (8)
H270.50730.38160.74800.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.03398 (17)0.03603 (16)0.04556 (19)0.00039 (16)0.00646 (17)0.00163 (15)
Cl10.0463 (4)0.0478 (4)0.0629 (5)0.0078 (4)0.0052 (4)0.0079 (3)
Cl20.0622 (5)0.0594 (5)0.0612 (5)0.0084 (4)0.0245 (4)0.0054 (4)
N10.0349 (11)0.0387 (11)0.0348 (12)0.0045 (10)0.0041 (9)0.0005 (11)
N20.0347 (12)0.0368 (12)0.0494 (14)0.0047 (12)0.0050 (11)0.0005 (13)
C10.0369 (15)0.0370 (15)0.0317 (15)0.0021 (12)0.0037 (12)0.0027 (11)
C20.0491 (17)0.0375 (15)0.0563 (19)0.0031 (13)0.0058 (16)0.0004 (15)
C30.060 (2)0.0404 (18)0.068 (2)0.0031 (16)0.0085 (19)0.0075 (16)
C40.0491 (19)0.056 (2)0.075 (2)0.0027 (17)0.0152 (18)0.0130 (18)
C50.0405 (17)0.046 (2)0.060 (2)0.0053 (14)0.0171 (15)0.0075 (15)
C60.0308 (15)0.0376 (15)0.0435 (17)0.0020 (13)0.0003 (13)0.0048 (13)
C70.0416 (16)0.0432 (15)0.0452 (15)0.0113 (13)0.0069 (16)0.0001 (13)
C80.0360 (16)0.0383 (16)0.0540 (19)0.0081 (14)0.0024 (15)0.0009 (14)
C90.0398 (17)0.0482 (18)0.075 (2)0.0005 (17)0.0008 (17)0.0117 (19)
C100.0439 (19)0.062 (2)0.087 (3)0.0029 (19)0.0155 (18)0.007 (2)
C110.058 (2)0.071 (3)0.060 (2)0.016 (2)0.0131 (18)0.004 (2)
C120.070 (2)0.055 (2)0.057 (2)0.0071 (19)0.0078 (19)0.0099 (17)
C130.061 (2)0.0385 (17)0.059 (2)0.0054 (15)0.0057 (17)0.0001 (15)
C140.0547 (18)0.0492 (18)0.0357 (15)0.0029 (17)0.0005 (14)0.0012 (14)
C150.061 (2)0.058 (2)0.0313 (16)0.0050 (17)0.0085 (15)0.0060 (14)
C160.065 (2)0.061 (2)0.0434 (18)0.002 (2)0.0110 (15)0.0125 (18)
C170.081 (3)0.075 (3)0.072 (3)0.008 (2)0.012 (2)0.027 (2)
C180.075 (3)0.127 (4)0.099 (3)0.005 (3)0.036 (3)0.035 (3)
C190.082 (3)0.115 (4)0.096 (3)0.022 (3)0.047 (3)0.017 (3)
C200.085 (3)0.076 (3)0.062 (2)0.015 (2)0.029 (2)0.006 (2)
C210.0438 (19)0.0413 (18)0.080 (2)0.0136 (15)0.0093 (18)0.0090 (17)
C220.0367 (16)0.0350 (15)0.058 (2)0.0057 (13)0.0038 (15)0.0010 (14)
C230.059 (2)0.061 (2)0.070 (3)0.0144 (19)0.020 (2)0.0199 (19)
C240.096 (3)0.071 (3)0.055 (2)0.030 (3)0.005 (2)0.0129 (18)
C250.054 (2)0.071 (3)0.086 (3)0.019 (2)0.017 (2)0.008 (2)
C260.0404 (19)0.050 (2)0.096 (3)0.0027 (16)0.008 (2)0.001 (2)
C270.046 (2)0.0439 (17)0.065 (2)0.0104 (14)0.0076 (16)0.0028 (15)
Geometric parameters (Å, º) top
Cu—N22.019 (2)C10—H100.9300
Cu—N12.054 (2)C11—C121.389 (5)
Cu—Cl22.2141 (9)C11—H110.9300
Cu—Cl12.2463 (8)C12—C131.369 (5)
N1—C141.498 (4)C12—H120.9300
N1—C11.513 (3)C13—H130.9300
N1—C71.530 (3)C14—C151.511 (5)
N2—C61.482 (4)C14—H14A0.9700
N2—C211.499 (4)C14—H14B0.9700
N2—H20.85 (3)C15—C201.383 (5)
C1—C21.528 (4)C15—C161.389 (5)
C1—C61.533 (4)C16—C171.377 (5)
C1—H10.9800C16—H160.9300
C2—C31.513 (5)C17—C181.371 (6)
C2—H2A0.9700C17—H170.9300
C2—H2B0.9700C18—C191.371 (7)
C3—C41.509 (5)C18—H180.9300
C3—H3A0.9700C19—C201.371 (6)
C3—H3B0.9700C19—H190.9300
C4—C51.528 (5)C20—H200.9300
C4—H4A0.9700C21—C221.492 (5)
C4—H4B0.9700C21—H21A0.9700
C5—C61.531 (4)C21—H21B0.9700
C5—H5A0.9700C22—C231.379 (5)
C5—H5B0.9700C22—C271.383 (4)
C6—H60.9800C23—C241.392 (6)
C7—C81.492 (4)C23—H230.9300
C7—H7A0.9700C24—C251.366 (6)
C7—H7B0.9700C24—H240.9300
C8—C91.383 (5)C25—C261.352 (6)
C8—C131.388 (5)C25—H250.9300
C9—C101.368 (5)C26—C271.350 (5)
C9—H90.9300C26—H260.9300
C10—C111.354 (6)C27—H270.9300
N2—Cu—N186.39 (10)C10—C9—C8121.2 (4)
N2—Cu—Cl2156.09 (8)C10—C9—H9119.4
N1—Cu—Cl296.50 (7)C8—C9—H9119.4
N2—Cu—Cl189.27 (8)C11—C10—C9121.1 (4)
N1—Cu—Cl1152.80 (7)C11—C10—H10119.5
Cl2—Cu—Cl198.24 (4)C9—C10—H10119.5
C14—N1—C1115.5 (2)C10—C11—C12118.9 (4)
C14—N1—C7103.3 (2)C10—C11—H11120.5
C1—N1—C7110.3 (2)C12—C11—H11120.5
C14—N1—Cu115.99 (19)C13—C12—C11120.4 (4)
C1—N1—Cu103.32 (16)C13—C12—H12119.8
C7—N1—Cu108.40 (17)C11—C12—H12119.8
C6—N2—C21117.2 (2)C12—C13—C8120.9 (3)
C6—N2—Cu110.95 (18)C12—C13—H13119.6
C21—N2—Cu108.9 (2)C8—C13—H13119.6
C6—N2—H2103 (2)N1—C14—C15118.5 (3)
C21—N2—H2106 (2)N1—C14—H14A107.7
Cu—N2—H2110 (2)C15—C14—H14A107.7
N1—C1—C2116.4 (2)N1—C14—H14B107.7
N1—C1—C6111.0 (2)C15—C14—H14B107.7
C2—C1—C6111.0 (2)H14A—C14—H14B107.1
N1—C1—H1105.9C20—C15—C16118.5 (3)
C2—C1—H1105.9C20—C15—C14119.8 (3)
C6—C1—H1105.9C16—C15—C14121.5 (3)
C3—C2—C1109.4 (3)C17—C16—C15120.0 (4)
C3—C2—H2A109.8C17—C16—H16120.0
C1—C2—H2A109.8C15—C16—H16120.0
C3—C2—H2B109.8C18—C17—C16120.4 (4)
C1—C2—H2B109.8C18—C17—H17119.8
H2A—C2—H2B108.2C16—C17—H17119.8
C4—C3—C2110.5 (3)C19—C18—C17120.1 (5)
C4—C3—H3A109.6C19—C18—H18119.9
C2—C3—H3A109.6C17—C18—H18119.9
C4—C3—H3B109.6C18—C19—C20119.7 (5)
C2—C3—H3B109.6C18—C19—H19120.2
H3A—C3—H3B108.1C20—C19—H19120.2
C3—C4—C5111.1 (3)C19—C20—C15121.2 (4)
C3—C4—H4A109.4C19—C20—H20119.4
C5—C4—H4A109.4C15—C20—H20119.4
C3—C4—H4B109.4C22—C21—N2116.0 (3)
C5—C4—H4B109.4C22—C21—H21A108.3
H4A—C4—H4B108.0N2—C21—H21A108.3
C4—C5—C6111.9 (3)C22—C21—H21B108.3
C4—C5—H5A109.2N2—C21—H21B108.3
C6—C5—H5A109.2H21A—C21—H21B107.4
C4—C5—H5B109.2C23—C22—C27116.9 (3)
C6—C5—H5B109.2C23—C22—C21121.8 (3)
H5A—C5—H5B107.9C27—C22—C21121.3 (3)
N2—C6—C5112.9 (3)C22—C23—C24120.5 (4)
N2—C6—C1108.0 (2)C22—C23—H23119.8
C5—C6—C1109.3 (2)C24—C23—H23119.8
N2—C6—H6108.8C25—C24—C23119.6 (3)
C5—C6—H6108.8C25—C24—H24120.2
C1—C6—H6108.8C23—C24—H24120.2
C8—C7—N1116.9 (2)C26—C25—C24120.6 (4)
C8—C7—H7A108.1C26—C25—H25119.7
N1—C7—H7A108.1C24—C25—H25119.7
C8—C7—H7B108.1C27—C26—C25119.4 (4)
N1—C7—H7B108.1C27—C26—H26120.3
H7A—C7—H7B107.3C25—C26—H26120.3
C9—C8—C13117.6 (3)C26—C27—C22123.0 (3)
C9—C8—C7121.6 (3)C26—C27—H27118.5
C13—C8—C7120.6 (3)C22—C27—H27118.5
N2—Cu—N1—C14104.1 (2)C1—N1—C7—C853.7 (3)
Cl2—Cu—N1—C1452.04 (19)Cu—N1—C7—C858.8 (3)
Cl1—Cu—N1—C14174.54 (15)N1—C7—C8—C986.8 (3)
N2—Cu—N1—C123.25 (17)N1—C7—C8—C1399.2 (3)
Cl2—Cu—N1—C1179.41 (15)C13—C8—C9—C101.4 (5)
Cl1—Cu—N1—C158.1 (2)C7—C8—C9—C10175.5 (3)
N2—Cu—N1—C7140.32 (18)C8—C9—C10—C112.0 (6)
Cl2—Cu—N1—C763.51 (17)C9—C10—C11—C121.7 (6)
Cl1—Cu—N1—C759.0 (2)C10—C11—C12—C130.8 (6)
N1—Cu—N2—C61.8 (2)C11—C12—C13—C80.3 (6)
Cl2—Cu—N2—C696.1 (3)C9—C8—C13—C120.5 (5)
Cl1—Cu—N2—C6154.94 (19)C7—C8—C13—C12174.8 (3)
N1—Cu—N2—C21132.2 (2)C1—N1—C14—C1559.0 (4)
Cl2—Cu—N2—C2134.3 (3)C7—N1—C14—C15179.6 (3)
Cl1—Cu—N2—C2174.7 (2)Cu—N1—C14—C1562.0 (3)
C14—N1—C1—C245.3 (3)N1—C14—C15—C20114.2 (4)
C7—N1—C1—C271.3 (3)N1—C14—C15—C1671.3 (4)
Cu—N1—C1—C2173.0 (2)C20—C15—C16—C173.5 (5)
C14—N1—C1—C682.8 (3)C14—C15—C16—C17178.0 (3)
C7—N1—C1—C6160.6 (2)C15—C16—C17—C182.5 (6)
Cu—N1—C1—C644.9 (2)C16—C17—C18—C190.1 (8)
N1—C1—C2—C3171.8 (3)C17—C18—C19—C201.7 (8)
C6—C1—C2—C360.1 (3)C18—C19—C20—C150.7 (8)
C1—C2—C3—C459.6 (4)C16—C15—C20—C191.9 (6)
C2—C3—C4—C557.4 (4)C14—C15—C20—C19176.5 (4)
C3—C4—C5—C655.2 (4)C6—N2—C21—C2257.9 (4)
C21—N2—C6—C586.4 (3)Cu—N2—C21—C22175.2 (3)
Cu—N2—C6—C5147.6 (2)N2—C21—C22—C2378.9 (4)
C21—N2—C6—C1152.6 (3)N2—C21—C22—C27100.0 (4)
Cu—N2—C6—C126.6 (3)C27—C22—C23—C240.3 (5)
C4—C5—C6—N2174.6 (3)C21—C22—C23—C24178.6 (3)
C4—C5—C6—C154.3 (4)C22—C23—C24—C250.4 (6)
N1—C1—C6—N248.7 (3)C23—C24—C25—C261.8 (6)
C2—C1—C6—N2179.7 (2)C24—C25—C26—C272.4 (6)
N1—C1—C6—C5171.9 (2)C25—C26—C27—C221.7 (6)
C2—C1—C6—C557.1 (3)C23—C22—C27—C260.3 (5)
C14—N1—C7—C8177.7 (3)C21—C22—C27—C26179.2 (3)

Experimental details

Crystal data
Chemical formula[CuCl2(C27H32N2)]
Mr519.00
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)10.5806 (7), 15.4409 (8), 16.2579 (12)
V3)2656.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.40 × 0.40 × 0.40
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionAnalytical
(ABSCALC; McArdle & Daly, 1999)
Tmin, Tmax0.660, 0.666
No. of measured, independent and
observed [I > 2σ(I)] reflections
5793, 4931, 3885
Rint0.019
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.083, 1.06
No. of reflections4931
No. of parameters292
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.24
Absolute structureFlack (1983)
Absolute structure parameter0.017 (13)

Computer programs: CAD4 (Enraf–Nonius, 1989), XCAD (McArdle, 1999), SHELXS97 (Sheldrick, 2008), SHELXS97 [SHELXL97?] (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), WinGX (Farrugia, 1999).

 

Acknowledgements

This research was supported by Kyungpook National University Research Fund, 2008.

References

First citationAlexakis, A., Chauvin, A. S., Stouvenel, R., Vrancken, E., Mutti, S. & Mangeney, P. (2001). Tetrahedron: Asymmetry, 12, 1171–1178.  Web of Science CrossRef CAS Google Scholar
First citationArjan, H., Boyd, E., Coumbarides, G. S., Eames, J., Jones, R. V. H., Stenson, R. A. & Suggate, M. J. (2005). Tetrahedron Lett. 46, 1921–1925.  Web of Science CrossRef CAS Google Scholar
First citationBoyd, E., Coumbarides, G. S., Eames, J., Jones, R. V. H., Motevalli, M., Stenson, R. A. & Suggate, M. J. (2006). J. Chem. Crystallogr. 36, 263–269.  Web of Science CSD CrossRef CAS Google Scholar
First citationBoyd, E., Coumbarides, G. S., Eames, J., Jones, R. V. H., Stenson, R. A. & Suggate, M. J. (2005). Tetrahedron Lett. 46, 3479–3484.  Web of Science CrossRef CAS Google Scholar
First citationBrethon, A., Moreau, J. J. E. & Man, M. W. C. (2004). Tetrahedron: Asymmetry, 15, 495–502.  Web of Science CrossRef CAS Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationEvans, D. A., Mito, S. & Seidel, D. (2007). J. Am. Chem. Soc. 129, 11583–11592.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEvans, D. A. & Seidel, D. (2005). J. Am. Chem. Soc. 127, 9958–9959.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJones, M. D. & Mahon, M. F. (2008). J. Organomet. Chem. 693, 2377–2382.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcArdle, P. (1999). XCAD. National University of Ireland, Galway, Ireland.  Google Scholar
First citationMcArdle, P. & Daly, P. (1999). ABSCALC. National University of Ireland, Galway, Ireland.  Google Scholar
First citationNguyen, Q. T. & Jeong, J. H. (2008a). Bull. Korean Chem. Soc. 29, 483–486.  CAS Google Scholar
First citationNguyen, Q. T. & Jeong, J. H. (2008b). Polyhedron, 27, 3227–3230.  Web of Science CSD CrossRef CAS Google Scholar
First citationRoh, S. G., Yoon, J. U. & Jeong, J. H. (2004). Polyhedron, 23, 2063–2067.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTye, H., Eldred, C. & Wills, M. (2002). Tetrahedron Lett. 43, 155–158.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds