metal-organic compounds
Aqua(1H-benzimidazole-κN3)(pyridine-2,6-dicarboxylato-κ3O2,N,O6)copper(II) 0.75-hydrate
aCollege of Chemical Engineering and Biotechnology, Hebei Polytechnic University, Tangshan 063009, People's Republic of China, and bMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore 54000, Pakistan
*Correspondence e-mail: iukhangcu@126.com
The title complex, [Cu(C7H3NO4)(C7H6N2)(H2O)]·0.75H2O, consists of discrete monomeric units. The CuII atom is coordinated by two carboxylate O atoms and the N atom from a dipicolinate unit and by an N atom from a benzimidazole ligand. The distorted square-pyramidal geometry is completed by a longer axial bond to the O atom of a water molecule. The molecular structure and packing are stabilized by classical O—H⋯O and N—H⋯O hydrogen bonds, also including a disordered crystal water molecule.
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S160053681001353X/rk2200sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053681001353X/rk2200Isup2.hkl
Copper(II) hydroxide (98 mg, 1 mmol) was treated with an aqueous solution (10 mL) of dipicoline acid (334 mg, 2 mmol) in a steam bath until the solid disappeared. The solution was then filtered and diluted to approximately 40 mL with water. An methanol solution (10 mL) of benzimidazole (472 mg, 4 mmol) is then added to above solution. The resultant clear–blue solution is warmed on a steam bath for 1 h. The volume is kept constant by periodic addition of water. Then the solution is filtered and allowed to stand at room temperature. Blue crystals suitable for X–ray single diffraction were obtained after 20 days.
All H atoms were positioned geometrically an refined using a riding model with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C) for aromatic H, O—H = 0.85Å and Uiso(H) = 1.5Ueq(O) for the OH group and N—H = 0.86Å and Uiso(H) = 1.2Ueq(N) for the NH group.
The dipicolinic acid (pyridine–2,6–dicarboxylic acid) has important biological functions in the organism and commonly coordinate to transition metals by either carboxylate bridges between metal centers, to form polymeric or dimeric complexes or tridentate (O, N, O')
to one metal ion. Some Cu(II) dipicolinate complexes with imidazole had been reported (How et al., 1991). Here, we report here the of the title compound.The molecular structure of the title compound, is illustrated in Fig. 1. All the bond lengths and angles are in the normal range (How et al., 1991). The overall molecular structure of title complex, has only independent Cu(II) ion, is five–coordinated by one N and two O atoms from a dipicolinate dianion ligand, one N atom from a benzimidazole molecule and one O atom of a water molecule. In molecular structure, each Cu(II) center exhibits a slightly distorted square pyramidal environment. The intermolecular hydrogen bonds play an important role in the crystal packing and the stability of the complex (Table 1).
For related structures of dipicolinate complexes, see: How et al. (1991).
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu(C7H3NO4)(C7H6N2)(H2O)]·0.75H2O | F(000) = 770 |
Mr = 378.32 | Dx = 1.696 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2800 reflections |
a = 8.6388 (17) Å | θ = 4.4–20.6° |
b = 17.692 (4) Å | µ = 1.51 mm−1 |
c = 9.783 (2) Å | T = 295 K |
β = 97.78 (3)° | Block, blue |
V = 1481.5 (5) Å3 | 0.26 × 0.24 × 0.18 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 2614 independent reflections |
Radiation source: fine–focus sealed tube | 2108 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.062 |
φ and ω scans | θmax = 25.0°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −10→10 |
Tmin = 0.677, Tmax = 0.759 | k = −21→21 |
12842 measured reflections | l = −11→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.103 | H-atom parameters constrained |
S = 1.23 | w = 1/[σ2(Fo2) + (0.0321P)2 + 1.3817P] where P = (Fo2 + 2Fc2)/3 |
2614 reflections | (Δ/σ)max < 0.001 |
218 parameters | Δρmax = 0.63 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
[Cu(C7H3NO4)(C7H6N2)(H2O)]·0.75H2O | V = 1481.5 (5) Å3 |
Mr = 378.32 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.6388 (17) Å | µ = 1.51 mm−1 |
b = 17.692 (4) Å | T = 295 K |
c = 9.783 (2) Å | 0.26 × 0.24 × 0.18 mm |
β = 97.78 (3)° |
Bruker SMART CCD area-detector diffractometer | 2614 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2108 reflections with I > 2σ(I) |
Tmin = 0.677, Tmax = 0.759 | Rint = 0.062 |
12842 measured reflections |
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.103 | H-atom parameters constrained |
S = 1.23 | Δρmax = 0.63 e Å−3 |
2614 reflections | Δρmin = −0.30 e Å−3 |
218 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.21983 (5) | 0.15993 (3) | 0.91593 (5) | 0.03235 (18) | |
O1W | 0.1635 (3) | 0.14651 (17) | 1.1317 (3) | 0.0490 (8) | |
H1A | 0.1016 | 0.1119 | 1.1510 | 0.074* | |
H1B | 0.2504 | 0.1412 | 1.1831 | 0.074* | |
O1 | 0.2325 (3) | 0.04517 (15) | 0.8889 (3) | 0.0428 (8) | |
O2 | 0.0796 (3) | −0.05328 (15) | 0.8281 (3) | 0.0468 (8) | |
O3 | −0.0676 (3) | 0.33244 (15) | 0.8066 (3) | 0.0379 (7) | |
O4 | 0.1407 (3) | 0.26612 (14) | 0.8944 (3) | 0.0348 (7) | |
N1 | 0.0128 (3) | 0.14008 (17) | 0.8315 (3) | 0.0272 (7) | |
N2 | 0.4407 (4) | 0.17683 (17) | 0.9703 (3) | 0.0325 (8) | |
N3 | 0.6752 (4) | 0.14636 (19) | 1.0717 (4) | 0.0381 (9) | |
H3A | 0.7523 | 0.1188 | 1.1072 | 0.046* | |
C1 | 0.1030 (4) | 0.0149 (2) | 0.8435 (4) | 0.0343 (10) | |
C2 | −0.0305 (4) | 0.0691 (2) | 0.8052 (4) | 0.0290 (9) | |
C3 | −0.1796 (4) | 0.0531 (2) | 0.7462 (4) | 0.0380 (10) | |
H3 | −0.2121 | 0.0035 | 0.7291 | 0.046* | |
C4 | −0.2802 (5) | 0.1129 (2) | 0.7127 (5) | 0.0433 (12) | |
H4 | −0.3820 | 0.1035 | 0.6720 | 0.052* | |
C5 | −0.2321 (4) | 0.1860 (2) | 0.7386 (4) | 0.0359 (10) | |
H5A | −0.2998 | 0.2263 | 0.7154 | 0.043* | |
C6 | −0.0812 (4) | 0.1984 (2) | 0.7998 (4) | 0.0279 (9) | |
C7 | 0.0006 (4) | 0.2725 (2) | 0.8364 (4) | 0.0288 (9) | |
C8 | 0.5344 (4) | 0.1218 (2) | 1.0185 (4) | 0.0365 (10) | |
H8 | 0.5055 | 0.0712 | 1.0158 | 0.044* | |
C9 | 0.6754 (4) | 0.2233 (2) | 1.0597 (4) | 0.0314 (9) | |
C10 | 0.7901 (5) | 0.2770 (3) | 1.1004 (4) | 0.0418 (11) | |
H10 | 0.8885 | 0.2636 | 1.1444 | 0.050* | |
C11 | 0.7497 (5) | 0.3500 (3) | 1.0722 (5) | 0.0472 (12) | |
H11 | 0.8222 | 0.3878 | 1.0993 | 0.057* | |
C12 | 0.6032 (5) | 0.3706 (3) | 1.0040 (5) | 0.0448 (11) | |
H12 | 0.5818 | 0.4213 | 0.9849 | 0.054* | |
C13 | 0.4908 (5) | 0.3176 (2) | 0.9650 (4) | 0.0361 (10) | |
H13 | 0.3930 | 0.3315 | 0.9204 | 0.043* | |
C14 | 0.5275 (4) | 0.2424 (2) | 0.9940 (4) | 0.0284 (9) | |
O2W | 0.0560 (6) | 0.4772 (2) | 0.8653 (7) | 0.100 (2) | 0.75 |
H2A | 0.0357 | 0.4379 | 0.8162 | 0.150* | 0.75 |
H2B | 0.0004 | 0.4956 | 0.9225 | 0.150* | 0.75 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0228 (3) | 0.0257 (3) | 0.0449 (3) | −0.0002 (2) | −0.0085 (2) | −0.0006 (2) |
O1W | 0.0418 (17) | 0.055 (2) | 0.0454 (19) | −0.0227 (15) | −0.0100 (14) | 0.0104 (15) |
O1 | 0.0249 (15) | 0.0278 (16) | 0.071 (2) | 0.0008 (12) | −0.0099 (15) | −0.0021 (14) |
O2 | 0.0299 (16) | 0.0238 (16) | 0.082 (2) | −0.0006 (13) | −0.0096 (15) | 0.0019 (15) |
O3 | 0.0376 (16) | 0.0255 (15) | 0.0480 (18) | 0.0073 (13) | −0.0035 (13) | 0.0005 (13) |
O4 | 0.0279 (15) | 0.0263 (15) | 0.0464 (18) | 0.0003 (12) | −0.0094 (13) | −0.0017 (13) |
N1 | 0.0238 (17) | 0.0281 (19) | 0.0279 (18) | 0.0004 (14) | −0.0031 (14) | 0.0008 (14) |
N2 | 0.0261 (17) | 0.0265 (19) | 0.043 (2) | 0.0012 (14) | −0.0033 (15) | −0.0018 (15) |
N3 | 0.0241 (18) | 0.035 (2) | 0.052 (2) | 0.0056 (15) | −0.0041 (16) | 0.0006 (17) |
C1 | 0.026 (2) | 0.030 (2) | 0.045 (3) | −0.0004 (18) | −0.0036 (19) | 0.0017 (19) |
C2 | 0.025 (2) | 0.026 (2) | 0.035 (2) | 0.0017 (17) | 0.0005 (17) | 0.0020 (17) |
C3 | 0.026 (2) | 0.031 (2) | 0.054 (3) | −0.0034 (18) | −0.004 (2) | −0.002 (2) |
C4 | 0.022 (2) | 0.042 (3) | 0.062 (3) | 0.0002 (19) | −0.009 (2) | 0.000 (2) |
C5 | 0.024 (2) | 0.031 (2) | 0.050 (3) | 0.0070 (18) | −0.0034 (19) | 0.0034 (19) |
C6 | 0.028 (2) | 0.028 (2) | 0.027 (2) | 0.0034 (18) | 0.0009 (17) | 0.0007 (17) |
C7 | 0.031 (2) | 0.031 (2) | 0.024 (2) | 0.0020 (18) | 0.0024 (18) | −0.0017 (17) |
C8 | 0.027 (2) | 0.031 (2) | 0.048 (3) | 0.0026 (19) | −0.005 (2) | −0.001 (2) |
C9 | 0.024 (2) | 0.036 (2) | 0.033 (2) | −0.0030 (18) | 0.0014 (18) | −0.0016 (18) |
C10 | 0.026 (2) | 0.051 (3) | 0.048 (3) | −0.005 (2) | 0.002 (2) | −0.007 (2) |
C11 | 0.036 (3) | 0.051 (3) | 0.055 (3) | −0.019 (2) | 0.008 (2) | −0.008 (2) |
C12 | 0.053 (3) | 0.033 (2) | 0.050 (3) | −0.007 (2) | 0.012 (2) | 0.003 (2) |
C13 | 0.032 (2) | 0.035 (2) | 0.041 (3) | −0.0020 (19) | 0.0032 (19) | 0.0050 (19) |
C14 | 0.025 (2) | 0.031 (2) | 0.030 (2) | −0.0026 (17) | 0.0050 (17) | −0.0011 (17) |
O2W | 0.102 (4) | 0.026 (3) | 0.169 (6) | −0.016 (3) | 0.001 (4) | −0.020 (3) |
Cu1—N1 | 1.898 (3) | C3—C4 | 1.380 (5) |
Cu1—N2 | 1.934 (3) | C3—H3 | 0.9300 |
Cu1—O4 | 2.001 (3) | C4—C5 | 1.372 (6) |
Cu1—O1 | 2.052 (3) | C4—H4 | 0.9300 |
Cu1—O1W | 2.242 (3) | C5—C6 | 1.377 (5) |
O1W—H1A | 0.8500 | C5—H5A | 0.9300 |
O1W—H1B | 0.8500 | C6—C7 | 1.509 (5) |
O1—C1 | 1.265 (4) | C8—H8 | 0.9300 |
O2—C1 | 1.229 (5) | C9—C14 | 1.392 (5) |
O3—C7 | 1.229 (4) | C9—C10 | 1.391 (5) |
O4—C7 | 1.270 (4) | C10—C11 | 1.358 (6) |
N1—C6 | 1.324 (5) | C10—H10 | 0.9300 |
N1—C2 | 1.325 (5) | C11—C12 | 1.396 (6) |
N2—C8 | 1.312 (5) | C11—H11 | 0.9300 |
N2—C14 | 1.384 (5) | C12—C13 | 1.366 (6) |
N3—C8 | 1.329 (5) | C12—H12 | 0.9300 |
N3—C9 | 1.366 (5) | C13—C14 | 1.389 (5) |
N3—H3A | 0.8600 | C13—H13 | 0.9300 |
C1—C2 | 1.507 (5) | O2W—H2A | 0.8500 |
C2—C3 | 1.368 (5) | O2W—H2B | 0.8500 |
N1—Cu1—N2 | 169.98 (14) | C5—C4—H4 | 119.5 |
N1—Cu1—O4 | 80.76 (12) | C3—C4—H4 | 119.5 |
N2—Cu1—O4 | 101.21 (12) | C4—C5—C6 | 118.4 (4) |
N1—Cu1—O1 | 79.88 (12) | C4—C5—H5A | 120.8 |
N2—Cu1—O1 | 96.93 (12) | C6—C5—H5A | 120.8 |
O4—Cu1—O1 | 159.86 (10) | N1—C6—C5 | 119.5 (4) |
N1—Cu1—O1W | 94.52 (12) | N1—C6—C7 | 111.7 (3) |
N2—Cu1—O1W | 95.10 (13) | C5—C6—C7 | 128.8 (4) |
O4—Cu1—O1W | 94.81 (11) | O3—C7—O4 | 125.4 (4) |
O1—Cu1—O1W | 92.20 (12) | O3—C7—C6 | 120.0 (3) |
Cu1—O1W—H1A | 120.5 | O4—C7—C6 | 114.6 (3) |
Cu1—O1W—H1B | 106.3 | N2—C8—N3 | 112.7 (4) |
H1A—O1W—H1B | 108.7 | N2—C8—H8 | 123.7 |
C1—O1—Cu1 | 113.8 (2) | N3—C8—H8 | 123.7 |
C7—O4—Cu1 | 114.9 (2) | N3—C9—C14 | 105.7 (3) |
C6—N1—C2 | 123.0 (3) | N3—C9—C10 | 131.7 (4) |
C6—N1—Cu1 | 118.0 (3) | C14—C9—C10 | 122.7 (4) |
C2—N1—Cu1 | 119.0 (3) | C11—C10—C9 | 116.0 (4) |
C8—N2—C14 | 105.5 (3) | C11—C10—H10 | 122.0 |
C8—N2—Cu1 | 121.5 (3) | C9—C10—H10 | 122.0 |
C14—N2—Cu1 | 131.9 (3) | C10—C11—C12 | 122.4 (4) |
C8—N3—C9 | 107.7 (3) | C10—C11—H11 | 118.8 |
C8—N3—H3A | 126.2 | C12—C11—H11 | 118.8 |
C9—N3—H3A | 126.2 | C13—C12—C11 | 121.3 (4) |
O2—C1—O1 | 125.5 (4) | C13—C12—H12 | 119.3 |
O2—C1—C2 | 119.1 (3) | C11—C12—H12 | 119.3 |
O1—C1—C2 | 115.4 (3) | C12—C13—C14 | 117.8 (4) |
N1—C2—C3 | 120.2 (4) | C12—C13—H13 | 121.1 |
N1—C2—C1 | 111.6 (3) | C14—C13—H13 | 121.1 |
C3—C2—C1 | 128.2 (4) | N2—C14—C9 | 108.4 (3) |
C2—C3—C4 | 117.9 (4) | N2—C14—C13 | 131.8 (4) |
C2—C3—H3 | 121.1 | C9—C14—C13 | 119.8 (4) |
C4—C3—H3 | 121.1 | H2A—O2W—H2B | 126.4 |
C5—C4—C3 | 120.9 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1A···O2i | 0.85 | 1.91 | 2.740 (4) | 164 |
O2W—H2A···O3 | 0.85 | 2.06 | 2.804 (5) | 145 |
O2W—H2B···O2wii | 0.85 | 2.25 | 3.037 (9) | 154 |
N3—H3A···O2iii | 0.86 | 1.90 | 2.756 (4) | 175 |
Symmetry codes: (i) −x, −y, −z+2; (ii) −x, −y+1, −z+2; (iii) −x+1, −y, −z+2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C7H3NO4)(C7H6N2)(H2O)]·0.75H2O |
Mr | 378.32 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 295 |
a, b, c (Å) | 8.6388 (17), 17.692 (4), 9.783 (2) |
β (°) | 97.78 (3) |
V (Å3) | 1481.5 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.51 |
Crystal size (mm) | 0.26 × 0.24 × 0.18 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.677, 0.759 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12842, 2614, 2108 |
Rint | 0.062 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.103, 1.23 |
No. of reflections | 2614 |
No. of parameters | 218 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.63, −0.30 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1A···O2i | 0.85 | 1.91 | 2.740 (4) | 164 |
O2W—H2A···O3 | 0.85 | 2.06 | 2.804 (5) | 145 |
O2W—H2B···O2wii | 0.85 | 2.25 | 3.037 (9) | 154 |
N3—H3A···O2iii | 0.86 | 1.90 | 2.756 (4) | 175 |
Symmetry codes: (i) −x, −y, −z+2; (ii) −x, −y+1, −z+2; (iii) −x+1, −y, −z+2. |
Acknowledgements
The authors thank Hebei Polytechnic University and Government College University for support this work.
References
Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (1999). SAINT. Bruker AXS Inc., Madison,Wisconsin, USA. Google Scholar
How, G. A., Whei, L. K., Graeme, R. H., Jeffrey, A. C., Mary, M. & Nick, C. (1991). J. Chem. Soc. Dalton Trans. pp. 3193–3291. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The dipicolinic acid (pyridine–2,6–dicarboxylic acid) has important biological functions in the organism and commonly coordinate to transition metals by either carboxylate bridges between metal centers, to form polymeric or dimeric complexes or tridentate (O, N, O') chelation to one metal ion. Some Cu(II) dipicolinate complexes with imidazole had been reported (How et al., 1991). Here, we report here the crystal structure of the title compound.
The molecular structure of the title compound, is illustrated in Fig. 1. All the bond lengths and angles are in the normal range (How et al., 1991). The overall molecular structure of title complex, has only independent Cu(II) ion, is five–coordinated by one N and two O atoms from a dipicolinate dianion ligand, one N atom from a benzimidazole molecule and one O atom of a water molecule. In molecular structure, each Cu(II) center exhibits a slightly distorted square pyramidal environment. The intermolecular hydrogen bonds play an important role in the crystal packing and the stability of the complex (Table 1).