metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(8-quinolinolato-κ2N,O)hafnium(IV) di­methyl­formamide solvate monohydrate

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: ViljoenJA@ufs.ac.za

(Received 14 April 2010; accepted 23 April 2010; online 30 April 2010)

In the title compound, [Hf(C9H6NO)]·C3H7NO·H2O, the hafnium(IV) atom is coordinated by four 8-quinolinolate (Ox) ligands, forming a slightly distorted square-anti­prismatic coordination polyhedron. The crystal packing is controlled by O—H⋯O and C—H⋯O hydrogen-bonding inter­actions and ππ inter­actions between quinoline ligands of neighbouring mol­ecules. The inter­planar distances vary between 3.150 (1) and 3.251 (2) Å, while centroid–centroid distances vary from 3.589 (1) to 4.1531 (1) Å.

Related literature

For other solvates of the title compound crystallizing in P[\overline{1}] and Fddd, see: Viljoen et al. (2009a[Viljoen, J. A., Visser, H. G., Roodt, A. & Steyn, M. (2009a). Acta Cryst. E65, m1514-m1515.]) and Lewis & Fay (1974[Lewis, D. F. & Fay, R. C. (1974). J. Chem. Soc. Chem. Commun. pp. 1046-1047.]), respectively. For hafnium and zirconium β-diketonato complexes, see: Viljoen et al. (2008[Viljoen, J. A., Muller, A. & Roodt, A. (2008). Acta Cryst. E64, m838-m839.], 2009b[Viljoen, J. A., Visser, H. G., Roodt, A. & Steyn, M. (2009b). Acta Cryst. E65, m1367-m1368.]); Demakopoulos et al. (1995[Demakopoulos, I., Klouras, N., Raptopoulou, C. P. & Terzis, A. (1995). Z. Anorg. Allg. Chem. 621, 1761-1766.]); Zherikova et al. (2005[Zherikova, K. V., Morozova, N. B., Kurateva, N. V., Baidina, I. A., Stabnikov, P. A. & Igumenov, I. K. (2005). J. Struct. Chem. 46, 1039-1046.], 2006[Zherikova, K. V., Morozova, N. B., Baidina, I. A., Peresypkina, E. V. & Igumenov, I. K. (2006). J. Struct. Chem. 47, 570-574.], 2008[Zherikova, K. V., Baidina, I. A., Morozova, N. B., Kurateva, N. V. & Igumenov, I. K. (2008). J. Struct. Chem. 49, 1098-1103.]); Steyn et al. (2008[Steyn, M., Roodt, A. & Steyl, G. (2008). Acta Cryst. E64, m827.]); Calderazzo et al. (1998[Calderazzo, F., Englert, U., Maichle-Mossmer, C., Marchetti, F., Pampaloni, G., Petroni, D., Pinzino, C., Strahle, J. & Tripepi, G. (1998). Inorg. Chim. Acta, 270, 177-188.]). For acetyl­acetone in separation chemistry, see: Van Aswegen et al. (1991[Van Aswegen, K. G., Leipoldt, J. G., Potgieter, I. M., Roodt, A. & Van Zyl, G. J. (1991). Transition Met. Chem. 16, 369-371.]); Steyn et al. (1992[Steyn, G. J. J., Roodt, A. & Leipoldt, J. G. (1992). Inorg. Chem. 31, 3477-3481.], 1997[Steyn, G. J. J., Roodt, A., Poletaeva, I. A. & Varshavsky, Y. S. (1997). J. Organomet. Chem. 536-537, 197-205.]); Otto et al. (1998[Otto, S., Roodt, A., Swarts, J. C. & Erasmus, J. C. (1998). Polyhedron, 17, 2447-2453.]); Roodt & Steyn (2000[Roodt, A. & Steyn, G. J. J. (2000). Recent Research Developments in Inorganic Chemistry, Transworld Research Network, Vol. 2, pp. 1-23. rivandrum, India: Transworld Research Network.]); Brink et al. (2010[Brink, A., Visser, H. G., Steyl, G. & Roodt, A. (2010). Dalton Trans. Accepted.]).

[Scheme 1]

Experimental

Crystal data
  • [Hf(C9H6NO)]·C3H7NO·H2O

  • Mr = 846.19

  • Triclinic, [P \overline 1]

  • a = 11.360 (5) Å

  • b = 12.245 (4) Å

  • c = 12.504 (5) Å

  • α = 91.817 (4)°

  • β = 103.333 (5)°

  • γ = 99.190 (5)°

  • V = 1666.5 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.19 mm−1

  • T = 100 K

  • 0.44 × 0.36 × 0.33 mm

Data collection
  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.262, Tmax = 0.349

  • 28187 measured reflections

  • 7242 independent reflections

  • 6906 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.053

  • S = 1.08

  • 7242 reflections

  • 471 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.35 e Å−3

  • Δρmin = −0.98 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O01—H02⋯O2 0.89 (2) 1.99 (2) 2.867 (3) 171 (3)
O01—H01⋯O001 0.95 (2) 1.83 (2) 2.757 (4) 164 (4)
C31—H31⋯O001 0.95 2.51 3.418 (4) 160
C004—H004⋯O01i 0.95 2.41 3.331 (5) 164
Symmetry code: (i) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR92 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Acetylacetone and bidentate ligand analogues find applications in homogenous catalysis as model precursors. However, it is also utilized in the extraction and separation industry (Van Aswegen et al., (1991); Steyn et al., (1992, 1997); Otto et al., (1998); Roodt & Steyn, (2000); Brink et al., (2010)). This study forms part of an ongoing research project that investigates the formation of Hf(IV) and Zr(IV) complexes with various bidentate ligands with possible applications in the mentioned industries (Zherikova et al., (2005, 2006, 2008); Steyn et al., (2008); Viljoen et al., (2008, 2009a,b); Demakopoulos et al., (1995); Lewis & Fay (1974) and Calderazzo et al. (1998).

Orange cubic-like crystals of the title complex crystallize (Fig. 1) with both an aqua and a dimethylformamide solvent molecule in the asymmetric unit. The Hf(IV) atom is eight coordinated and surrounded by four N,O-bidentate (Ox) ligands to give a slightly distorted square antiprismatic coordination geometry. The Hf–O and Hf–N bond lengths vary from 2.080 (2)Å to 2.115 (2)Å and 2.389 (2)Å to 2.411 (2) Å, respectivily, and the O–Hf–N bite angles vary from 70.7 (1)° to 71.2 (1)°.

Strong C–H···O and O–H···O hydrogen bonding interactions are observed between the solvent molecules and one of the oxygen atoms of a neighbouring complex molecule (Table 1 & Fig. 2). The dihedral angle between the two phenyl rings of the Ox ligands are all less than 2° (rings 1, 2, 3 & 4 being 0.514 (12)°, 0.595 (9)°, 1.873 (9)° and 1.566 (10)°, respectively), indicating little or negligible distortion due to coordination or packing. The molecular units of title complex are packed in a head-to-head fashion along the ac plane and are connected by ππ interactions between different Ox ligands of neighbouring molecules to produce a three dimensional network, with interplaner distances varying between 3.150 (1)Å and 3.251 (2)Å and centroid-to-centroid distances from 3.589 (1)Å to 4.1531 (1)Å (Fig. 3).

Related literature top

For the P1 and Fddd polymorphs of the title compound, see: Viljoen et al. (2009a) and Lewis & Fay (1974), respectively. For hafnium and zirconium β-diketonato complexes, see: Viljoen et al. (2008, 2009b); Demakopoulos et al. (1995); Zherikova et al. (2005, 2006, 2008); Steyn et al. (2008); Calderazzo et al. (1998). For acetylacetone in separation chemistry, see: Van Aswegen et al. (1991); Steyn et al. (1992, 1997); Otto et al. (1998); Roodt & Steyn (2000); Brink et al. (2010).

Experimental top

Chemicals were purchased from Sigma-Aldrich and used as received. HfCl4 (603 mg, 1.9 mmol) was dissolved in a minimal amount of DMF. While stirring this solution at room temperature, another solution of C9H7ON (1.07 g, 7.4 mmol) was dissolved in a minimal amount of DMF and slowly added to the HfCl4 solution, resulting in the formation of a bright yellow solution. The solution was left to stand for ca. a week for crystals to form. (Yield: 1.32 g, 92%). Spectroscopy data: 1H NMR (Benzene-d6): δ = 6.73 (d, 1H, J = 6 Hz), 7.31 (dd, 2H, J = 7.8 Hz, 6 Hz), 7.40 (t, 2H, J = 7.8 Hz), 8.11 (d, 1H, J = 7.2 Hz); IR (ATR): ν(CO) 1666 cm-1.

Refinement top

The aromatic, methine, and methyl H atoms were placed in geometrically idealized positions (C–H = 0.95Å or 0.98 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for aromatic and methine, and Uiso(H) = 1.5Ueq(C) for methyl protons. Torsion angles for methyl protons were refined from electron density. The hydrogen atoms of the solvent water molecule were located on the Fourier difference map and refined isotropically. The highest residual electron density was located 2.23Å from H41 and was essentially meaningless.

Structure description top

Acetylacetone and bidentate ligand analogues find applications in homogenous catalysis as model precursors. However, it is also utilized in the extraction and separation industry (Van Aswegen et al., (1991); Steyn et al., (1992, 1997); Otto et al., (1998); Roodt & Steyn, (2000); Brink et al., (2010)). This study forms part of an ongoing research project that investigates the formation of Hf(IV) and Zr(IV) complexes with various bidentate ligands with possible applications in the mentioned industries (Zherikova et al., (2005, 2006, 2008); Steyn et al., (2008); Viljoen et al., (2008, 2009a,b); Demakopoulos et al., (1995); Lewis & Fay (1974) and Calderazzo et al. (1998).

Orange cubic-like crystals of the title complex crystallize (Fig. 1) with both an aqua and a dimethylformamide solvent molecule in the asymmetric unit. The Hf(IV) atom is eight coordinated and surrounded by four N,O-bidentate (Ox) ligands to give a slightly distorted square antiprismatic coordination geometry. The Hf–O and Hf–N bond lengths vary from 2.080 (2)Å to 2.115 (2)Å and 2.389 (2)Å to 2.411 (2) Å, respectivily, and the O–Hf–N bite angles vary from 70.7 (1)° to 71.2 (1)°.

Strong C–H···O and O–H···O hydrogen bonding interactions are observed between the solvent molecules and one of the oxygen atoms of a neighbouring complex molecule (Table 1 & Fig. 2). The dihedral angle between the two phenyl rings of the Ox ligands are all less than 2° (rings 1, 2, 3 & 4 being 0.514 (12)°, 0.595 (9)°, 1.873 (9)° and 1.566 (10)°, respectively), indicating little or negligible distortion due to coordination or packing. The molecular units of title complex are packed in a head-to-head fashion along the ac plane and are connected by ππ interactions between different Ox ligands of neighbouring molecules to produce a three dimensional network, with interplaner distances varying between 3.150 (1)Å and 3.251 (2)Å and centroid-to-centroid distances from 3.589 (1)Å to 4.1531 (1)Å (Fig. 3).

For the P1 and Fddd polymorphs of the title compound, see: Viljoen et al. (2009a) and Lewis & Fay (1974), respectively. For hafnium and zirconium β-diketonato complexes, see: Viljoen et al. (2008, 2009b); Demakopoulos et al. (1995); Zherikova et al. (2005, 2006, 2008); Steyn et al. (2008); Calderazzo et al. (1998). For acetylacetone in separation chemistry, see: Van Aswegen et al. (1991); Steyn et al. (1992, 1997); Otto et al. (1998); Roodt & Steyn (2000); Brink et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Representation of the title compound, showing the atoms numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Graphical illustration of Hf(Ox)4 indicating C–H···O and O–H···O hydrogen bonding interaction is observed between the solvent molecules and one of the oxygen atoms from a neighbouring metallic molecular group (displacement ellipsoids are drawn at the 50% probability level). Symmetry codes: (i) -x, 1-y, -z.
[Figure 3] Fig. 3. Graphical illustration of ππ interaction and stacking between different quinoline ligands of neighbouring molecules to form a three dimensional network (displacement ellipsoids are drawn at the 50% probability level). Hydrogen atoms omitted for clarity.
Tetrakis(8-quinolinolato-κ2N,O)hafnium(IV) dimethylformamide solvate monohydrate top
Crystal data top
[Hf(C9H6NO)]·C3H7NO·H2OZ = 2
Mr = 846.19F(000) = 844
Triclinic, P1Dx = 1.686 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 11.360 (5) ÅCell parameters from 9880 reflections
b = 12.245 (4) Åθ = 2.2–28.3°
c = 12.504 (5) ŵ = 3.19 mm1
α = 91.817 (4)°T = 100 K
β = 103.333 (5)°Cuboid, orange
γ = 99.190 (5)°0.44 × 0.36 × 0.33 mm
V = 1666.5 (11) Å3
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
7242 independent reflections
Radiation source: fine-focus sealed tube6906 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω and φ scansθmax = 27°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1414
Tmin = 0.262, Tmax = 0.349k = 1515
28187 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0127P)2 + 2.7005P]
where P = (Fo2 + 2Fc2)/3
7242 reflections(Δ/σ)max = 0.004
471 parametersΔρmax = 1.35 e Å3
3 restraintsΔρmin = 0.98 e Å3
Crystal data top
[Hf(C9H6NO)]·C3H7NO·H2Oγ = 99.190 (5)°
Mr = 846.19V = 1666.5 (11) Å3
Triclinic, P1Z = 2
a = 11.360 (5) ÅMo Kα radiation
b = 12.245 (4) ŵ = 3.19 mm1
c = 12.504 (5) ÅT = 100 K
α = 91.817 (4)°0.44 × 0.36 × 0.33 mm
β = 103.333 (5)°
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
7242 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
6906 reflections with I > 2σ(I)
Tmin = 0.262, Tmax = 0.349Rint = 0.037
28187 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0223 restraints
wR(F2) = 0.053H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 1.35 e Å3
7242 reflectionsΔρmin = 0.98 e Å3
471 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.1792 (2)0.1576 (2)0.0254 (2)0.0168 (5)
H110.19590.23640.03210.02*
C120.1362 (2)0.1030 (2)0.0806 (2)0.0190 (6)
H120.12680.14460.1440.023*
C0030.2444 (4)0.5958 (4)0.1882 (4)0.0517 (10)
H00A0.26260.59580.10770.078*
H00B0.24240.67050.220.078*
H00C0.30830.54360.20990.078*
C130.1081 (2)0.0100 (2)0.0917 (2)0.0200 (6)
H130.07730.04740.16290.024*
C0040.0657 (4)0.5254 (4)0.1614 (4)0.0596 (13)
H0040.10220.5190.08450.071*
C140.1252 (2)0.0713 (2)0.0029 (2)0.0174 (5)
C150.0986 (3)0.1884 (2)0.0019 (2)0.0224 (6)
H150.06680.23180.0660.027*
C0050.0741 (4)0.5701 (4)0.3460 (4)0.0541 (11)
H00D0.01340.60170.36120.081*
H00E0.0840.49580.37340.081*
H00F0.11640.61770.38310.081*
C160.1189 (3)0.2386 (2)0.0991 (2)0.0226 (6)
H160.10260.31730.09770.027*
C170.1634 (3)0.1762 (2)0.2018 (2)0.0185 (6)
H170.17630.21350.26790.022*
C180.1883 (2)0.0617 (2)0.2071 (2)0.0153 (5)
C190.1703 (2)0.0094 (2)0.1058 (2)0.0156 (5)
C210.4753 (3)0.0155 (2)0.2458 (2)0.0218 (6)
H210.44640.0330.29550.026*
C220.5586 (3)0.0176 (3)0.1892 (3)0.0274 (7)
H220.58480.08720.20030.033*
C230.6015 (3)0.0514 (3)0.1181 (3)0.0295 (7)
H230.65610.0290.07770.035*
C240.5653 (3)0.1558 (3)0.1042 (2)0.0236 (6)
C250.6040 (3)0.2345 (3)0.0332 (3)0.0325 (7)
H250.66040.21940.00850.039*
C260.5602 (3)0.3317 (3)0.0250 (3)0.0315 (7)
H260.58670.38380.02290.038*
C270.4761 (3)0.3576 (2)0.0858 (2)0.0238 (6)
H270.4470.42620.0780.029*
C280.4361 (3)0.2839 (2)0.1560 (2)0.0181 (5)
C290.4814 (2)0.1817 (2)0.1647 (2)0.0170 (5)
C310.2530 (3)0.4285 (2)0.4055 (2)0.0191 (6)
H310.19040.42870.34040.023*
C320.2814 (3)0.5200 (2)0.4831 (2)0.0235 (6)
H320.23850.58070.46990.028*
C330.3708 (3)0.5216 (2)0.5774 (2)0.0239 (6)
H330.39040.58340.63010.029*
C340.4339 (3)0.4311 (2)0.5966 (2)0.0194 (6)
C350.5283 (3)0.4232 (3)0.6904 (2)0.0248 (6)
H350.55170.48060.74790.03*
C360.5858 (3)0.3330 (3)0.6985 (2)0.0243 (6)
H360.64840.32840.76250.029*
C370.5549 (3)0.2463 (2)0.6142 (2)0.0209 (6)
H370.59790.18540.6210.025*
C380.4622 (3)0.2505 (2)0.5219 (2)0.0175 (5)
C390.4008 (2)0.3433 (2)0.5136 (2)0.0165 (5)
C410.2162 (3)0.0956 (2)0.5456 (2)0.0206 (6)
H410.29430.07310.56030.025*
C420.1450 (3)0.0799 (2)0.6242 (2)0.0243 (6)
H420.17550.04770.69090.029*
C430.0329 (3)0.1109 (2)0.6045 (2)0.0258 (7)
H430.01520.10020.65740.031*
C440.0125 (3)0.1594 (2)0.5050 (2)0.0218 (6)
C450.1292 (3)0.1914 (3)0.4740 (3)0.0270 (7)
H450.18360.18240.52170.032*
C460.1630 (3)0.2353 (3)0.3746 (3)0.0278 (7)
H460.24130.25690.35430.033*
C470.0846 (3)0.2494 (3)0.3008 (2)0.0242 (6)
H470.11050.28150.2330.029*
C480.0284 (3)0.2172 (2)0.3266 (2)0.0186 (6)
C490.0651 (3)0.1725 (2)0.4312 (2)0.0178 (6)
N10.1973 (2)0.10354 (19)0.11572 (18)0.0150 (4)
N20.4355 (2)0.11053 (19)0.23296 (18)0.0166 (5)
N0020.1265 (3)0.5625 (2)0.2283 (2)0.0347 (7)
N30.3101 (2)0.34199 (18)0.41944 (18)0.0164 (5)
N40.1772 (2)0.14071 (18)0.45181 (18)0.0167 (5)
O010.2193 (2)0.4529 (2)0.0961 (2)0.0365 (6)
O10.22623 (17)0.00277 (15)0.29999 (14)0.0167 (4)
O20.35700 (17)0.30047 (15)0.21652 (15)0.0168 (4)
O30.42709 (17)0.17339 (15)0.43809 (15)0.0165 (4)
O40.10612 (17)0.22174 (16)0.26121 (15)0.0183 (4)
O0010.0360 (4)0.4985 (4)0.1927 (3)0.0962 (16)
Hf10.279295 (10)0.175184 (9)0.304673 (8)0.01335 (4)
H010.156 (3)0.456 (4)0.134 (3)0.064 (14)*
H020.258 (3)0.408 (3)0.139 (3)0.051 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0141 (13)0.0219 (14)0.0158 (13)0.0036 (11)0.0059 (10)0.0026 (10)
C120.0137 (13)0.0332 (16)0.0117 (12)0.0064 (12)0.0044 (10)0.0029 (11)
C0030.039 (2)0.063 (3)0.054 (3)0.006 (2)0.0148 (19)0.014 (2)
C130.0150 (13)0.0314 (16)0.0142 (13)0.0044 (12)0.0052 (11)0.0033 (11)
C0040.064 (3)0.084 (3)0.053 (3)0.040 (3)0.035 (2)0.044 (2)
C140.0120 (13)0.0235 (14)0.0181 (13)0.0030 (11)0.0068 (10)0.0029 (11)
C150.0194 (14)0.0269 (15)0.0211 (14)0.0049 (12)0.0059 (12)0.0080 (12)
C0050.046 (2)0.053 (3)0.055 (3)0.001 (2)0.003 (2)0.008 (2)
C160.0210 (15)0.0206 (14)0.0271 (15)0.0046 (12)0.0077 (12)0.0043 (12)
C170.0170 (14)0.0190 (13)0.0208 (14)0.0055 (11)0.0056 (11)0.0019 (11)
C180.0105 (12)0.0210 (13)0.0153 (13)0.0030 (10)0.0052 (10)0.0009 (10)
C190.0118 (12)0.0214 (14)0.0155 (13)0.0047 (10)0.0057 (10)0.0003 (10)
C210.0197 (14)0.0223 (14)0.0237 (15)0.0062 (12)0.0035 (12)0.0053 (11)
C220.0237 (16)0.0292 (16)0.0326 (17)0.0144 (13)0.0061 (13)0.0054 (13)
C230.0209 (16)0.0361 (18)0.0368 (18)0.0118 (14)0.0130 (14)0.0028 (14)
C240.0177 (14)0.0298 (16)0.0254 (15)0.0053 (12)0.0085 (12)0.0033 (12)
C250.0298 (18)0.0410 (19)0.0353 (18)0.0098 (15)0.0220 (15)0.0086 (15)
C260.0352 (18)0.0341 (18)0.0325 (17)0.0056 (15)0.0215 (15)0.0121 (14)
C270.0284 (16)0.0206 (14)0.0256 (15)0.0036 (12)0.0125 (13)0.0065 (12)
C280.0166 (14)0.0195 (13)0.0182 (13)0.0013 (11)0.0055 (11)0.0006 (10)
C290.0118 (13)0.0223 (14)0.0157 (13)0.0014 (11)0.0017 (10)0.0013 (10)
C310.0225 (15)0.0202 (14)0.0166 (13)0.0048 (11)0.0076 (11)0.0036 (10)
C320.0275 (16)0.0186 (14)0.0275 (15)0.0046 (12)0.0120 (13)0.0023 (12)
C330.0254 (16)0.0222 (14)0.0256 (15)0.0002 (12)0.0121 (13)0.0040 (12)
C340.0216 (14)0.0198 (14)0.0165 (13)0.0014 (11)0.0074 (11)0.0001 (10)
C350.0260 (16)0.0267 (15)0.0176 (14)0.0047 (12)0.0042 (12)0.0048 (11)
C360.0214 (15)0.0298 (16)0.0167 (14)0.0015 (12)0.0019 (11)0.0032 (12)
C370.0207 (14)0.0206 (14)0.0190 (14)0.0011 (11)0.0009 (11)0.0056 (11)
C380.0185 (14)0.0185 (13)0.0136 (12)0.0029 (11)0.0041 (11)0.0027 (10)
C390.0174 (13)0.0165 (13)0.0159 (13)0.0004 (11)0.0065 (11)0.0032 (10)
C410.0269 (15)0.0181 (13)0.0147 (13)0.0023 (11)0.0053 (11)0.0010 (10)
C420.0353 (17)0.0221 (14)0.0144 (13)0.0045 (13)0.0100 (12)0.0012 (11)
C430.0343 (18)0.0232 (15)0.0203 (14)0.0067 (13)0.0159 (13)0.0021 (11)
C440.0264 (16)0.0199 (14)0.0182 (14)0.0044 (12)0.0101 (12)0.0062 (11)
C450.0235 (16)0.0314 (17)0.0278 (16)0.0012 (13)0.0150 (13)0.0083 (13)
C460.0198 (15)0.0352 (17)0.0291 (16)0.0041 (13)0.0092 (13)0.0109 (13)
C470.0218 (15)0.0308 (16)0.0201 (14)0.0050 (12)0.0054 (12)0.0058 (12)
C480.0192 (14)0.0210 (14)0.0149 (13)0.0001 (11)0.0059 (11)0.0056 (10)
C490.0204 (14)0.0158 (13)0.0167 (13)0.0026 (11)0.0079 (11)0.0044 (10)
N10.0119 (11)0.0209 (12)0.0130 (11)0.0027 (9)0.0045 (9)0.0007 (9)
N20.0144 (11)0.0199 (12)0.0149 (11)0.0026 (9)0.0023 (9)0.0020 (9)
N0020.0285 (15)0.0356 (16)0.0429 (17)0.0020 (12)0.0160 (13)0.0101 (13)
N30.0181 (12)0.0182 (11)0.0130 (11)0.0002 (9)0.0055 (9)0.0028 (9)
N40.0211 (12)0.0148 (11)0.0132 (11)0.0023 (9)0.0057 (9)0.0019 (8)
O010.0390 (14)0.0417 (14)0.0333 (13)0.0178 (12)0.0091 (11)0.0111 (11)
O10.0196 (10)0.0176 (9)0.0118 (9)0.0007 (8)0.0048 (8)0.0003 (7)
O20.0193 (10)0.0171 (9)0.0156 (9)0.0026 (8)0.0075 (8)0.0022 (7)
O30.0189 (10)0.0145 (9)0.0149 (9)0.0030 (7)0.0014 (8)0.0012 (7)
O40.0190 (10)0.0244 (10)0.0129 (9)0.0049 (8)0.0059 (8)0.0012 (7)
O0010.085 (3)0.167 (4)0.085 (3)0.093 (3)0.060 (2)0.089 (3)
Hf10.01496 (6)0.01537 (6)0.00978 (6)0.00116 (4)0.00402 (4)0.00116 (4)
Geometric parameters (Å, º) top
C11—N11.319 (3)C31—N31.324 (4)
C11—C121.409 (4)C31—C321.404 (4)
C11—H110.95C31—H310.95
C12—C131.365 (4)C32—C331.365 (4)
C12—H120.95C32—H320.95
C003—N0021.445 (5)C33—C341.411 (4)
C003—H00A0.98C33—H330.95
C003—H00B0.98C34—C351.413 (4)
C003—H00C0.98C34—C391.412 (4)
C13—C141.414 (4)C35—C361.365 (4)
C13—H130.95C35—H350.95
C004—O0011.232 (5)C36—C371.415 (4)
C004—N0021.314 (5)C36—H360.95
C004—H0040.95C37—C381.380 (4)
C14—C191.415 (4)C37—H370.95
C14—C151.416 (4)C38—O31.332 (3)
C15—C161.369 (4)C38—C391.420 (4)
C15—H150.95C39—N31.372 (4)
C005—N0021.449 (5)C41—N41.326 (4)
C005—H00D0.98C41—C421.408 (4)
C005—H00E0.98C41—H410.95
C005—H00F0.98C42—C431.358 (5)
C16—C171.415 (4)C42—H420.95
C16—H160.95C43—C441.419 (4)
C17—C181.381 (4)C43—H430.95
C17—H170.95C44—C451.414 (4)
C18—O11.327 (3)C44—C491.413 (4)
C18—C191.425 (4)C45—C461.367 (5)
C19—N11.363 (4)C45—H450.95
C21—N21.316 (4)C46—C471.419 (4)
C21—C221.406 (4)C46—H460.95
C21—H210.95C47—C481.373 (4)
C22—C231.363 (4)C47—H470.95
C22—H220.95C48—O41.331 (3)
C23—C241.408 (4)C48—C491.432 (4)
C23—H230.95C49—N41.361 (4)
C24—C291.413 (4)N1—Hf12.411 (2)
C24—C251.417 (4)N2—Hf12.391 (2)
C25—C261.360 (5)N3—Hf12.389 (2)
C25—H250.95N4—Hf12.405 (2)
C26—C271.417 (4)O01—H010.95 (2)
C26—H260.95O01—H020.89 (2)
C27—C281.376 (4)O1—Hf12.096 (2)
C27—H270.95O2—Hf12.1145 (19)
C28—O21.336 (3)O3—Hf12.0796 (19)
C28—C291.425 (4)O4—Hf12.092 (2)
C29—N21.366 (3)
N1—C11—C12122.5 (3)C37—C36—H36119.1
N1—C11—H11118.7C38—C37—C36119.8 (3)
C12—C11—H11118.7C38—C37—H37120.1
C13—C12—C11119.6 (3)C36—C37—H37120.1
C13—C12—H12120.2O3—C38—C37124.2 (3)
C11—C12—H12120.2O3—C38—C39117.1 (2)
N002—C003—H00A109.5C37—C38—C39118.7 (3)
N002—C003—H00B109.5N3—C39—C34123.2 (2)
H00A—C003—H00B109.5N3—C39—C38115.4 (2)
N002—C003—H00C109.5C34—C39—C38121.4 (3)
H00A—C003—H00C109.5N4—C41—C42121.9 (3)
H00B—C003—H00C109.5N4—C41—H41119.1
C12—C13—C14119.8 (3)C42—C41—H41119.1
C12—C13—H13120.1C43—C42—C41119.9 (3)
C14—C13—H13120.1C43—C42—H42120
O001—C004—N002123.7 (4)C41—C42—H42120
O001—C004—H004118.2C42—C43—C44120.1 (3)
N002—C004—H004118.2C42—C43—H43120
C13—C14—C19116.6 (3)C44—C43—H43120
C13—C14—C15124.9 (3)C45—C44—C49118.6 (3)
C19—C14—C15118.5 (3)C45—C44—C43125.1 (3)
C16—C15—C14119.7 (3)C49—C44—C43116.2 (3)
C16—C15—H15120.2C46—C45—C44119.4 (3)
C14—C15—H15120.2C46—C45—H45120.3
N002—C005—H00D109.5C44—C45—H45120.3
N002—C005—H00E109.5C45—C46—C47122.0 (3)
H00D—C005—H00E109.5C45—C46—H46119
N002—C005—H00F109.5C47—C46—H46119
H00D—C005—H00F109.5C48—C47—C46120.5 (3)
H00E—C005—H00F109.5C48—C47—H47119.7
C15—C16—C17121.6 (3)C46—C47—H47119.7
C15—C16—H16119.2O4—C48—C47125.3 (3)
C17—C16—H16119.2O4—C48—C49116.9 (2)
C18—C17—C16120.8 (3)C47—C48—C49117.8 (3)
C18—C17—H17119.6N4—C49—C44123.1 (3)
C16—C17—H17119.6N4—C49—C48115.2 (2)
O1—C18—C17124.5 (2)C44—C49—C48121.6 (3)
O1—C18—C19117.8 (2)C11—N1—C19118.5 (2)
C17—C18—C19117.7 (2)C11—N1—Hf1129.25 (18)
N1—C19—C14123.0 (2)C19—N1—Hf1112.21 (16)
N1—C19—C18115.2 (2)C21—N2—C29118.2 (2)
C14—C19—C18121.8 (2)C21—N2—Hf1128.67 (19)
N2—C21—C22123.0 (3)C29—N2—Hf1113.03 (17)
N2—C21—H21118.5C004—N002—C003122.1 (4)
C22—C21—H21118.5C004—N002—C005119.1 (3)
C23—C22—C21119.1 (3)C003—N002—C005118.8 (3)
C23—C22—H22120.4C31—N3—C39117.9 (2)
C21—C22—H22120.4C31—N3—Hf1129.96 (19)
C22—C23—C24120.2 (3)C39—N3—Hf1112.11 (17)
C22—C23—H23119.9C41—N4—C49118.8 (2)
C24—C23—H23119.9C41—N4—Hf1128.39 (19)
C23—C24—C29116.5 (3)C49—N4—Hf1112.80 (17)
C23—C24—C25125.3 (3)H01—O01—H0297 (2)
C29—C24—C25118.2 (3)C18—O1—Hf1123.31 (16)
C26—C25—C24119.8 (3)C28—O2—Hf1122.97 (17)
C26—C25—H25120.1C38—O3—Hf1123.71 (17)
C24—C25—H25120.1C48—O4—Hf1124.29 (17)
C25—C26—C27121.9 (3)O3—Hf1—O4142.37 (7)
C25—C26—H26119O3—Hf1—O191.75 (7)
C27—C26—H26119O4—Hf1—O199.61 (8)
C28—C27—C26120.4 (3)O3—Hf1—O2100.40 (8)
C28—C27—H27119.8O4—Hf1—O292.65 (8)
C26—C27—H27119.8O1—Hf1—O2141.60 (7)
O2—C28—C27124.9 (3)O3—Hf1—N371.30 (8)
O2—C28—C29117.1 (2)O4—Hf1—N378.35 (8)
C27—C28—C29118.0 (3)O1—Hf1—N3142.80 (7)
N2—C29—C24123.0 (3)O2—Hf1—N375.26 (8)
N2—C29—C28115.3 (2)O3—Hf1—N273.34 (8)
C24—C29—C28121.7 (3)O4—Hf1—N2144.02 (7)
N3—C31—C32122.6 (3)O1—Hf1—N278.33 (8)
N3—C31—H31118.7O2—Hf1—N270.75 (8)
C32—C31—H31118.7N3—Hf1—N2124.52 (8)
C33—C32—C31119.8 (3)O3—Hf1—N478.49 (8)
C33—C32—H32120.1O4—Hf1—N470.70 (8)
C31—C32—H32120.1O1—Hf1—N473.72 (7)
C32—C33—C34119.8 (3)O2—Hf1—N4144.28 (7)
C32—C33—H33120.1N3—Hf1—N470.60 (8)
C34—C33—H33120.1N2—Hf1—N4139.28 (8)
C33—C34—C35125.2 (3)O3—Hf1—N1141.74 (7)
C33—C34—C39116.6 (3)O4—Hf1—N175.47 (7)
C35—C34—C39118.2 (3)O1—Hf1—N170.91 (7)
C36—C35—C34120.0 (3)O2—Hf1—N177.35 (8)
C36—C35—H35120N3—Hf1—N1140.80 (8)
C34—C35—H35120N2—Hf1—N169.91 (8)
C35—C36—C37121.8 (3)N4—Hf1—N1125.15 (8)
C35—C36—H36119.1
N1—C11—C12—C132.0 (4)C48—C49—N4—C41178.1 (2)
C11—C12—C13—C141.5 (4)C44—C49—N4—Hf1179.2 (2)
C12—C13—C14—C190.6 (4)C48—C49—N4—Hf11.4 (3)
C12—C13—C14—C15179.5 (3)C17—C18—O1—Hf1173.9 (2)
C13—C14—C15—C16180.0 (3)C19—C18—O1—Hf17.1 (3)
C19—C14—C15—C161.1 (4)C27—C28—O2—Hf1170.7 (2)
C14—C15—C16—C171.5 (4)C29—C28—O2—Hf18.7 (3)
C15—C16—C17—C180.2 (4)C37—C38—O3—Hf1175.6 (2)
C16—C17—C18—O1177.6 (2)C39—C38—O3—Hf15.6 (3)
C16—C17—C18—C191.5 (4)C47—C48—O4—Hf1178.6 (2)
C13—C14—C19—N10.2 (4)C49—C48—O4—Hf13.0 (3)
C15—C14—C19—N1179.2 (2)C38—O3—Hf1—O432.6 (2)
C13—C14—C19—C18178.4 (2)C38—O3—Hf1—O1140.84 (19)
C15—C14—C19—C180.6 (4)C38—O3—Hf1—O275.8 (2)
O1—C18—C19—N11.4 (3)C38—O3—Hf1—N35.36 (18)
C17—C18—C19—N1179.5 (2)C38—O3—Hf1—N2141.9 (2)
O1—C18—C19—C14177.3 (2)C38—O3—Hf1—N467.84 (19)
C17—C18—C19—C141.8 (4)C38—O3—Hf1—N1158.48 (18)
N2—C21—C22—C230.4 (5)C48—O4—Hf1—O334.1 (3)
C21—C22—C23—C241.8 (5)C48—O4—Hf1—O171.6 (2)
C22—C23—C24—C291.7 (5)C48—O4—Hf1—O2144.9 (2)
C22—C23—C24—C25179.8 (3)C48—O4—Hf1—N370.6 (2)
C23—C24—C25—C26178.5 (3)C48—O4—Hf1—N2154.93 (18)
C29—C24—C25—C260.0 (5)C48—O4—Hf1—N42.73 (19)
C24—C25—C26—C270.1 (5)C48—O4—Hf1—N1138.9 (2)
C25—C26—C27—C280.2 (5)C18—O1—Hf1—O3138.65 (19)
C26—C27—C28—O2179.8 (3)C18—O1—Hf1—O477.37 (19)
C26—C27—C28—C290.4 (4)C18—O1—Hf1—O229.4 (2)
C23—C24—C29—N20.5 (4)C18—O1—Hf1—N3160.71 (17)
C25—C24—C29—N2178.1 (3)C18—O1—Hf1—N266.06 (19)
C23—C24—C29—C28178.8 (3)C18—O1—Hf1—N4143.9 (2)
C25—C24—C29—C280.2 (4)C18—O1—Hf1—N16.51 (18)
O2—C28—C29—N21.5 (4)C28—O2—Hf1—O376.4 (2)
C27—C28—C29—N2178.0 (3)C28—O2—Hf1—O4139.1 (2)
O2—C28—C29—C24179.9 (3)C28—O2—Hf1—O130.0 (3)
C27—C28—C29—C240.4 (4)C28—O2—Hf1—N3143.7 (2)
N3—C31—C32—C330.2 (4)C28—O2—Hf1—N28.28 (19)
C31—C32—C33—C340.1 (4)C28—O2—Hf1—N4161.10 (18)
C32—C33—C34—C35179.7 (3)C28—O2—Hf1—N164.6 (2)
C32—C33—C34—C391.0 (4)C31—N3—Hf1—O3176.5 (2)
C33—C34—C35—C36177.8 (3)C39—N3—Hf1—O34.38 (16)
C39—C34—C35—C360.8 (4)C31—N3—Hf1—O426.0 (2)
C34—C35—C36—C370.8 (5)C39—N3—Hf1—O4153.08 (18)
C35—C36—C37—C381.6 (4)C31—N3—Hf1—O1116.6 (2)
C36—C37—C38—O3179.6 (3)C39—N3—Hf1—O162.5 (2)
C36—C37—C38—C390.7 (4)C31—N3—Hf1—O269.9 (2)
C33—C34—C39—N31.6 (4)C39—N3—Hf1—O2111.01 (18)
C35—C34—C39—N3179.6 (2)C31—N3—Hf1—N2123.4 (2)
C33—C34—C39—C38177.1 (2)C39—N3—Hf1—N257.50 (19)
C35—C34—C39—C381.7 (4)C31—N3—Hf1—N499.4 (2)
O3—C38—C39—N30.8 (3)C39—N3—Hf1—N479.64 (18)
C37—C38—C39—N3179.7 (2)C31—N3—Hf1—N122.8 (3)
O3—C38—C39—C34178.0 (2)C39—N3—Hf1—N1158.09 (15)
C37—C38—C39—C340.9 (4)C21—N2—Hf1—O370.0 (2)
N4—C41—C42—C430.3 (4)C29—N2—Hf1—O3114.43 (19)
C41—C42—C43—C440.2 (4)C21—N2—Hf1—O4115.8 (2)
C42—C43—C44—C45177.8 (3)C29—N2—Hf1—O459.8 (2)
C42—C43—C44—C490.2 (4)C21—N2—Hf1—O125.4 (2)
C49—C44—C45—C460.8 (4)C29—N2—Hf1—O1150.15 (19)
C43—C44—C45—C46178.7 (3)C21—N2—Hf1—O2177.7 (3)
C44—C45—C46—C470.3 (5)C29—N2—Hf1—O26.74 (17)
C45—C46—C47—C481.2 (5)C21—N2—Hf1—N3122.2 (2)
C46—C47—C48—O4176.5 (3)C29—N2—Hf1—N362.2 (2)
C46—C47—C48—C491.9 (4)C21—N2—Hf1—N421.8 (3)
C45—C44—C49—N4177.7 (2)C29—N2—Hf1—N4162.60 (16)
C43—C44—C49—N40.4 (4)C21—N2—Hf1—N199.2 (2)
C45—C44—C49—C480.0 (4)C29—N2—Hf1—N176.41 (18)
C43—C44—C49—C48178.1 (3)C41—N4—Hf1—O324.6 (2)
O4—C48—C49—N40.6 (3)C49—N4—Hf1—O3155.97 (18)
C47—C48—C49—N4179.2 (2)C41—N4—Hf1—O4177.4 (2)
O4—C48—C49—C44177.2 (2)C49—N4—Hf1—O42.10 (17)
C47—C48—C49—C441.4 (4)C41—N4—Hf1—O170.7 (2)
C12—C11—N1—C191.6 (4)C49—N4—Hf1—O1108.75 (18)
C12—C11—N1—Hf1176.48 (18)C41—N4—Hf1—O2116.4 (2)
C14—C19—N1—C110.7 (4)C49—N4—Hf1—O264.1 (2)
C18—C19—N1—C11178.0 (2)C41—N4—Hf1—N398.6 (2)
C14—C19—N1—Hf1177.7 (2)C49—N4—Hf1—N381.95 (18)
C18—C19—N1—Hf13.6 (3)C41—N4—Hf1—N222.2 (3)
C22—C21—N2—C292.6 (4)C49—N4—Hf1—N2157.26 (16)
C22—C21—N2—Hf1172.8 (2)C41—N4—Hf1—N1122.2 (2)
C24—C29—N2—C212.7 (4)C49—N4—Hf1—N157.2 (2)
C28—C29—N2—C21178.9 (2)C11—N1—Hf1—O3116.0 (2)
C24—C29—N2—Hf1173.4 (2)C19—N1—Hf1—O362.1 (2)
C28—C29—N2—Hf15.0 (3)C11—N1—Hf1—O470.9 (2)
O001—C004—N002—C003178.5 (5)C19—N1—Hf1—O4110.93 (18)
O001—C004—N002—C0051.7 (7)C11—N1—Hf1—O1176.7 (2)
C32—C31—N3—C390.3 (4)C19—N1—Hf1—O15.14 (16)
C32—C31—N3—Hf1178.7 (2)C11—N1—Hf1—O225.2 (2)
C34—C39—N3—C311.3 (4)C19—N1—Hf1—O2152.92 (18)
C38—C39—N3—C31177.5 (2)C11—N1—Hf1—N321.3 (3)
C34—C39—N3—Hf1178.0 (2)C19—N1—Hf1—N3160.53 (16)
C38—C39—N3—Hf13.3 (3)C11—N1—Hf1—N299.1 (2)
C42—C41—N4—C490.1 (4)C19—N1—Hf1—N279.04 (17)
C42—C41—N4—Hf1179.53 (19)C11—N1—Hf1—N4124.0 (2)
C44—C49—N4—C410.3 (4)C19—N1—Hf1—N457.80 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O01—H02···O20.89 (2)1.99 (2)2.867 (3)171 (3)
O01—H01···O0010.95 (2)1.83 (2)2.757 (4)164 (4)
C31—H31···O0010.952.513.418 (4)160
C004—H004···O01i0.952.413.331 (5)164
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Hf(C9H6NO)]·C3H7NO·H2O
Mr846.19
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)11.360 (5), 12.245 (4), 12.504 (5)
α, β, γ (°)91.817 (4), 103.333 (5), 99.190 (5)
V3)1666.5 (11)
Z2
Radiation typeMo Kα
µ (mm1)3.19
Crystal size (mm)0.44 × 0.36 × 0.33
Data collection
DiffractometerBruker X8 APEXII 4K Kappa CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.262, 0.349
No. of measured, independent and
observed [I > 2σ(I)] reflections
28187, 7242, 6906
Rint0.037
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.053, 1.08
No. of reflections7242
No. of parameters471
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.35, 0.98

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SIR92 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O01—H02···O20.89 (2)1.99 (2)2.867 (3)171 (3)
O01—H01···O0010.95 (2)1.83 (2)2.757 (4)164 (4)
C31—H31···O0010.952.513.418 (4)160
C004—H004···O01i0.952.413.331 (5)163.6
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

Financial assistance from the Advanced Metals Initiative (AMI) and the Department of Science and Technology (DST) of South Africa, as well as the New Metals Development Network (NMDN) and the South African Nuclear Energy Corporation Limited (Necsa) is gratefully acknowledged.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrink, A., Visser, H. G., Steyl, G. & Roodt, A. (2010). Dalton Trans. Accepted.  Google Scholar
First citationBruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalderazzo, F., Englert, U., Maichle-Mossmer, C., Marchetti, F., Pampaloni, G., Petroni, D., Pinzino, C., Strahle, J. & Tripepi, G. (1998). Inorg. Chim. Acta, 270, 177–188.  Web of Science CSD CrossRef CAS Google Scholar
First citationDemakopoulos, I., Klouras, N., Raptopoulou, C. P. & Terzis, A. (1995). Z. Anorg. Allg. Chem. 621, 1761–1766.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLewis, D. F. & Fay, R. C. (1974). J. Chem. Soc. Chem. Commun. pp. 1046–1047.  CrossRef Web of Science Google Scholar
First citationOtto, S., Roodt, A., Swarts, J. C. & Erasmus, J. C. (1998). Polyhedron, 17, 2447–2453.  Web of Science CSD CrossRef CAS Google Scholar
First citationRoodt, A. & Steyn, G. J. J. (2000). Recent Research Developments in Inorganic Chemistry, Transworld Research Network, Vol. 2, pp. 1–23. rivandrum, India: Transworld Research Network.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteyn, G. J. J., Roodt, A. & Leipoldt, J. G. (1992). Inorg. Chem. 31, 3477–3481.  CSD CrossRef CAS Web of Science Google Scholar
First citationSteyn, G. J. J., Roodt, A., Poletaeva, I. A. & Varshavsky, Y. S. (1997). J. Organomet. Chem. 536–537, 197–205.  CSD CrossRef Web of Science Google Scholar
First citationSteyn, M., Roodt, A. & Steyl, G. (2008). Acta Cryst. E64, m827.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVan Aswegen, K. G., Leipoldt, J. G., Potgieter, I. M., Roodt, A. & Van Zyl, G. J. (1991). Transition Met. Chem. 16, 369–371.  CSD CrossRef CAS Google Scholar
First citationViljoen, J. A., Muller, A. & Roodt, A. (2008). Acta Cryst. E64, m838–m839.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationViljoen, J. A., Visser, H. G., Roodt, A. & Steyn, M. (2009a). Acta Cryst. E65, m1514–m1515.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationViljoen, J. A., Visser, H. G., Roodt, A. & Steyn, M. (2009b). Acta Cryst. E65, m1367–m1368.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZherikova, K. V., Baidina, I. A., Morozova, N. B., Kurateva, N. V. & Igumenov, I. K. (2008). J. Struct. Chem. 49, 1098–1103.  Web of Science CrossRef CAS Google Scholar
First citationZherikova, K. V., Morozova, N. B., Baidina, I. A., Peresypkina, E. V. & Igumenov, I. K. (2006). J. Struct. Chem. 47, 570–574.  Web of Science CrossRef CAS Google Scholar
First citationZherikova, K. V., Morozova, N. B., Kurateva, N. V., Baidina, I. A., Stabnikov, P. A. & Igumenov, I. K. (2005). J. Struct. Chem. 46, 1039–1046.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds