organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Amino-3,5-bis­­(2-pyrid­yl)-4H-1,2,4-triazole–benzene-1,2,3-tri­carboxylic acid–water (1/1/2)

aSchool of Biological and Chemical Engineering, Jiaxing University, Zhejiang Jiaxing 314001, People's Republic of China
*Correspondence e-mail: jxj1106@163.com

(Received 10 March 2010; accepted 20 March 2010; online 14 April 2010)

Cocrystallization of 4-amino-3,5-bis­(2-pyrid­yl)-1,2,4-triazole (2-bpt) with hemimellitic acid (benzene-1,2,3-tricarboxylic acid) dihydrate (H3HMA·2H2O) produces the supra­molecular title compound, C12H10N6·C9H6O6·2H2O. Inter­molecular N—H⋯N hydrogen bonds are observed between the terminal pyridyl and amino groups of the 2-bpt molecule and the dihedral angles between the central ring and the pendant pyridine rings are 3.4 (7) and 13.8 (7)°. In the structure, homosynthons of graph set R22(8) are observed to form centrosymmetric H3HMA dimers, which are extended into a two-dimensional supra­molecular layer via inter­molecular O—H⋯N and C—H⋯O hydrogen bonds and ππ stacking inter­actions [centroid–centroid distance = 3.541 (3) Å]. In addition, inter­layer uncoordinated water mol­ecules connect the layers through O—H⋯O hydrogen bonds, generating a three-dimensional network.

Related literature

For background to the use of carboxylic acid in synthesis, see: Kuduva et al. (1999[Kuduva, S. S., Craig, D. C., Nangia, A. & Desiraju, G. R. (1999). J. Am. Chem. Soc. 121, 1936-1944.]); Das et al. (2006[Das, D. & Desiraju, G. R. (2006). CrystEngComm, 8, 674-679.]). For the structure of trimesic acid, see: Biradha et al. (1998[Biradha, K., Dennis, D., MacKinnon, V. A., Sharma, C. V. K. & Zaworotko, M. J. (1998). J. Am. Chem. Soc. 120, 11894-11903.]); Paz et al. (2003[Paz, F. A. A. & Klinowski, J. (2003). CrystEngComm, 5, 238-244.]). For co-crystals of H3HMA, see: Dale et al. (2004[Dale, S. H., Elsegood, M. R. J. & Coombs, A. E. L. (2004). CrystEngComm, 6, 328-335 .]); Du et al. (2005[Du, M., Zhang, Z.-H. & You, Y.-P. (2005). Acta Cryst. C61, o574-o576.]); For organic crystals of 4-amino-3,5-bis­(2-pyrid­yl)-1,2,4-triazole (2-bpt), see: Mernari et al. (1998[Mernari, B., El Azhar, M., El Attari, H., Lagrenée, M. & Pierrot, M. (1998). Acta Cryst. C54, 1983-1986.]); Ramos Silva et al. (2008[Ramos Silva, M., Silva, J. A., Martins, N. D., Matos Beja, A. & Sobral, A. J. F. N. (2008). Acta Cryst. E64, o1762.]). For the preparation of 2-bpt, see: Bentiss et al. (1999[Bentiss, F., Lagrenee, M., Traisnel, M., Mernari, B. & Elattari, H. (1999). J. Heterocycl. Chem. 36, 149-152.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N6·C9H6O6·2H2O

  • Mr = 484.43

  • Triclinic, [P \overline 1]

  • a = 8.4266 (10) Å

  • b = 8.6317 (10) Å

  • c = 15.7318 (18) Å

  • α = 75.152 (12)°

  • β = 77.179 (12)°

  • γ = 88.417 (13)°

  • V = 1078.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 294 K

  • 0.24 × 0.21 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.967, Tmax = 0.980

  • 5932 measured reflections

  • 3765 independent reflections

  • 2832 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.105

  • S = 1.05

  • 3765 reflections

  • 320 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O7i 0.82 1.79 2.600 (2) 171
O3—H3⋯N3ii 0.82 1.90 2.698 (2) 166
O5—H5⋯O6iii 0.82 1.85 2.674 (2) 177
N5—H5A⋯N6 0.90 2.08 2.786 (2) 134
N5—H5B⋯N1 0.90 2.17 2.804 (2) 127
O7—H7A⋯O8iv 0.85 1.92 2.766 (2) 172
O7—H7B⋯O4v 0.85 2.06 2.908 (2) 173
O8—H8A⋯N2 0.85 2.03 2.881 (2) 177
O8—H8B⋯O2vi 0.85 2.12 2.867 (2) 147
C14—H14⋯O8 0.93 2.51 3.348 (2) 149
C19—H19⋯O4vii 0.93 2.58 3.427 (2) 152
C20—H20⋯O6viii 0.93 2.47 3.386 (3) 167
Symmetry codes: (i) x-1, y, z; (ii) x-1, y-1, z; (iii) -x+1, -y+1, -z; (iv) -x+1, -y+1, -z+1; (v) -x+1, -y, -z+1; (vi) x+1, y+1, z; (vii) -x+2, -y+1, -z; (viii) -x+2, -y+2, -z.

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Carboxylic acid is one of the most commonly used functional groups in designing specific organic solids (Kuduva et al., 1999; Das et al., 2006). Compared with the well studied trimesic acid (benzene-1,3,5-tricarboxylic acid, H3TMA; Biradha et al., 1998; Paz et al., 2003), its isomer hemimellitic acid (benzene-1,2,3-tricarboxylic acid, H3HMA) has received little attention, with only few co-crystal structures reported to date (Dale et al., 2004; Du et al., 2005). As regards the angular dipyridyl derivative 4-amino-3,5-bis(2-pyridyl)-1,2,4-triazole (2-bpt), it can possibly provide multiple supramolecular interaction sites for molecular recognition, but organic crystals in relation to this component has rarely been studied up to now (Mernari et al., 1998; Ramos Silva et al., 2008). Herein the crystal structure of the title crystalline solid, 2-bpt.H3HMA.2H2O, is reported, which displays a 3-D supramolecular architecture and represents the new organic crystal for 2-bpt molecule.

The asymmetric unit of the title compound (Fig. 1) contains one 2-bpt, one H3HMA acid and two lattice water molecules. The dihedral angle between the 2-bpt and H3HMA rings is 5.4 (4)°. The two pyridyl groups of 2-bpt deviate by 10.7 (7)° from coplanarity and form dihedral angels of 3.4 (7) and 13.8 (7)°, respectively, with the central triazolyl ring. In the H3HMA molecule, the O3/C4/O4 carboxyl group is nearly perpendicular to the benzene plane (dihedral angle 81.4 (7)°), while the corresponding angles for the O1/C1/O2 and O5/C6/O6 groups are 7.8 (1) and 22.1 (8)°, respectively. In the 2-bpt molecule, N5—H5A···N6 and N5—H5B···N1 intramolecular hydrogen interactions are observed, as expected, between the terminal pyridyl and amino groups (Table 1). The O5—C6—O6 carboxyl groups of centrosymmetrically related H3HMA molecules form strong intermolecular hydrogen bonds, affording a dimeric unit with homosynthon of graph set R22(8) (Table 1). Furthermore, the dimers connect adjacent 2-bpt molecules via the nearly perpendicular carboxyl groups (Table 1), generating a 1-D supramolecular array along the [010] direction (Fig. 2). In addition, intrachain C20—H20···O6 contacts (Table 1) and ππ stacking interactions (centroid-centroid distance = 3.541 (3) Å) extend the chains into a 2-D layer. The lattice water molecules occupy the interspaces of adjacent layers. The molecule including the O8 oxygen atom forms interlayer O8—H8A···N2, O8—H8B···O2 and C14—H14···O8 interactions, within which a R22(7) synthon can be observed (Table 1); the water molecule including the O7 oxygen atom hydrogen-bonds adjacent layers and water molecules to finally afford a 3-D supramolecular structure (Table 1, Fig. 3). Examination of the interlayer solvent volume by PLATON (Spek, 2009) reveals a value of 81.0 Å3 (7.5% of the unit cell volume).

Related literature top

For background to the use of carboxylic acid in synthesis, see: Kuduva et al. (1999); Das et al. (2006). For the structure of trimesic acid, see: Biradha et al. (1998); Paz et al. (2003). For co-crystals of H3HMA, see: Dale et al. (2004); Du et al. (2005); For organic crystals of 4-amino-3,5-bis(2-pyridyl)-1,2,4-triazole (2-bpt), see: Mernari et al. (1998); Ramos Silva et al. (2008). For the preparation of 2-bpt, see: Bentiss et al. (1999).

Experimental top

A mixture of 2-bpt (Bentiss et al., 1999) (23.8 mg, 0.1 mmol), H3HMA.2H2O (24.6 mg, 0.1 mmol) and water (10 ml) was sealed in a Teflon-lined stainless steel vessel (20 ml), which was heated at 413 K for three days and then cooled to room temperature. Colourless block single crystals of the title compound were obtained in 52% yield (25.0 mg, based on 2-bpt). Anal. Calcd for C21H20N6O8: C, 52.07; H, 4.16, N, 17.35. Found: C, 52.16; H, 4.08, N, 17.25%. IR (cm-1): 3504s, 3275s, 1715vs, 1687vs, 1586s, 1559s, 1466s, 1412m, 1254vs, 1154s, 1076m, 1001s, 957m, 893m, 794s, 741s, 699m, 674s, 585m, 545m.

Refinement top

The water and amine H atoms were located in a difference Fourier map and refined with the O—H and N—H bond lengths constrained to 0.85 and 0.90 Å, respectively, and with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N). All other H atoms were placed at calculated positions and refined as riding, with C—H = 0.93 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Structure description top

Carboxylic acid is one of the most commonly used functional groups in designing specific organic solids (Kuduva et al., 1999; Das et al., 2006). Compared with the well studied trimesic acid (benzene-1,3,5-tricarboxylic acid, H3TMA; Biradha et al., 1998; Paz et al., 2003), its isomer hemimellitic acid (benzene-1,2,3-tricarboxylic acid, H3HMA) has received little attention, with only few co-crystal structures reported to date (Dale et al., 2004; Du et al., 2005). As regards the angular dipyridyl derivative 4-amino-3,5-bis(2-pyridyl)-1,2,4-triazole (2-bpt), it can possibly provide multiple supramolecular interaction sites for molecular recognition, but organic crystals in relation to this component has rarely been studied up to now (Mernari et al., 1998; Ramos Silva et al., 2008). Herein the crystal structure of the title crystalline solid, 2-bpt.H3HMA.2H2O, is reported, which displays a 3-D supramolecular architecture and represents the new organic crystal for 2-bpt molecule.

The asymmetric unit of the title compound (Fig. 1) contains one 2-bpt, one H3HMA acid and two lattice water molecules. The dihedral angle between the 2-bpt and H3HMA rings is 5.4 (4)°. The two pyridyl groups of 2-bpt deviate by 10.7 (7)° from coplanarity and form dihedral angels of 3.4 (7) and 13.8 (7)°, respectively, with the central triazolyl ring. In the H3HMA molecule, the O3/C4/O4 carboxyl group is nearly perpendicular to the benzene plane (dihedral angle 81.4 (7)°), while the corresponding angles for the O1/C1/O2 and O5/C6/O6 groups are 7.8 (1) and 22.1 (8)°, respectively. In the 2-bpt molecule, N5—H5A···N6 and N5—H5B···N1 intramolecular hydrogen interactions are observed, as expected, between the terminal pyridyl and amino groups (Table 1). The O5—C6—O6 carboxyl groups of centrosymmetrically related H3HMA molecules form strong intermolecular hydrogen bonds, affording a dimeric unit with homosynthon of graph set R22(8) (Table 1). Furthermore, the dimers connect adjacent 2-bpt molecules via the nearly perpendicular carboxyl groups (Table 1), generating a 1-D supramolecular array along the [010] direction (Fig. 2). In addition, intrachain C20—H20···O6 contacts (Table 1) and ππ stacking interactions (centroid-centroid distance = 3.541 (3) Å) extend the chains into a 2-D layer. The lattice water molecules occupy the interspaces of adjacent layers. The molecule including the O8 oxygen atom forms interlayer O8—H8A···N2, O8—H8B···O2 and C14—H14···O8 interactions, within which a R22(7) synthon can be observed (Table 1); the water molecule including the O7 oxygen atom hydrogen-bonds adjacent layers and water molecules to finally afford a 3-D supramolecular structure (Table 1, Fig. 3). Examination of the interlayer solvent volume by PLATON (Spek, 2009) reveals a value of 81.0 Å3 (7.5% of the unit cell volume).

For background to the use of carboxylic acid in synthesis, see: Kuduva et al. (1999); Das et al. (2006). For the structure of trimesic acid, see: Biradha et al. (1998); Paz et al. (2003). For co-crystals of H3HMA, see: Dale et al. (2004); Du et al. (2005); For organic crystals of 4-amino-3,5-bis(2-pyridyl)-1,2,4-triazole (2-bpt), see: Mernari et al. (1998); Ramos Silva et al. (2008). For the preparation of 2-bpt, see: Bentiss et al. (1999).

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level (the dotted lines indicate intramolecular hydrogen bonds).
[Figure 2] Fig. 2. Perspective view of the supramolecular array of the title compound extending along the [010] direction (intrachain ππ interactions and hydrogen bonds are shown as dashed lines).
[Figure 3] Fig. 3. View of the 3-D supramolecular structure of the title compound (interchain ππ interactions and hydrogen bonds are shown as dashed lines).
4-Amino-3,5-bis(2-pyridyl)-4H-1,2,4-triazole–benzene-1,2,3- tricarboxylic acid–water (1/1/2) top
Crystal data top
C12H10N6·C9H6O6·2H2OZ = 2
Mr = 484.43F(000) = 504
Triclinic, P1Dx = 1.492 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4266 (10) ÅCell parameters from 2173 reflections
b = 8.6317 (10) Åθ = 2.8–25.9°
c = 15.7318 (18) ŵ = 0.12 mm1
α = 75.152 (12)°T = 294 K
β = 77.179 (12)°Block, colourless
γ = 88.417 (13)°0.24 × 0.21 × 0.18 mm
V = 1078.0 (2) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3765 independent reflections
Radiation source: fine-focus sealed tube2832 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
phi and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 109
Tmin = 0.967, Tmax = 0.980k = 910
5932 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0552P)2 + 0.1197P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3765 reflectionsΔρmax = 0.18 e Å3
320 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.021 (2)
Crystal data top
C12H10N6·C9H6O6·2H2Oγ = 88.417 (13)°
Mr = 484.43V = 1078.0 (2) Å3
Triclinic, P1Z = 2
a = 8.4266 (10) ÅMo Kα radiation
b = 8.6317 (10) ŵ = 0.12 mm1
c = 15.7318 (18) ÅT = 294 K
α = 75.152 (12)°0.24 × 0.21 × 0.18 mm
β = 77.179 (12)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3765 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2832 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.980Rint = 0.018
5932 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.05Δρmax = 0.18 e Å3
3765 reflectionsΔρmin = 0.16 e Å3
320 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.15210 (17)0.29442 (17)0.47310 (9)0.0579 (4)
H10.20770.21670.50640.087*
O20.05082 (17)0.11617 (16)0.39702 (9)0.0569 (4)
O30.02722 (15)0.19395 (14)0.20039 (9)0.0415 (3)
H30.02320.10360.19300.062*
O40.24886 (16)0.10468 (15)0.25232 (9)0.0477 (3)
O50.32592 (17)0.38341 (17)0.07961 (9)0.0548 (4)
H50.38730.39490.02990.082*
O60.48197 (16)0.58328 (16)0.08438 (9)0.0546 (4)
N10.7015 (2)0.42032 (18)0.25775 (11)0.0484 (4)
N20.83363 (18)0.82310 (17)0.24200 (10)0.0402 (4)
N30.95863 (17)0.90648 (17)0.17665 (10)0.0387 (4)
N40.91424 (17)0.68331 (16)0.14315 (9)0.0355 (3)
N50.9121 (2)0.56814 (18)0.09338 (10)0.0482 (4)
H5A1.01310.57430.05830.058*
H5B0.88850.47270.13400.058*
N61.18042 (19)0.76103 (18)0.01199 (10)0.0462 (4)
C10.0538 (2)0.2505 (2)0.40647 (12)0.0395 (4)
C20.0538 (2)0.3858 (2)0.34279 (11)0.0353 (4)
C30.1524 (2)0.3644 (2)0.26222 (11)0.0332 (4)
C40.1486 (2)0.2056 (2)0.23849 (11)0.0353 (4)
C50.2564 (2)0.4922 (2)0.20656 (11)0.0341 (4)
C60.3642 (2)0.4873 (2)0.11777 (12)0.0385 (4)
C70.2594 (2)0.6357 (2)0.23120 (12)0.0410 (4)
H70.33080.71870.19450.049*
C80.1584 (2)0.6570 (2)0.30912 (12)0.0435 (5)
H80.15890.75450.32400.052*
C90.0569 (2)0.5320 (2)0.36447 (12)0.0415 (4)
H90.01080.54550.41730.050*
C100.6861 (2)0.5630 (2)0.27668 (11)0.0370 (4)
C110.5973 (3)0.3031 (2)0.31086 (14)0.0565 (6)
H110.60590.20320.29840.068*
C120.4780 (3)0.3209 (2)0.38293 (13)0.0529 (5)
H120.40920.23510.41850.063*
C130.4633 (2)0.4678 (3)0.40076 (13)0.0512 (5)
H130.38340.48430.44860.061*
C140.5686 (2)0.5914 (2)0.34694 (13)0.0494 (5)
H140.56060.69260.35780.059*
C150.8071 (2)0.6891 (2)0.22104 (11)0.0353 (4)
C161.0074 (2)0.8208 (2)0.11698 (11)0.0347 (4)
C171.1425 (2)0.8672 (2)0.03777 (11)0.0350 (4)
C181.3039 (2)0.8006 (3)0.08423 (13)0.0528 (5)
H181.33130.72810.11940.063*
C191.3924 (2)0.9422 (3)0.10926 (14)0.0516 (5)
H191.47770.96460.16000.062*
C201.3524 (2)1.0498 (3)0.05799 (13)0.0499 (5)
H201.41031.14690.07360.060*
C211.2256 (2)1.0132 (2)0.01692 (13)0.0454 (5)
H211.19651.08470.05260.054*
O70.65104 (17)0.06876 (17)0.58459 (10)0.0643 (4)
H7A0.54940.06620.58680.096*
H7B0.68340.01210.62990.096*
O80.68068 (17)0.91230 (18)0.40477 (10)0.0669 (5)
H8A0.72480.88890.35570.100*
H8B0.73660.97090.42400.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0631 (9)0.0537 (9)0.0466 (8)0.0169 (7)0.0181 (7)0.0186 (7)
O20.0668 (9)0.0442 (8)0.0499 (8)0.0155 (7)0.0125 (7)0.0144 (7)
O30.0465 (7)0.0343 (7)0.0474 (7)0.0019 (6)0.0106 (6)0.0166 (6)
O40.0462 (8)0.0411 (8)0.0517 (8)0.0069 (6)0.0058 (6)0.0096 (6)
O50.0656 (9)0.0533 (9)0.0392 (8)0.0188 (7)0.0109 (6)0.0179 (7)
O60.0509 (8)0.0587 (9)0.0459 (8)0.0208 (7)0.0083 (6)0.0128 (7)
N10.0552 (10)0.0360 (9)0.0493 (10)0.0050 (8)0.0032 (8)0.0091 (7)
N20.0413 (8)0.0344 (8)0.0413 (9)0.0055 (7)0.0000 (7)0.0108 (7)
N30.0408 (8)0.0327 (8)0.0403 (8)0.0040 (7)0.0027 (7)0.0103 (7)
N40.0392 (8)0.0311 (8)0.0369 (8)0.0028 (6)0.0059 (6)0.0115 (6)
N50.0577 (10)0.0433 (9)0.0448 (9)0.0134 (8)0.0009 (8)0.0210 (7)
N60.0503 (9)0.0411 (9)0.0434 (9)0.0009 (7)0.0023 (7)0.0147 (7)
C10.0402 (10)0.0446 (11)0.0321 (10)0.0070 (8)0.0016 (8)0.0114 (8)
C20.0355 (9)0.0389 (10)0.0318 (9)0.0044 (8)0.0067 (7)0.0096 (8)
C30.0327 (9)0.0347 (10)0.0316 (9)0.0026 (7)0.0065 (7)0.0074 (7)
C40.0368 (10)0.0344 (10)0.0300 (9)0.0030 (8)0.0004 (8)0.0063 (7)
C50.0335 (9)0.0365 (10)0.0311 (9)0.0025 (8)0.0066 (7)0.0069 (7)
C60.0400 (10)0.0364 (10)0.0353 (10)0.0053 (8)0.0039 (8)0.0055 (8)
C70.0432 (10)0.0394 (11)0.0382 (10)0.0106 (8)0.0072 (8)0.0066 (8)
C80.0524 (11)0.0391 (11)0.0426 (11)0.0062 (9)0.0104 (9)0.0159 (9)
C90.0434 (10)0.0495 (12)0.0336 (10)0.0051 (9)0.0047 (8)0.0166 (8)
C100.0384 (10)0.0349 (10)0.0367 (10)0.0023 (8)0.0083 (8)0.0069 (8)
C110.0714 (15)0.0356 (11)0.0556 (13)0.0132 (10)0.0043 (11)0.0066 (9)
C120.0592 (13)0.0483 (12)0.0446 (12)0.0186 (10)0.0076 (10)0.0017 (9)
C130.0458 (11)0.0630 (14)0.0423 (11)0.0128 (10)0.0021 (9)0.0141 (10)
C140.0471 (11)0.0468 (12)0.0525 (12)0.0096 (9)0.0001 (9)0.0178 (10)
C150.0350 (9)0.0324 (10)0.0375 (10)0.0007 (8)0.0062 (8)0.0087 (8)
C160.0368 (9)0.0290 (9)0.0380 (10)0.0018 (8)0.0081 (8)0.0081 (8)
C170.0354 (9)0.0335 (10)0.0351 (9)0.0010 (8)0.0082 (7)0.0069 (8)
C180.0558 (12)0.0521 (13)0.0470 (12)0.0038 (10)0.0016 (10)0.0181 (10)
C190.0411 (11)0.0606 (14)0.0463 (12)0.0011 (10)0.0005 (9)0.0100 (10)
C200.0399 (11)0.0532 (12)0.0516 (12)0.0117 (9)0.0026 (9)0.0099 (10)
C210.0430 (11)0.0461 (11)0.0466 (11)0.0055 (9)0.0032 (9)0.0160 (9)
O70.0588 (9)0.0635 (10)0.0571 (9)0.0175 (8)0.0048 (7)0.0036 (7)
O80.0636 (10)0.0714 (10)0.0649 (10)0.0227 (8)0.0080 (8)0.0329 (8)
Geometric parameters (Å, º) top
O1—C11.315 (2)C7—C81.380 (2)
O1—H10.8200C7—H70.9300
O2—C11.205 (2)C8—C91.376 (2)
O3—C41.313 (2)C8—H80.9300
O3—H30.8200C9—H90.9300
O4—C41.210 (2)C10—C141.379 (3)
O5—C61.283 (2)C10—C151.472 (2)
O5—H50.8200C11—C121.377 (3)
O6—C61.240 (2)C11—H110.9300
N1—C111.335 (2)C12—C131.364 (3)
N1—C101.336 (2)C12—H120.9300
N2—C151.319 (2)C13—C141.378 (3)
N2—N31.3661 (19)C13—H130.9300
N3—C161.328 (2)C14—H140.9300
N4—C161.361 (2)C16—C171.466 (2)
N4—C151.363 (2)C17—C211.386 (2)
N4—N51.4169 (19)C18—C191.370 (3)
N5—H5A0.9000C18—H180.9300
N5—H5B0.9000C19—C201.369 (3)
N6—C181.337 (2)C19—H190.9300
N6—C171.340 (2)C20—C211.378 (3)
C1—C21.498 (2)C20—H200.9300
C2—C91.391 (2)C21—H210.9300
C2—C31.406 (2)O7—H7A0.8500
C3—C51.404 (2)O7—H7B0.8499
C3—C41.513 (2)O8—H8A0.8510
C5—C71.392 (2)O8—H8B0.8502
C5—C61.498 (2)
C1—O1—H1109.5C2—C9—H9119.4
C4—O3—H3109.5N1—C10—C14122.72 (16)
C6—O5—H5109.5N1—C10—C15116.49 (15)
C11—N1—C10116.81 (16)C14—C10—C15120.73 (16)
C15—N2—N3107.75 (13)N1—C11—C12124.13 (19)
C16—N3—N2108.01 (13)N1—C11—H11117.9
C16—N4—C15106.25 (14)C12—C11—H11117.9
C16—N4—N5127.04 (14)C13—C12—C11118.18 (18)
C15—N4—N5126.14 (13)C13—C12—H12120.9
N4—N5—H5A104.7C11—C12—H12120.9
N4—N5—H5B106.5C12—C13—C14119.09 (19)
H5A—N5—H5B112.9C12—C13—H13120.5
C18—N6—C17117.34 (16)C14—C13—H13120.5
O2—C1—O1123.81 (16)C13—C14—C10119.07 (18)
O2—C1—C2123.40 (16)C13—C14—H14120.5
O1—C1—C2112.79 (16)C10—C14—H14120.5
C9—C2—C3120.26 (16)N2—C15—N4109.31 (14)
C9—C2—C1119.61 (15)N2—C15—C10124.55 (15)
C3—C2—C1120.12 (15)N4—C15—C10126.07 (15)
C5—C3—C2118.13 (15)N3—C16—N4108.69 (14)
C5—C3—C4121.57 (14)N3—C16—C17124.82 (15)
C2—C3—C4120.28 (14)N4—C16—C17126.47 (15)
O4—C4—O3125.30 (16)N6—C17—C21122.64 (16)
O4—C4—C3122.76 (16)N6—C17—C16116.38 (15)
O3—C4—C3111.93 (15)C21—C17—C16120.97 (16)
C7—C5—C3120.19 (15)N6—C18—C19123.60 (18)
C7—C5—C6116.12 (15)N6—C18—H18118.2
C3—C5—C6123.66 (15)C19—C18—H18118.2
O6—C6—O5123.63 (16)C20—C19—C18118.55 (18)
O6—C6—C5119.51 (16)C20—C19—H19120.7
O5—C6—C5116.85 (14)C18—C19—H19120.7
C8—C7—C5121.14 (16)C19—C20—C21119.48 (18)
C8—C7—H7119.4C19—C20—H20120.3
C5—C7—H7119.4C21—C20—H20120.3
C9—C8—C7119.08 (17)C20—C21—C17118.39 (18)
C9—C8—H8120.5C20—C21—H21120.8
C7—C8—H8120.5C17—C21—H21120.8
C8—C9—C2121.15 (16)H7A—O7—H7B117.1
C8—C9—H9119.4H8A—O8—H8B117.1
C15—N2—N3—C160.51 (19)C12—C13—C14—C100.1 (3)
O2—C1—C2—C9172.13 (19)N1—C10—C14—C130.7 (3)
O1—C1—C2—C98.4 (2)C15—C10—C14—C13176.28 (18)
O2—C1—C2—C37.0 (3)N3—N2—C15—N40.5 (2)
O1—C1—C2—C3172.47 (16)N3—N2—C15—C10177.44 (16)
C9—C2—C3—C51.9 (3)C16—N4—C15—N20.29 (19)
C1—C2—C3—C5177.24 (15)N5—N4—C15—N2172.11 (16)
C9—C2—C3—C4179.82 (16)C16—N4—C15—C10177.18 (17)
C1—C2—C3—C41.0 (2)N5—N4—C15—C1011.0 (3)
C5—C3—C4—O480.1 (2)N1—C10—C15—N2164.14 (17)
C2—C3—C4—O498.1 (2)C14—C10—C15—N213.0 (3)
C5—C3—C4—O398.72 (18)N1—C10—C15—N412.3 (3)
C2—C3—C4—O383.09 (19)C14—C10—C15—N4170.58 (18)
C2—C3—C5—C70.4 (3)N2—N3—C16—N40.33 (19)
C4—C3—C5—C7178.66 (17)N2—N3—C16—C17178.23 (16)
C2—C3—C5—C6178.20 (16)C15—N4—C16—N30.03 (19)
C4—C3—C5—C63.6 (3)N5—N4—C16—N3171.69 (16)
C7—C5—C6—O621.5 (3)C15—N4—C16—C17178.50 (17)
C3—C5—C6—O6160.65 (17)N5—N4—C16—C179.8 (3)
C7—C5—C6—O5157.19 (17)C18—N6—C17—C210.0 (3)
C3—C5—C6—O520.7 (3)C18—N6—C17—C16179.59 (17)
C3—C5—C7—C81.6 (3)N3—C16—C17—N6176.17 (17)
C6—C5—C7—C8176.36 (16)N4—C16—C17—N62.1 (3)
C5—C7—C8—C92.0 (3)N3—C16—C17—C213.5 (3)
C7—C8—C9—C20.5 (3)N4—C16—C17—C21178.23 (17)
C3—C2—C9—C81.5 (3)C17—N6—C18—C190.1 (3)
C1—C2—C9—C8177.70 (17)N6—C18—C19—C200.2 (3)
C11—N1—C10—C140.4 (3)C18—C19—C20—C210.1 (3)
C11—N1—C10—C15176.69 (17)C19—C20—C21—C170.0 (3)
C10—N1—C11—C120.4 (3)N6—C17—C21—C200.1 (3)
N1—C11—C12—C130.9 (3)C16—C17—C21—C20179.49 (17)
C11—C12—C13—C140.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O7i0.821.792.600 (2)171
O3—H3···N3ii0.821.902.698 (2)166
O5—H5···O6iii0.821.852.674 (2)177
N5—H5A···N60.902.082.786 (2)134
N5—H5B···N10.902.172.804 (2)127
O7—H7A···O8iv0.851.922.766 (2)172
O7—H7B···O4v0.852.062.908 (2)173
O8—H8A···N20.852.032.881 (2)177
O8—H8B···O2vi0.852.122.867 (2)147
C14—H14···O80.932.513.348 (2)149
C19—H19···O4vii0.932.583.427 (2)152
C20—H20···O6viii0.932.473.386 (3)167
Symmetry codes: (i) x1, y, z; (ii) x1, y1, z; (iii) x+1, y+1, z; (iv) x+1, y+1, z+1; (v) x+1, y, z+1; (vi) x+1, y+1, z; (vii) x+2, y+1, z; (viii) x+2, y+2, z.

Experimental details

Crystal data
Chemical formulaC12H10N6·C9H6O6·2H2O
Mr484.43
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)8.4266 (10), 8.6317 (10), 15.7318 (18)
α, β, γ (°)75.152 (12), 77.179 (12), 88.417 (13)
V3)1078.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.24 × 0.21 × 0.18
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.967, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
5932, 3765, 2832
Rint0.018
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.105, 1.05
No. of reflections3765
No. of parameters320
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.16

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O7i0.821.792.600 (2)171
O3—H3···N3ii0.821.902.698 (2)166
O5—H5···O6iii0.821.852.674 (2)177
N5—H5A···N60.902.082.786 (2)134
N5—H5B···N10.902.172.804 (2)127
O7—H7A···O8iv0.851.922.766 (2)172
O7—H7B···O4v0.852.062.908 (2)173
O8—H8A···N20.852.032.881 (2)177
O8—H8B···O2vi0.852.122.867 (2)147
C14—H14···O80.932.513.348 (2)149
C19—H19···O4vii0.932.583.427 (2)152
C20—H20···O6viii0.932.473.386 (3)167
Symmetry codes: (i) x1, y, z; (ii) x1, y1, z; (iii) x+1, y+1, z; (iv) x+1, y+1, z+1; (v) x+1, y, z+1; (vi) x+1, y+1, z; (vii) x+2, y+1, z; (viii) x+2, y+2, z.
 

Acknowledgements

The author gratefully acknowledges the financial support of Tianjin Normal University and Jiaxing University.

References

First citationBentiss, F., Lagrenee, M., Traisnel, M., Mernari, B. & Elattari, H. (1999). J. Heterocycl. Chem. 36, 149–152.  CrossRef CAS Google Scholar
First citationBiradha, K., Dennis, D., MacKinnon, V. A., Sharma, C. V. K. & Zaworotko, M. J. (1998). J. Am. Chem. Soc. 120, 11894–11903.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDale, S. H., Elsegood, M. R. J. & Coombs, A. E. L. (2004). CrystEngComm, 6, 328–335 .  Web of Science CSD CrossRef CAS Google Scholar
First citationDas, D. & Desiraju, G. R. (2006). CrystEngComm, 8, 674–679.  Web of Science CSD CrossRef CAS Google Scholar
First citationDu, M., Zhang, Z.-H. & You, Y.-P. (2005). Acta Cryst. C61, o574–o576.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKuduva, S. S., Craig, D. C., Nangia, A. & Desiraju, G. R. (1999). J. Am. Chem. Soc. 121, 1936–1944.  Web of Science CSD CrossRef CAS Google Scholar
First citationMernari, B., El Azhar, M., El Attari, H., Lagrenée, M. & Pierrot, M. (1998). Acta Cryst. C54, 1983–1986.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPaz, F. A. A. & Klinowski, J. (2003). CrystEngComm, 5, 238–244.  Web of Science CSD CrossRef CAS Google Scholar
First citationRamos Silva, M., Silva, J. A., Martins, N. D., Matos Beja, A. & Sobral, A. J. F. N. (2008). Acta Cryst. E64, o1762.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds