organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Pyrid­yl)pyridinium perchlorate methanol solvate

aSchool of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
*Correspondence e-mail: gaoyuhua8888@sina.com

(Received 25 March 2010; accepted 7 April 2010; online 14 April 2010)

In the cation of the title hydrated molecular salt, C10H9N2+·ClO4·CH3OH, the dihedral angle formed by the pyridine rings is 28.82 (15)°. The crystal structure is stabilized by inter­molecular N—H⋯O and O—H⋯N hydrogen bonds and ππ stacking inter­actions, with centroid-to-centroid distances of 3.5913 (7) and 3.6526 (7) Å. Three O atoms of the perchlorate anion are disordered over two positions with refined occupancy factors of 0.649 (7):0.351 (7).

Related literature

For simple mol­ecular–ionic crystals containing organic cations and acid radicals, see: Katrusiak & Szafrański (1999[Katrusiak, A. & Szafrański, M. (1999). Phys. Rev. Lett. 82, 576-579.], 2006[Katrusiak, A. & Szafrański, M. (2006). J. Am. Chem. Soc. 128, 15775-15785.]). For the crystal structure of 4,4′-bipyridin-1-ium perchlorate di­hydrate, see: Zhang et al. (2008[Zhang, J.-Y., Chen, A.-L. & Gao, E.-Q. (2008). J. Chem. Crystallogr. 38, 351-355.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9N2+·ClO4·CH4O

  • Mr = 288.68

  • Monoclinic, P 21 /c

  • a = 6.8822 (14) Å

  • b = 15.362 (3) Å

  • c = 12.254 (3) Å

  • β = 92.07 (3)°

  • V = 1294.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 293 K

  • 0.3 × 0.26 × 0.2 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.62, Tmax = 0.81

  • 13295 measured reflections

  • 2956 independent reflections

  • 1803 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.210

  • S = 1.00

  • 2956 reflections

  • 201 parameters

  • 88 restraints

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯N2i 0.88 1.99 2.857 (5) 167
N1—H1B⋯O5ii 0.86 2.12 2.825 (5) 139
N1—H1B⋯O1iii 0.86 2.31 3.010 (5) 138
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, much attention has been devoted to simple molecular–ionic crystals containing organic cations and acid radicals in 1:1 molar ratio due to the tunability of their special structural features and their interesting physical properties (Katrusiak & Szafrański, 1999, 2006). The crystal structure of 4,4'-bipyridin-1-ium perchlorate dihydrate have been reported (Zhang et al., 2008). In our laboratory, a compound containing a protonated 4,4'-bipyridin-1-ium cation has been synthesized, and its crystal structure is reported herein.

The asymmetric unit of the title compound (Fig. 1) consists of one 4,4'-bipyridin-1-ium cation, one ClO4- anion and one methanol molecule. In the cation, the pyridine rings are tilted by 28.82 (15)°. The crystal structure is stabilized by intermolecular N—H···O and O—H···N hydrogen bonds (Table 1) and ππ stacking interactions involving the unprotonated pyridine rings, with centroid-to-centroid distances of 3.5913 (7) and 3.6526 (7) Å. The hydrogen bonds result in the formation of chains along the c axis (Fig. 2).

Related literature top

For simple molecular–ionic crystals containing organic cations and acid radicals, see: Katrusiak & Szafrański (1999, 2006). For the crystal structure of 4,4'-bipyridin-1-ium perchlorate dihydrate, see: Zhang et al. (2008).

Experimental top

4,4'-Bipyridine (10 mmol) and 10% aqueous HClO4 in a molar ratio of 1:1 were mixed and dissolved in methanol. The mixture was heated to 323 K until a clear solution formed. The reaction mixture was cooled slowly to room temperature, crystals of the title compound suitable for X-ray analysis were obtained, collected and washed with dilute aqueous HClO4.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.93 Å, O—H = 0.85 Å and N—H = 0.86 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(O). The O2, O3 and O4 oxygen atoms of the perchlorate anion are disordered over two positions with refined occupancy factors of 0.649 (7):0.351 (7). Within the anion, the geometry of the Cl—O bonds was restrained to be similar by the SAME instruction, and the displacement ellipsoids were restrained to be nearly isotropic by the ISOR instruction.

Structure description top

Recently, much attention has been devoted to simple molecular–ionic crystals containing organic cations and acid radicals in 1:1 molar ratio due to the tunability of their special structural features and their interesting physical properties (Katrusiak & Szafrański, 1999, 2006). The crystal structure of 4,4'-bipyridin-1-ium perchlorate dihydrate have been reported (Zhang et al., 2008). In our laboratory, a compound containing a protonated 4,4'-bipyridin-1-ium cation has been synthesized, and its crystal structure is reported herein.

The asymmetric unit of the title compound (Fig. 1) consists of one 4,4'-bipyridin-1-ium cation, one ClO4- anion and one methanol molecule. In the cation, the pyridine rings are tilted by 28.82 (15)°. The crystal structure is stabilized by intermolecular N—H···O and O—H···N hydrogen bonds (Table 1) and ππ stacking interactions involving the unprotonated pyridine rings, with centroid-to-centroid distances of 3.5913 (7) and 3.6526 (7) Å. The hydrogen bonds result in the formation of chains along the c axis (Fig. 2).

For simple molecular–ionic crystals containing organic cations and acid radicals, see: Katrusiak & Szafrański (1999, 2006). For the crystal structure of 4,4'-bipyridin-1-ium perchlorate dihydrate, see: Zhang et al. (2008).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with atom labels. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound. Intermolecular hydrogen bonds and centroid-to-centroid distances are drawn as dashed lines.
4-(4-Pyridyl)pyridinium perchlorate methanol solvate top
Crystal data top
C10H9N2+·ClO4·CH4OF(000) = 600
Mr = 288.68Dx = 1.481 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1803 reflections
a = 6.8822 (14) Åθ = 3.1–27.5°
b = 15.362 (3) ŵ = 0.31 mm1
c = 12.254 (3) ÅT = 293 K
β = 92.07 (3)°Block, colourless
V = 1294.7 (5) Å30.3 × 0.26 × 0.2 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
2956 independent reflections
Radiation source: fine-focus sealed tube1803 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1919
Tmin = 0.62, Tmax = 0.81l = 1515
13295 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.210H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0767P)2 + 2.5927P]
where P = (Fo2 + 2Fc2)/3
2956 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.63 e Å3
88 restraintsΔρmin = 0.60 e Å3
Crystal data top
C10H9N2+·ClO4·CH4OV = 1294.7 (5) Å3
Mr = 288.68Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.8822 (14) ŵ = 0.31 mm1
b = 15.362 (3) ÅT = 293 K
c = 12.254 (3) Å0.3 × 0.26 × 0.2 mm
β = 92.07 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2956 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1803 reflections with I > 2σ(I)
Tmin = 0.62, Tmax = 0.81Rint = 0.067
13295 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07988 restraints
wR(F2) = 0.210H-atom parameters constrained
S = 1.00Δρmax = 0.63 e Å3
2956 reflectionsΔρmin = 0.60 e Å3
201 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.7627 (6)0.5390 (3)0.5916 (4)0.0459 (11)
H1A0.77040.58820.63560.055*
C20.7575 (6)0.5504 (3)0.4801 (3)0.0395 (10)
H2A0.76240.60610.45050.047*
C30.7449 (6)0.4786 (3)0.4128 (3)0.0348 (9)
C40.7326 (7)0.3979 (3)0.4625 (4)0.0464 (11)
H4A0.71850.34780.42050.056*
C50.7414 (7)0.3929 (3)0.5742 (4)0.0522 (12)
H5A0.73600.33800.60600.063*
C60.6765 (7)0.5634 (4)0.1258 (4)0.0564 (13)
H6A0.62780.61210.08890.068*
C70.6747 (7)0.5599 (3)0.2371 (4)0.0469 (11)
H7A0.62700.60670.27630.056*
C80.7450 (6)0.4859 (3)0.2922 (3)0.0370 (9)
C90.8198 (7)0.4193 (3)0.2298 (4)0.0494 (11)
H9A0.87020.36960.26370.059*
C100.8194 (8)0.4267 (4)0.1186 (4)0.0565 (13)
H10A0.86980.38200.07690.068*
C110.1539 (10)0.6691 (3)0.1471 (5)0.0727 (17)
H11A0.08370.69220.08440.087*
H11B0.27890.69670.15410.087*
H11C0.08230.68010.21140.087*
N10.7476 (6)0.4972 (3)0.0702 (3)0.0547 (11)
H1B0.74700.50030.00020.066*
N20.7572 (5)0.4616 (3)0.6398 (3)0.0472 (9)
O50.1785 (5)0.5786 (2)0.1341 (2)0.0537 (9)
H50.21070.55990.20020.081*
Cl10.32539 (19)0.19524 (7)0.64038 (10)0.0531 (4)
O10.3132 (6)0.1030 (2)0.6349 (3)0.0634 (9)
O20.335 (2)0.2182 (8)0.7540 (9)0.0659 (15)0.351 (7)
O30.1581 (17)0.2295 (7)0.5822 (11)0.0606 (9)0.351 (7)
O40.3801 (19)0.2310 (7)0.5350 (9)0.0601 (9)0.351 (7)
O2'0.4433 (12)0.2213 (4)0.7329 (6)0.0739 (13)0.649 (7)
O3'0.1388 (10)0.2337 (4)0.6422 (7)0.0717 (12)0.649 (7)
O4'0.4702 (11)0.2228 (4)0.5685 (6)0.0732 (12)0.649 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.046 (3)0.048 (3)0.044 (3)0.001 (2)0.000 (2)0.008 (2)
C20.042 (2)0.036 (2)0.040 (2)0.0015 (18)0.0002 (18)0.0001 (17)
C30.032 (2)0.039 (2)0.034 (2)0.0004 (17)0.0020 (16)0.0025 (17)
C40.062 (3)0.036 (2)0.041 (2)0.005 (2)0.001 (2)0.0002 (18)
C50.065 (3)0.049 (3)0.042 (2)0.004 (2)0.003 (2)0.009 (2)
C60.050 (3)0.073 (3)0.046 (3)0.002 (3)0.001 (2)0.018 (3)
C70.049 (3)0.050 (3)0.042 (2)0.003 (2)0.004 (2)0.008 (2)
C80.034 (2)0.043 (2)0.033 (2)0.0030 (18)0.0007 (17)0.0013 (17)
C90.055 (3)0.051 (3)0.042 (3)0.005 (2)0.003 (2)0.005 (2)
C100.059 (3)0.073 (4)0.038 (3)0.002 (3)0.002 (2)0.011 (2)
C110.110 (5)0.051 (3)0.056 (3)0.008 (3)0.010 (3)0.003 (3)
N10.043 (2)0.089 (3)0.0322 (19)0.011 (2)0.0008 (17)0.004 (2)
N20.047 (2)0.059 (2)0.0356 (19)0.0010 (18)0.0017 (16)0.0006 (18)
O50.082 (2)0.0453 (18)0.0341 (16)0.0012 (16)0.0031 (15)0.0001 (13)
Cl10.0674 (8)0.0371 (6)0.0546 (7)0.0098 (5)0.0003 (5)0.0051 (5)
O10.093 (2)0.0369 (12)0.0603 (19)0.0094 (12)0.0059 (17)0.0059 (12)
O20.084 (3)0.055 (3)0.0592 (16)0.012 (3)0.000 (2)0.015 (2)
O30.0715 (16)0.0479 (16)0.0622 (17)0.0064 (14)0.0005 (14)0.0015 (16)
O40.0722 (17)0.0470 (16)0.0609 (15)0.0095 (16)0.0001 (15)0.0018 (14)
O2'0.084 (3)0.063 (2)0.074 (2)0.014 (3)0.010 (2)0.019 (2)
O3'0.0757 (18)0.062 (2)0.077 (3)0.0039 (18)0.004 (2)0.011 (2)
O4'0.074 (2)0.066 (2)0.080 (2)0.017 (2)0.007 (2)0.012 (2)
Geometric parameters (Å, º) top
C1—N21.329 (6)C9—H9A0.9300
C1—C21.376 (6)C10—N11.322 (7)
C1—H1A0.9300C10—H10A0.9300
C2—C31.379 (6)C11—O51.411 (6)
C2—H2A0.9300C11—H11A0.9600
C3—C41.384 (6)C11—H11B0.9600
C3—C81.481 (5)C11—H11C0.9600
C4—C51.370 (6)N1—H1B0.8600
C4—H4A0.9300O5—H50.8804
C5—N21.329 (6)Cl1—O3'1.415 (7)
C5—H5A0.9300Cl1—O4'1.419 (6)
C6—N11.327 (7)Cl1—O11.420 (3)
C6—C71.366 (7)Cl1—O2'1.428 (6)
C6—H6A0.9300Cl1—O31.432 (12)
C7—C81.400 (6)Cl1—O21.435 (11)
C7—H7A0.9300Cl1—O41.465 (11)
C8—C91.387 (6)O3—O41.653 (19)
C9—C101.368 (6)
N2—C1—C2123.8 (4)O5—C11—H11B109.5
N2—C1—H1A118.1H11A—C11—H11B109.5
C2—C1—H1A118.1O5—C11—H11C109.5
C1—C2—C3119.3 (4)H11A—C11—H11C109.5
C1—C2—H2A120.3H11B—C11—H11C109.5
C3—C2—H2A120.3C10—N1—C6122.5 (4)
C2—C3—C4117.2 (4)C10—N1—H1B118.8
C2—C3—C8122.3 (4)C6—N1—H1B118.8
C4—C3—C8120.6 (4)C1—N2—C5116.4 (4)
C5—C4—C3119.3 (4)C11—O5—H5104.2
C5—C4—H4A120.4O3'—Cl1—O4'122.9 (5)
C3—C4—H4A120.4O3'—Cl1—O1111.4 (3)
N2—C5—C4124.0 (4)O4'—Cl1—O1108.1 (3)
N2—C5—H5A118.0O3'—Cl1—O2'111.1 (4)
C4—C5—H5A118.0O4'—Cl1—O2'91.0 (6)
N1—C6—C7120.0 (5)O1—Cl1—O2'110.4 (3)
N1—C6—H6A120.0O4'—Cl1—O398.7 (7)
C7—C6—H6A120.0O1—Cl1—O3107.3 (5)
C6—C7—C8119.9 (5)O2'—Cl1—O3135.7 (6)
C6—C7—H7A120.1O3'—Cl1—O283.7 (6)
C8—C7—H7A120.1O4'—Cl1—O2121.4 (7)
C9—C8—C7117.5 (4)O1—Cl1—O2106.9 (5)
C9—C8—C3120.5 (4)O3—Cl1—O2113.5 (7)
C7—C8—C3122.0 (4)O3'—Cl1—O496.9 (7)
C10—C9—C8120.0 (5)O1—Cl1—O4110.4 (5)
C10—C9—H9A120.0O2'—Cl1—O4116.0 (7)
C8—C9—H9A120.0O3—Cl1—O469.6 (8)
N1—C10—C9120.1 (5)O2—Cl1—O4139.4 (7)
N1—C10—H10A119.9Cl1—O3—O456.1 (6)
C9—C10—H10A119.9Cl1—O4—O354.3 (6)
O5—C11—H11A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···N2i0.881.992.857 (5)167
N1—H1B···O5ii0.862.122.825 (5)139
N1—H1B···O1iii0.862.313.010 (5)138
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H9N2+·ClO4·CH4O
Mr288.68
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.8822 (14), 15.362 (3), 12.254 (3)
β (°) 92.07 (3)
V3)1294.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.3 × 0.26 × 0.2
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.62, 0.81
No. of measured, independent and
observed [I > 2σ(I)] reflections
13295, 2956, 1803
Rint0.067
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.210, 1.00
No. of reflections2956
No. of parameters201
No. of restraints88
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.60

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···N2i0.881.992.857 (5)167.1
N1—H1B···O5ii0.862.122.825 (5)138.6
N1—H1B···O1iii0.862.313.010 (5)138.3
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by a start-up grant from Jiangsu University of Science and Technology.

References

First citationKatrusiak, A. & Szafrański, M. (1999). Phys. Rev. Lett. 82, 576–579.  Web of Science CrossRef CAS Google Scholar
First citationKatrusiak, A. & Szafrański, M. (2006). J. Am. Chem. Soc. 128, 15775–15785.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J.-Y., Chen, A.-L. & Gao, E.-Q. (2008). J. Chem. Crystallogr. 38, 351–355.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds