organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Hy­droxy­phenyl­imino)indolin-2-one

aSchool of Environmental Engineering, Chang'an University, South Second Cycle Road 368, Xi'an 710054, Shannxi, People's Republic of China
*Correspondence e-mail: cg1014@126.com

(Received 26 March 2010; accepted 6 April 2010; online 10 April 2010)

In the title compound, C14H10N2O2, the dihedral angle between the indole and benzene rings is 61.63 (4)°. In the crystal structure, centrosymmetrically related mol­ecules are linked into dimers by N—H⋯O hydrogen bonds, generating rings of graph-set motif R22(8). The dimers are further connected into a three-dimensional network by O—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For the synthesis and applications of 3-imino­indole-2-one derivatives, see: Chen, Tang, Zhou & Hao (2009[Chen, G., Tang, Y., Zhou, L. G. & Hao, X. J. (2009). Huaxue Tongbao, 72, W09003.]); Chen, Tang, Wang et al. (2009[Chen, G., Tang, Y., Wang, M. X., Zhang, J. & Hao, X. J. (2009). Chem. World, 50, 620-622.]); Chen et al. (2007[Chen, G., Wang, Y., He, H. P., Li, S. L., Zhou, L. G. & Hao, X. J. (2007). Acta Bot. Yunnanica, 29, 717-721.]); Liu et al. (2003[Liu, Y. C., Lashuel, H. A., Choi, S. W., Xing, X. C., Case, A., Ni, J., Yeh, L. A., Cuny, G. D., Stein, R. L. & Lansbury, P. T. (2003). Chem. Biol. 10, 837-846.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10N2O2

  • Mr = 238.24

  • Monoclinic, P 21 /n

  • a = 5.7662 (17) Å

  • b = 15.383 (5) Å

  • c = 12.898 (4) Å

  • β = 100.479 (16)°

  • V = 1124.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.36 × 0.27 × 0.21 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.889, Tmax = 0.927

  • 6932 measured reflections

  • 2795 independent reflections

  • 1878 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.125

  • S = 1.03

  • 2795 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2B⋯O1i 0.82 1.96 2.7628 (17) 165
N1—H1A⋯O1ii 0.86 2.12 2.9071 (16) 153
C10—H10A⋯O2iii 0.93 2.38 3.275 (2) 160
C11—H11A⋯O1i 0.93 2.52 3.117 (2) 122
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2002[Bruker (2002). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

3-Imine-indole-2-one derivatives have driven much attentions for their bioactivities such as anti-bacterial, anti-virus and neuroprotective activities (Chen, Tang, Zhou & Hao, 2009; Chen, Tang, Wang et al., 2009; Chen et al., 2007; Liu et al., 2003). The title compound, 3-(4-hydroxyphenylimino)indolin-2-one, has been synthesized by the condensation reaction of isatin and 4-aminophenol, and its crystal structure is reported herein.

The X-ray structural analysis confirmed the assignment of the structure from spectroscopic data. The molecular structure is depicted in Fig. 1, and a packing diagram of is depicted in Fig. 2. Geometric parameters of the title compound are in the usual ranges. The dihedral angle between the indole and benzene rings is 61.63 (4)°. The C2–N2–C9 angle is 122.97 (12)°, and the C8–C2–N2–C9 torsion angle is -9.0 (3). In the crystal structure, centrosymmetrically related molecules are linked into dimers by N—H···O hydrogen bonds (Table 1) generating rings of graph set motif R22(8). The dimers are further connected into a three-dimensional network by O—H···O and C—H···O hydrogen bonds.

Related literature top

For the synthesis and applications of 3-iminoindole-2-one derivatives, see: Chen, Tang, Zhou & Hao (2009); Chen, Tang, Wang et al. (2009); Chen et al. (2007); Liu et al. (2003).

Experimental top

Isatin (1 mmol) was dissolved in methanol (20 ml) and a methanol solution of 1.2 mmol 4-aminophenol (10 ml) was added dropwise, until the disappearance of isatin, as evidenced by thin-layer chromatography. The solvent was removed in vacuo and the residue was separated by column chromatography (silica gel, petroleum ether/ethyl acetate = 1:1 v/v), to give the title compound. Yellow single crystals of the title compound suitable for X-ray analysis were obtained on slow evaporation of a methanol solution (30 ml) of the title compound (30 mg) over a period of 4 d. 1H-NMR (D6—DMSO, 400 MHz): 10.92 (1H, s), 9.56 (1H, s), 7.32 (2H, m), 6.86 (4H, m), 6.74 (3H, m); MS (EI) m/z: 238 (M+).

Refinement top

All H atoms were placed at calculated positions and refined as riding, with C—H = 0.93 Å, N—H = 0.86 Å and O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(O).

Structure description top

3-Imine-indole-2-one derivatives have driven much attentions for their bioactivities such as anti-bacterial, anti-virus and neuroprotective activities (Chen, Tang, Zhou & Hao, 2009; Chen, Tang, Wang et al., 2009; Chen et al., 2007; Liu et al., 2003). The title compound, 3-(4-hydroxyphenylimino)indolin-2-one, has been synthesized by the condensation reaction of isatin and 4-aminophenol, and its crystal structure is reported herein.

The X-ray structural analysis confirmed the assignment of the structure from spectroscopic data. The molecular structure is depicted in Fig. 1, and a packing diagram of is depicted in Fig. 2. Geometric parameters of the title compound are in the usual ranges. The dihedral angle between the indole and benzene rings is 61.63 (4)°. The C2–N2–C9 angle is 122.97 (12)°, and the C8–C2–N2–C9 torsion angle is -9.0 (3). In the crystal structure, centrosymmetrically related molecules are linked into dimers by N—H···O hydrogen bonds (Table 1) generating rings of graph set motif R22(8). The dimers are further connected into a three-dimensional network by O—H···O and C—H···O hydrogen bonds.

For the synthesis and applications of 3-iminoindole-2-one derivatives, see: Chen, Tang, Zhou & Hao (2009); Chen, Tang, Wang et al. (2009); Chen et al. (2007); Liu et al. (2003).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT-Plus (Bruker, 2002); data reduction: SAINT-Plus (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing of the title compound viewed along the a axis. Intermolecular hyderogen bonds are drawn as dashed lines.
3-(4-Hydroxyphenylimino)indolin-2-one top
Crystal data top
C14H10N2O2F(000) = 496.0
Mr = 238.24Dx = 1.407 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7285 reflections
a = 5.7662 (17) Åθ = 1.5–25.0°
b = 15.383 (5) ŵ = 0.10 mm1
c = 12.898 (4) ÅT = 296 K
β = 100.479 (16)°Block, colourless
V = 1124.9 (6) Å30.36 × 0.27 × 0.21 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2795 independent reflections
Radiation source: fine-focus sealed tube1878 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 29.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 77
Tmin = 0.889, Tmax = 0.927k = 1420
6932 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0634P)2]
where P = (Fo2 + 2Fc2)/3
2817 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C14H10N2O2V = 1124.9 (6) Å3
Mr = 238.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.7662 (17) ŵ = 0.10 mm1
b = 15.383 (5) ÅT = 296 K
c = 12.898 (4) Å0.36 × 0.27 × 0.21 mm
β = 100.479 (16)°
Data collection top
Bruker SMART CCD
diffractometer
2795 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1878 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 0.927Rint = 0.031
6932 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.03Δρmax = 0.14 e Å3
2817 reflectionsΔρmin = 0.21 e Å3
163 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0767 (2)0.57962 (7)0.09248 (8)0.0495 (3)
C80.6699 (3)0.51698 (9)0.25693 (11)0.0352 (3)
C20.8660 (3)0.57392 (9)0.24134 (11)0.0340 (3)
C100.7471 (3)0.70670 (10)0.39972 (11)0.0393 (4)
H10A0.61980.70510.34390.047*
N20.9971 (2)0.63123 (8)0.29290 (9)0.0400 (3)
O20.9021 (2)0.79318 (8)0.66799 (7)0.0508 (3)
H2B0.80870.83380.65660.076*
C90.9565 (3)0.66564 (10)0.39018 (11)0.0353 (3)
C60.4499 (3)0.40004 (11)0.15667 (13)0.0475 (4)
H6A0.41900.36510.09690.057*
N10.7719 (2)0.48427 (9)0.09663 (9)0.0444 (4)
H1A0.76770.45960.03650.053*
C120.9123 (3)0.75150 (10)0.57572 (10)0.0355 (3)
C40.3698 (3)0.44199 (11)0.32725 (13)0.0486 (4)
H4A0.28350.43400.38080.058*
C30.5427 (3)0.50578 (11)0.33753 (12)0.0429 (4)
H3A0.57280.54050.39750.051*
C70.6211 (3)0.46330 (9)0.16765 (11)0.0375 (4)
C10.9229 (3)0.54782 (10)0.13512 (11)0.0388 (4)
C110.7262 (3)0.74994 (10)0.49164 (11)0.0373 (4)
H11A0.58600.77810.49680.045*
C50.3247 (3)0.39038 (11)0.23869 (14)0.0513 (4)
H5A0.20780.34810.23350.062*
C131.1198 (3)0.70905 (11)0.56766 (12)0.0475 (4)
H13A1.24410.70820.62480.057*
C141.1421 (3)0.66800 (12)0.47483 (12)0.0473 (4)
H14A1.28410.64150.46910.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0656 (8)0.0479 (7)0.0418 (6)0.0122 (6)0.0279 (6)0.0074 (5)
C80.0407 (9)0.0316 (8)0.0344 (7)0.0034 (6)0.0096 (6)0.0006 (6)
C20.0396 (9)0.0333 (8)0.0311 (7)0.0018 (6)0.0118 (6)0.0011 (6)
C100.0357 (9)0.0460 (9)0.0333 (8)0.0007 (7)0.0015 (6)0.0071 (6)
N20.0444 (8)0.0408 (7)0.0370 (7)0.0015 (6)0.0132 (6)0.0065 (6)
O20.0590 (8)0.0577 (7)0.0318 (6)0.0143 (6)0.0024 (5)0.0126 (5)
C90.0372 (8)0.0367 (8)0.0329 (7)0.0032 (6)0.0088 (6)0.0056 (6)
C60.0539 (11)0.0398 (9)0.0491 (9)0.0052 (8)0.0101 (8)0.0073 (7)
N10.0591 (9)0.0440 (8)0.0339 (7)0.0101 (7)0.0185 (6)0.0116 (6)
C120.0413 (9)0.0357 (8)0.0279 (7)0.0013 (6)0.0023 (6)0.0033 (6)
C40.0496 (11)0.0488 (10)0.0525 (10)0.0006 (8)0.0228 (8)0.0083 (8)
C30.0518 (10)0.0416 (9)0.0386 (8)0.0025 (7)0.0174 (7)0.0012 (7)
C70.0439 (9)0.0342 (8)0.0360 (8)0.0011 (7)0.0116 (7)0.0002 (6)
C10.0485 (10)0.0371 (8)0.0334 (7)0.0006 (7)0.0140 (7)0.0012 (6)
C110.0339 (8)0.0399 (8)0.0375 (8)0.0037 (7)0.0047 (6)0.0065 (7)
C50.0490 (11)0.0429 (10)0.0636 (11)0.0070 (8)0.0148 (9)0.0040 (8)
C130.0405 (10)0.0587 (11)0.0384 (8)0.0079 (8)0.0061 (7)0.0083 (8)
C140.0347 (9)0.0562 (10)0.0504 (9)0.0061 (7)0.0061 (7)0.0123 (8)
Geometric parameters (Å, º) top
O1—C11.2271 (18)C6—H6A0.9300
C8—C31.388 (2)N1—C11.343 (2)
C8—C71.403 (2)N1—C71.4103 (18)
C8—C21.472 (2)N1—H1A0.8600
C2—N21.2682 (19)C12—C111.380 (2)
C2—C11.5197 (19)C12—C131.383 (2)
C10—C111.3835 (19)C4—C31.388 (2)
C10—C91.388 (2)C4—C51.376 (2)
C10—H10A0.9300C4—H4A0.9300
N2—C91.4199 (17)C3—H3A0.9300
O2—C121.3624 (16)C11—H11A0.9300
O2—H2B0.8200C5—H5A0.9300
C9—C141.383 (2)C13—C141.380 (2)
C6—C71.375 (2)C13—H13A0.9300
C6—C51.393 (2)C14—H14A0.9300
C3—C8—C7119.14 (14)C3—C4—H4A119.6
C3—C8—C2134.40 (14)C5—C4—H4A119.6
C7—C8—C2106.41 (12)C4—C3—C8118.99 (15)
N2—C2—C8137.84 (13)C4—C3—H3A120.5
N2—C2—C1116.76 (13)C8—C3—H3A120.5
C8—C2—C1105.25 (12)C6—C7—C8122.30 (14)
C11—C10—C9120.48 (14)C6—C7—N1127.65 (14)
C11—C10—H10A119.8C8—C7—N1110.06 (13)
C9—C10—H10A119.8O1—C1—N1126.69 (13)
C2—N2—C9122.96 (13)O1—C1—C2126.23 (14)
C12—O2—H2B109.5N1—C1—C2107.08 (12)
C14—C9—C10118.60 (13)C12—C11—C10120.35 (14)
C14—C9—N2118.64 (14)C12—C11—H11A119.8
C10—C9—N2122.26 (13)C10—C11—H11A119.8
C7—C6—C5117.31 (15)C6—C5—C4121.52 (16)
C7—C6—H6A121.3C6—C5—H5A119.2
C5—C6—H6A121.3C4—C5—H5A119.2
C1—N1—C7111.18 (12)C12—C13—C14119.96 (15)
C1—N1—H1A124.4C12—C13—H13A120.0
C7—N1—H1A124.4C14—C13—H13A120.0
C11—C12—C13119.48 (13)C9—C14—C13121.07 (15)
C11—C12—O2122.94 (13)C9—C14—H14A119.5
C13—C12—O2117.57 (13)C13—C14—H14A119.5
C3—C4—C5120.74 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···O1i0.821.962.7628 (17)165
N1—H1A···O1ii0.862.122.9071 (16)153
C10—H10A···O2iii0.932.383.275 (2)160
C11—H11A···O1i0.932.523.117 (2)122
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+2, y+1, z; (iii) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H10N2O2
Mr238.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)5.7662 (17), 15.383 (5), 12.898 (4)
β (°) 100.479 (16)
V3)1124.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.36 × 0.27 × 0.21
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.889, 0.927
No. of measured, independent and
observed [I > 2σ(I)] reflections
6932, 2795, 1878
Rint0.031
(sin θ/λ)max1)0.681
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.125, 1.03
No. of reflections2817
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.21

Computer programs: SMART (Bruker, 2002), SAINT-Plus (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···O1i0.821.962.7628 (17)165.4
N1—H1A···O1ii0.862.122.9071 (16)152.6
C10—H10A···O2iii0.932.383.275 (2)160.2
C11—H11A···O1i0.932.523.117 (2)122.4
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+2, y+1, z; (iii) x1/2, y+3/2, z1/2.
 

Acknowledgements

This work was supported financially by two grants from the Scientific Research Plan Projects of Shaanxi Education Department (Nos. 08 J K414 and 09 J K702).

References

First citationBruker (2002). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, G., Tang, Y., Wang, M. X., Zhang, J. & Hao, X. J. (2009). Chem. World, 50, 620–622.  Google Scholar
First citationChen, G., Tang, Y., Zhou, L. G. & Hao, X. J. (2009). Huaxue Tongbao, 72, W09003.  Google Scholar
First citationChen, G., Wang, Y., He, H. P., Li, S. L., Zhou, L. G. & Hao, X. J. (2007). Acta Bot. Yunnanica, 29, 717–721.  CAS Google Scholar
First citationLiu, Y. C., Lashuel, H. A., Choi, S. W., Xing, X. C., Case, A., Ni, J., Yeh, L. A., Cuny, G. D., Stein, R. L. & Lansbury, P. T. (2003). Chem. Biol. 10, 837–846.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds