metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-μ-benzoato-κ4O:O′;κ3O:O,O′;κ3O,O′:O′-bis­­[(benzoato-κ2O,O′)(1,10-phenanthroline-κ2N,N′)europium(III)] benzoic acid disolvate

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 31 March 2010; accepted 26 April 2010; online 30 April 2010)

The asymmetric unit of the title complex, [Eu2(C7H5O2)6(C12H8N2)2]·2C6H5COOH, contains one-half of the complex mol­ecule, the complete mol­ecule being generated by inversion symmetry, and one benzoic acid solvent mol­ecule. The two EuIII ions are linked by four bridging benzoate ions, with an Eu⋯Eu distance of 3.96041 (12) Å. Each EuIII ion is coordinated by one phenanthroline heterocycle and a bidentate benzoate ion. The irregular nine-coordinated geometry of the metal ion is composed of seven O and two N atoms. The mol­ecular structure is stabilized by intra­molecular C—H⋯O hydrogen bonds. In the crystal structure, mol­ecules are linked into chains by inter­molecular C—H⋯O hydrogen bonds along the a axis. The crystal structure is further stabilized by inter­molecular C—H⋯O and C—H⋯π inter­actions. Weak ππ inter­actions are also observed [centroid–centroid distances = 3.6962 (10)–3.6963 (10) Å].

Related literature

For general background to and applications of europium(III) complexes, see: Yam & Lo (1999[Yam, V. W. W. & Lo, K. K. W. (1999). Coord. Chem. Rev. 184, 157-240.]); Beeby et al. (2003[Beeby, A., Botchway, S. W., Clarkson, I. M., Faulkner, S., Parker, A. W., Parker, D. & William, J. A. G. (2003). J. Photochem. Photobiol B Biol. 57, 83-89.]); Tang et al. (2008[Tang, Z. H., Liu, D. Y., Tang, Y. & Cao, X. P. (2008). Z. Anorg. Allg. Chem. 634, 392-396.]); Faulkner et al. (2005[Faulkner, S., Pope, S. J. A. & Burton-Pye, B. P. (2005). Appl. Spectrosc. Rev. 40, 1-31.]). For related Ln–benzoato complexes (Ln = lanthanide), see: Niu et al. (1999[Niu, S. Y., Jin, J., Bu, W. M., Yang, G. D., Cao, J. Q. & Yang, B. (1999). Chin. J. Struct. Chem. 18, 245-248.], 2002[Niu, S. Y., Jin, J., Jin, X. L. & Yang, Z. Z. (2002). Solid State Sci. 4, 1103-1106.]); Shi et al. (2001[Shi, Q., Hu, M., Cao, R., Liang, Y. & Hong, M. (2001). Acta Cryst. E57, m122-m123.]); Ooi et al. (2010[Ooi, P. H., Teoh, S. G., Goh, J. H. & Fun, H.-K. (2010). Acta Cryst. E66, m221-m222.]).

[Scheme 1]

Experimental

Crystal data
  • [Eu2(C7H5O2)6(C12H8N2)2]·2C7H6O2

  • Mr = 1635.22

  • Triclinic, [P \overline 1]

  • a = 9.6688 (2) Å

  • b = 12.8260 (2) Å

  • c = 15.1460 (3) Å

  • α = 75.244 (1)°

  • β = 78.605 (1)°

  • γ = 76.072 (1)°

  • V = 1744.26 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.86 mm−1

  • T = 296 K

  • 0.58 × 0.32 × 0.28 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.413, Tmax = 0.628

  • 51513 measured reflections

  • 12557 independent reflections

  • 11674 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.050

  • S = 1.04

  • 12557 reflections

  • 464 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Selected bond lengths (Å)

Eu1—O5 2.3667 (9)
Eu1—O3i 2.3669 (9)
Eu1—O6i 2.3818 (10)
Eu1—O4 2.4571 (11)
Eu1—O2 2.4933 (11)
Eu1—O1 2.4974 (11)
Eu1—N1 2.5636 (11)
Eu1—N2 2.6134 (11)
Eu1—O3 2.6394 (11)
Symmetry code: (i) -x+2, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C35–C40 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H1O8⋯O1 0.86 (3) 1.82 (3) 2.660 (2) 166 (3)
C2—H2A⋯O6i 0.93 2.43 3.017 (2) 121
C9—H9A⋯O2ii 0.93 2.51 3.258 (2) 138
C11—H11A⋯O5 0.93 2.44 3.079 (2) 126
C25—H25ACg1iii 0.93 2.65 3.551 (3) 164
Symmetry codes: (i) -x+2, -y, -z+1; (ii) x-1, y, z; (iii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Lanthanide complexes were widely used in biomedical field (Yam & Lo, 1999), sensing areas (Beeby et al., 2003) and optical imaging (Faulkner et al., 2005) because they exhibit intense luminescence, especially europium (III) and terbium (III) ions. In order to create high luminescence complexes, ligands which chelate to the lanthanide atoms should be able to protect lanthanide ions from solvent molecules and absorb energy to transfer it efficiently to the center metal atom (Tang et al., 2008). The title compound, (I) was synthesized and its structure was determined. Similar crystal structures with different lanthanides have been reported in the past, such as lanthanum(III) (Shi et al., 2001), samarium(III) (Niu et al., 1999), gadolinium(III) (Niu et al., 2002) and neodymium(III) (Ooi et al., 2010).

The asymmetric unit of the title complex (I) (Fig. 1) consists of one-half of the complex molecule and one benzoic acid. The complex molecule lies on a crystallographic inversion center. The two europium(III) ions are linked by four benzoate ions, with an Eu—Eu distance of 3.96041 (12) Å. Among the four benzoate ions, two of them also behave as chelating ligands to the europium(III) ions. Each metal ion is coordinated by one phenanthroline heterocycle and a bidentate benzoate ion. The irregular nine-coordinated geometry of the europium(III) ion is completed by seven benzoate O atoms and two phenanthroline N atoms. Bond lengths of Eu—O and Eu—N are listed in Table 1. All other bond lengths and angles are comparable to a closely La-benzoato complex (Shi et al., 2001).

In the crystal structure, intermolecular C9—H9A···O2 hydrogen bonds (Table 2) link the molecules into chains along the a axis (Fig. 2). The crystal structure is further stabilized by intermolecular O8—H1O8···O1 and C25A—H25A···Cg1 interactions (Table 2). Intramolecular C2—H2A···O6 and C11—H11A···O5 hydrogen bonds (Table 2) stabilize the molecular structure. Weak ππ interactions of Cg2···Cg3 = 3.6963 (10) Å and Cg3···Cg3 = 3.6962 (10) Å [Cg2 and Cg3 are centroids of benzene rings C1/N1/C2–C5 and C1/C5–C8/C12; symmetry code: 1-x, 1-y, 1-z] are observed.

Related literature top

For general background to and applications of europium(III) complexes, see: Yam & Lo (1999); Beeby et al. (2003); Tang et al. (2008); Faulkner et al. (2005). For related Ln–benzoato complexes, see: Niu et al. (1999); Niu et al. (2002); Shi et al. (2001); Ooi et al. (2010).

Experimental top

0.5 mmol of EuCl3.6H2O was dissolved in methanol and then was added into a solution (methanol-H2O, 1.5:1) of 1,10-phenanthroline (0.5 mmol) and benzoic acid (1.5 mmol). The mixture was sealed in a tube, and heated directly to 403 K. After keeping at 403 K for 2 days, it was cooled to room temperature. Colourless block crystals (I) were obtained by filtration, and was washed with water and ethanol.

Refinement top

The H1O8 hydrogen atom was located from difference Fourier map and refined freely. All aromatic hydrogen atoms were placed in their calculated positions, with C—H = 0.93 Å, and refined using a riding model with Uiso = 1.2 Ueq(C).

Structure description top

Lanthanide complexes were widely used in biomedical field (Yam & Lo, 1999), sensing areas (Beeby et al., 2003) and optical imaging (Faulkner et al., 2005) because they exhibit intense luminescence, especially europium (III) and terbium (III) ions. In order to create high luminescence complexes, ligands which chelate to the lanthanide atoms should be able to protect lanthanide ions from solvent molecules and absorb energy to transfer it efficiently to the center metal atom (Tang et al., 2008). The title compound, (I) was synthesized and its structure was determined. Similar crystal structures with different lanthanides have been reported in the past, such as lanthanum(III) (Shi et al., 2001), samarium(III) (Niu et al., 1999), gadolinium(III) (Niu et al., 2002) and neodymium(III) (Ooi et al., 2010).

The asymmetric unit of the title complex (I) (Fig. 1) consists of one-half of the complex molecule and one benzoic acid. The complex molecule lies on a crystallographic inversion center. The two europium(III) ions are linked by four benzoate ions, with an Eu—Eu distance of 3.96041 (12) Å. Among the four benzoate ions, two of them also behave as chelating ligands to the europium(III) ions. Each metal ion is coordinated by one phenanthroline heterocycle and a bidentate benzoate ion. The irregular nine-coordinated geometry of the europium(III) ion is completed by seven benzoate O atoms and two phenanthroline N atoms. Bond lengths of Eu—O and Eu—N are listed in Table 1. All other bond lengths and angles are comparable to a closely La-benzoato complex (Shi et al., 2001).

In the crystal structure, intermolecular C9—H9A···O2 hydrogen bonds (Table 2) link the molecules into chains along the a axis (Fig. 2). The crystal structure is further stabilized by intermolecular O8—H1O8···O1 and C25A—H25A···Cg1 interactions (Table 2). Intramolecular C2—H2A···O6 and C11—H11A···O5 hydrogen bonds (Table 2) stabilize the molecular structure. Weak ππ interactions of Cg2···Cg3 = 3.6963 (10) Å and Cg3···Cg3 = 3.6962 (10) Å [Cg2 and Cg3 are centroids of benzene rings C1/N1/C2–C5 and C1/C5–C8/C12; symmetry code: 1-x, 1-y, 1-z] are observed.

For general background to and applications of europium(III) complexes, see: Yam & Lo (1999); Beeby et al. (2003); Tang et al. (2008); Faulkner et al. (2005). For related Ln–benzoato complexes, see: Niu et al. (1999); Niu et al. (2002); Shi et al. (2001); Ooi et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing 20% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. The suffix A corresponds to the symmetry code [-x+2, -y, -z+1].
[Figure 2] Fig. 2. The crystal structure of the title complex, viewed along the a axis, showing two chains along a axis. The benzoic acid solvent molecules have been omitted for clarity. Intermolecular hydrogen bonds are shown as dashed lines.
Tetra-µ-benzoato-κ4O:O';κ3O:O,O'; κ3O,O':O'-bis[(benzoato-κ2O,O')(1,10- phenanthroline-κ2N,N')europium(III)] benzoic acid disolvate top
Crystal data top
[Eu2(C7H5O2)6(C12H8N2)2]·2C7H6O2Z = 1
Mr = 1635.22F(000) = 820
Triclinic, P1Dx = 1.557 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6688 (2) ÅCell parameters from 9857 reflections
b = 12.8260 (2) Åθ = 2.2–35.2°
c = 15.1460 (3) ŵ = 1.86 mm1
α = 75.244 (1)°T = 296 K
β = 78.605 (1)°Block, colourless
γ = 76.072 (1)°0.58 × 0.32 × 0.28 mm
V = 1744.26 (6) Å3
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
12557 independent reflections
Radiation source: fine-focus sealed tube11674 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 32.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.413, Tmax = 0.628k = 1919
51513 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.050H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0249P)2 + 0.3553P]
where P = (Fo2 + 2Fc2)/3
12557 reflections(Δ/σ)max = 0.004
464 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Eu2(C7H5O2)6(C12H8N2)2]·2C7H6O2γ = 76.072 (1)°
Mr = 1635.22V = 1744.26 (6) Å3
Triclinic, P1Z = 1
a = 9.6688 (2) ÅMo Kα radiation
b = 12.8260 (2) ŵ = 1.86 mm1
c = 15.1460 (3) ÅT = 296 K
α = 75.244 (1)°0.58 × 0.32 × 0.28 mm
β = 78.605 (1)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
12557 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
11674 reflections with I > 2σ(I)
Tmin = 0.413, Tmax = 0.628Rint = 0.027
51513 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.050H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.62 e Å3
12557 reflectionsΔρmin = 0.44 e Å3
464 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.855968 (6)0.139628 (5)0.482146 (4)0.02529 (2)
O10.81802 (11)0.27751 (9)0.33491 (7)0.0374 (2)
O20.99095 (13)0.28905 (10)0.40393 (8)0.0415 (2)
O30.92345 (10)0.05431 (9)0.59329 (7)0.0340 (2)
O40.71990 (11)0.05713 (10)0.62752 (8)0.0431 (2)
O50.79737 (11)0.01384 (8)0.41205 (7)0.0357 (2)
O60.98042 (11)0.13176 (8)0.41650 (7)0.0360 (2)
N10.73487 (13)0.30002 (10)0.56106 (9)0.0348 (2)
N20.58048 (12)0.21295 (10)0.47649 (8)0.0332 (2)
C10.58983 (15)0.33702 (11)0.56896 (10)0.0339 (3)
C20.8100 (2)0.34414 (14)0.60131 (13)0.0450 (4)
H2A0.90950.32030.59510.054*
C30.7467 (2)0.42462 (15)0.65248 (14)0.0565 (5)
H3A0.80330.45230.68040.068*
C40.6018 (2)0.46191 (15)0.66108 (13)0.0549 (5)
H4A0.55810.51520.69510.066*
C50.51860 (19)0.41920 (13)0.61810 (11)0.0446 (4)
C60.3666 (2)0.45696 (16)0.62105 (14)0.0586 (5)
H6A0.31950.51140.65330.070*
C70.2904 (2)0.41550 (17)0.57823 (15)0.0580 (5)
H7A0.19140.44130.58180.070*
C80.35873 (16)0.33214 (14)0.52707 (12)0.0438 (3)
C90.28376 (17)0.28860 (16)0.47982 (14)0.0532 (4)
H9A0.18500.31340.48050.064*
C100.35619 (19)0.20981 (16)0.43288 (15)0.0538 (4)
H10A0.30760.18020.40110.065*
C110.50501 (17)0.17374 (14)0.43291 (13)0.0443 (3)
H11A0.55330.11950.40070.053*
C120.50850 (15)0.29219 (11)0.52310 (10)0.0341 (3)
C130.92857 (15)0.31615 (11)0.33417 (10)0.0331 (3)
C140.98440 (17)0.39252 (12)0.25009 (10)0.0369 (3)
C150.8962 (2)0.45586 (14)0.18589 (11)0.0464 (4)
H15A0.79990.45080.19430.056*
C160.9523 (3)0.52675 (17)0.10903 (13)0.0637 (6)
H16A0.89290.57040.06650.076*
C171.0955 (3)0.5327 (2)0.09555 (15)0.0733 (7)
H17A1.13220.58050.04390.088*
C181.1843 (3)0.4690 (2)0.15733 (14)0.0650 (6)
H18A1.28130.47250.14710.078*
C191.1292 (2)0.39925 (16)0.23535 (12)0.0488 (4)
H19A1.18910.35680.27800.059*
C200.81636 (14)0.02422 (11)0.65167 (9)0.0312 (2)
C210.80887 (15)0.08375 (12)0.75001 (10)0.0344 (3)
C220.93267 (18)0.12514 (15)0.79046 (11)0.0444 (3)
H22A1.02190.11780.75560.053*
C230.9241 (3)0.1774 (2)0.88256 (13)0.0621 (5)
H23A1.00760.20500.90970.074*
C240.7932 (3)0.1885 (2)0.93387 (14)0.0716 (6)
H24A0.78810.22430.99570.086*
C250.6697 (3)0.1473 (2)0.89483 (15)0.0732 (7)
H25A0.58100.15480.93040.088*
C260.6760 (2)0.09452 (18)0.80281 (13)0.0542 (4)
H26A0.59200.06640.77640.065*
C270.86800 (14)0.07267 (11)0.38672 (9)0.0298 (2)
C280.81424 (15)0.11023 (12)0.31629 (10)0.0340 (3)
C290.66775 (17)0.09528 (14)0.31412 (11)0.0404 (3)
H29A0.60170.05560.35320.048*
C300.6193 (2)0.13920 (18)0.25387 (14)0.0554 (5)
H30A0.52110.13130.25410.066*
C310.7167 (3)0.1941 (3)0.19409 (17)0.0785 (8)
H31A0.68420.22320.15350.094*
C320.8625 (3)0.2068 (3)0.19349 (18)0.0872 (9)
H32A0.92790.24280.15160.105*
C330.9119 (2)0.16586 (19)0.25529 (14)0.0583 (5)
H33A1.01030.17570.25580.070*
O70.5814 (2)0.39064 (16)0.15565 (15)0.0873 (6)
O80.72156 (19)0.22869 (14)0.20067 (12)0.0695 (4)
C340.6441 (2)0.30199 (19)0.14202 (15)0.0574 (5)
C350.6454 (2)0.2640 (2)0.05692 (15)0.0620 (5)
C360.5708 (3)0.3347 (3)0.01171 (18)0.0841 (9)
H36A0.51920.40360.00330.101*
C370.5733 (5)0.3028 (4)0.0927 (2)0.1221 (17)
H37A0.52220.35010.13820.147*
C380.6484 (5)0.2046 (5)0.1061 (3)0.135 (2)
H38A0.65050.18490.16150.162*
C390.7221 (4)0.1329 (4)0.0395 (3)0.1310 (17)
H39A0.77300.06430.04920.157*
C400.7205 (3)0.1630 (3)0.0436 (2)0.0896 (9)
H40A0.77030.11460.08930.108*
H1O80.743 (3)0.255 (2)0.242 (2)0.089 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.02319 (3)0.02625 (3)0.02639 (3)0.00168 (2)0.00573 (2)0.00710 (2)
O10.0346 (5)0.0412 (5)0.0364 (5)0.0105 (4)0.0090 (4)0.0030 (4)
O20.0442 (6)0.0451 (6)0.0377 (5)0.0170 (5)0.0131 (4)0.0005 (5)
O30.0301 (4)0.0394 (5)0.0311 (5)0.0039 (4)0.0004 (4)0.0116 (4)
O40.0322 (5)0.0463 (6)0.0375 (5)0.0027 (4)0.0008 (4)0.0001 (5)
O50.0316 (5)0.0362 (5)0.0440 (5)0.0021 (4)0.0116 (4)0.0169 (4)
O60.0349 (5)0.0360 (5)0.0400 (5)0.0001 (4)0.0161 (4)0.0119 (4)
N10.0361 (6)0.0325 (5)0.0369 (6)0.0022 (4)0.0066 (5)0.0132 (5)
N20.0277 (5)0.0329 (5)0.0383 (6)0.0033 (4)0.0075 (4)0.0072 (5)
C10.0352 (6)0.0286 (6)0.0320 (6)0.0005 (5)0.0016 (5)0.0052 (5)
C20.0497 (9)0.0391 (8)0.0524 (9)0.0029 (7)0.0176 (7)0.0190 (7)
C30.0783 (13)0.0440 (9)0.0559 (10)0.0044 (9)0.0228 (10)0.0236 (8)
C40.0786 (13)0.0392 (8)0.0440 (9)0.0030 (8)0.0062 (8)0.0198 (7)
C50.0518 (9)0.0349 (7)0.0379 (7)0.0034 (6)0.0028 (6)0.0098 (6)
C60.0545 (10)0.0489 (10)0.0546 (10)0.0116 (8)0.0107 (8)0.0147 (8)
C70.0361 (8)0.0528 (10)0.0656 (12)0.0086 (7)0.0078 (8)0.0065 (9)
C80.0286 (6)0.0411 (8)0.0496 (9)0.0011 (6)0.0005 (6)0.0013 (6)
C90.0273 (7)0.0531 (10)0.0701 (12)0.0062 (7)0.0110 (7)0.0043 (9)
C100.0367 (8)0.0533 (10)0.0745 (13)0.0119 (7)0.0241 (8)0.0048 (9)
C110.0358 (7)0.0435 (8)0.0576 (10)0.0052 (6)0.0176 (7)0.0125 (7)
C120.0280 (6)0.0313 (6)0.0363 (7)0.0017 (5)0.0016 (5)0.0020 (5)
C130.0346 (6)0.0299 (6)0.0337 (6)0.0051 (5)0.0040 (5)0.0069 (5)
C140.0469 (8)0.0322 (6)0.0326 (6)0.0115 (6)0.0018 (6)0.0084 (5)
C150.0595 (10)0.0405 (8)0.0358 (7)0.0071 (7)0.0066 (7)0.0052 (6)
C160.0993 (18)0.0486 (10)0.0379 (9)0.0153 (11)0.0103 (10)0.0004 (8)
C170.111 (2)0.0694 (14)0.0427 (10)0.0494 (14)0.0106 (11)0.0050 (9)
C180.0762 (14)0.0797 (15)0.0493 (10)0.0467 (12)0.0072 (10)0.0152 (10)
C190.0532 (9)0.0556 (10)0.0434 (8)0.0253 (8)0.0025 (7)0.0112 (7)
C200.0272 (5)0.0340 (6)0.0310 (6)0.0067 (5)0.0010 (5)0.0067 (5)
C210.0348 (6)0.0347 (6)0.0307 (6)0.0067 (5)0.0007 (5)0.0050 (5)
C220.0399 (8)0.0537 (9)0.0361 (7)0.0031 (7)0.0069 (6)0.0084 (7)
C230.0649 (12)0.0734 (14)0.0403 (9)0.0016 (10)0.0174 (8)0.0029 (9)
C240.0862 (16)0.0812 (16)0.0349 (9)0.0182 (13)0.0055 (10)0.0082 (9)
C250.0634 (13)0.0953 (18)0.0467 (11)0.0302 (13)0.0106 (9)0.0090 (11)
C260.0387 (8)0.0701 (12)0.0456 (9)0.0165 (8)0.0015 (7)0.0014 (8)
C270.0294 (6)0.0320 (6)0.0302 (6)0.0059 (5)0.0079 (5)0.0082 (5)
C280.0350 (6)0.0371 (7)0.0333 (6)0.0040 (5)0.0107 (5)0.0122 (5)
C290.0375 (7)0.0447 (8)0.0442 (8)0.0051 (6)0.0137 (6)0.0160 (6)
C300.0492 (9)0.0703 (12)0.0596 (11)0.0131 (9)0.0228 (8)0.0250 (10)
C310.0720 (14)0.117 (2)0.0725 (15)0.0194 (14)0.0213 (12)0.0584 (15)
C320.0660 (14)0.139 (3)0.0799 (16)0.0072 (15)0.0076 (12)0.0808 (18)
C330.0419 (9)0.0859 (14)0.0565 (11)0.0017 (9)0.0077 (8)0.0421 (11)
O70.0881 (13)0.0763 (12)0.1062 (15)0.0128 (10)0.0490 (11)0.0364 (11)
O80.0750 (10)0.0691 (10)0.0727 (10)0.0023 (8)0.0379 (8)0.0250 (8)
C340.0493 (10)0.0676 (13)0.0621 (12)0.0123 (9)0.0194 (9)0.0168 (10)
C350.0574 (11)0.0837 (15)0.0582 (11)0.0341 (11)0.0111 (9)0.0183 (11)
C360.103 (2)0.101 (2)0.0633 (14)0.0613 (18)0.0300 (14)0.0085 (13)
C370.155 (4)0.191 (4)0.0526 (15)0.121 (4)0.0252 (19)0.006 (2)
C380.127 (3)0.246 (6)0.083 (2)0.108 (4)0.012 (2)0.081 (3)
C390.090 (2)0.201 (5)0.149 (4)0.038 (3)0.005 (2)0.123 (4)
C400.0670 (15)0.119 (2)0.107 (2)0.0156 (15)0.0216 (15)0.063 (2)
Geometric parameters (Å, º) top
Eu1—O52.3667 (9)C15—H15A0.9300
Eu1—O3i2.3669 (9)C16—C171.377 (4)
Eu1—O6i2.3818 (10)C16—H16A0.9300
Eu1—O42.4571 (11)C17—C181.368 (4)
Eu1—O22.4933 (11)C17—H17A0.9300
Eu1—O12.4974 (11)C18—C191.387 (3)
Eu1—N12.5636 (11)C18—H18A0.9300
Eu1—N22.6134 (11)C19—H19A0.9300
Eu1—O32.6394 (11)C20—C211.487 (2)
Eu1—C132.8637 (14)C21—C221.381 (2)
Eu1—C202.8992 (14)C21—C261.390 (2)
Eu1—Eu1i3.9604 (1)C22—C231.381 (3)
O1—C131.2789 (18)C22—H22A0.9300
O2—C131.2509 (18)C23—C241.367 (3)
O3—C201.2739 (15)C23—H23A0.9300
O3—Eu1i2.3668 (9)C24—C251.368 (4)
O4—C201.2506 (17)C24—H24A0.9300
O5—C271.2623 (16)C25—C261.382 (3)
O6—C271.2579 (16)C25—H25A0.9300
O6—Eu1i2.3819 (10)C26—H26A0.9300
N1—C21.330 (2)C27—C281.4971 (18)
N1—C11.3596 (18)C28—C331.386 (2)
N2—C111.3256 (19)C28—C291.389 (2)
N2—C121.3589 (18)C29—C301.388 (2)
C1—C51.4096 (19)C29—H29A0.9300
C1—C121.438 (2)C30—C311.368 (3)
C2—C31.399 (2)C30—H30A0.9300
C2—H2A0.9300C31—C321.379 (3)
C3—C41.359 (3)C31—H31A0.9300
C3—H3A0.9300C32—C331.389 (3)
C4—C51.404 (3)C32—H32A0.9300
C4—H4A0.9300C33—H33A0.9300
C5—C61.428 (3)O7—C341.200 (3)
C6—C71.341 (3)O8—C341.316 (3)
C6—H6A0.9300O8—H1O80.86 (3)
C7—C81.435 (3)C34—C351.486 (3)
C7—H7A0.9300C35—C401.366 (4)
C8—C91.397 (3)C35—C361.387 (4)
C8—C121.410 (2)C36—C371.383 (4)
C9—C101.359 (3)C36—H36A0.9300
C9—H9A0.9300C37—C381.336 (7)
C10—C111.401 (2)C37—H37A0.9300
C10—H10A0.9300C38—C391.367 (7)
C11—H11A0.9300C38—H38A0.9300
C13—C141.490 (2)C39—C401.405 (4)
C14—C151.387 (2)C39—H39A0.9300
C14—C191.394 (2)C40—H40A0.9300
C15—C161.387 (3)
O5—Eu1—O3i74.07 (3)C10—C9—C8119.53 (15)
O5—Eu1—O6i136.23 (4)C10—C9—H9A120.2
O3i—Eu1—O6i78.20 (3)C8—C9—H9A120.2
O5—Eu1—O488.22 (4)C9—C10—C11119.19 (17)
O3i—Eu1—O4126.28 (4)C9—C10—H10A120.4
O6i—Eu1—O481.61 (4)C11—C10—H10A120.4
O5—Eu1—O2126.55 (4)N2—C11—C10123.32 (17)
O3i—Eu1—O273.68 (4)N2—C11—H11A118.3
O6i—Eu1—O274.81 (4)C10—C11—H11A118.3
O4—Eu1—O2145.08 (4)N2—C12—C8122.47 (14)
O5—Eu1—O186.23 (4)N2—C12—C1118.12 (12)
O3i—Eu1—O189.18 (4)C8—C12—C1119.41 (14)
O6i—Eu1—O1126.75 (4)O2—C13—O1119.97 (13)
O4—Eu1—O1140.76 (4)O2—C13—C14119.79 (13)
O2—Eu1—O152.07 (3)O1—C13—C14120.23 (13)
O5—Eu1—N1140.57 (4)O2—C13—Eu160.31 (8)
O3i—Eu1—N1144.07 (4)O1—C13—Eu160.57 (7)
O6i—Eu1—N176.95 (4)C14—C13—Eu1169.95 (10)
O4—Eu1—N174.78 (4)C15—C14—C19119.41 (15)
O2—Eu1—N175.04 (4)C15—C14—C13121.60 (15)
O1—Eu1—N185.33 (4)C19—C14—C13118.98 (15)
O5—Eu1—N277.50 (4)C16—C15—C14119.73 (19)
O3i—Eu1—N2145.74 (4)C16—C15—H15A120.1
O6i—Eu1—N2136.06 (4)C14—C15—H15A120.1
O4—Eu1—N270.77 (4)C17—C16—C15120.2 (2)
O2—Eu1—N2110.01 (4)C17—C16—H16A119.9
O1—Eu1—N270.10 (4)C15—C16—H16A119.9
N1—Eu1—N263.41 (4)C18—C17—C16120.69 (19)
O5—Eu1—O375.18 (3)C18—C17—H17A119.7
O3i—Eu1—O375.56 (4)C16—C17—H17A119.7
O6i—Eu1—O365.45 (3)C17—C18—C19119.8 (2)
O4—Eu1—O350.80 (3)C17—C18—H18A120.1
O2—Eu1—O3133.58 (3)C19—C18—H18A120.1
O1—Eu1—O3158.51 (3)C18—C19—C14120.20 (19)
N1—Eu1—O3115.90 (3)C18—C19—H19A119.9
N2—Eu1—O3115.03 (3)C14—C19—H19A119.9
O5—Eu1—C13105.75 (4)O4—C20—O3120.53 (13)
O3i—Eu1—C1377.90 (4)O4—C20—C21119.75 (12)
O6i—Eu1—C13100.63 (4)O3—C20—C21119.68 (12)
O4—Eu1—C13155.22 (4)O4—C20—Eu157.16 (7)
O2—Eu1—C1325.84 (4)O3—C20—Eu165.51 (7)
O1—Eu1—C1326.49 (4)C21—C20—Eu1162.76 (10)
N1—Eu1—C1381.65 (4)C22—C21—C26119.52 (15)
N2—Eu1—C1391.99 (4)C22—C21—C20120.52 (13)
O3—Eu1—C13152.04 (3)C26—C21—C20119.92 (14)
O5—Eu1—C2084.79 (4)C23—C22—C21120.07 (17)
O3i—Eu1—C20101.47 (4)C23—C22—H22A120.0
O6i—Eu1—C2068.28 (4)C21—C22—H22A120.0
O4—Eu1—C2025.32 (4)C24—C23—C22120.1 (2)
O2—Eu1—C20142.92 (4)C24—C23—H23A120.0
O1—Eu1—C20163.61 (4)C22—C23—H23A120.0
N1—Eu1—C2092.95 (4)C23—C24—C25120.45 (19)
N2—Eu1—C2094.54 (4)C23—C24—H24A119.8
O3—Eu1—C2026.05 (3)C25—C24—H24A119.8
C13—Eu1—C20168.62 (4)C24—C25—C26120.28 (19)
O5—Eu1—Eu1i70.46 (2)C24—C25—H25A119.9
O3i—Eu1—Eu1i40.20 (3)C26—C25—H25A119.9
O6i—Eu1—Eu1i66.47 (2)C25—C26—C21119.59 (19)
O4—Eu1—Eu1i86.12 (3)C25—C26—H26A120.2
O2—Eu1—Eu1i106.95 (3)C21—C26—H26A120.2
O1—Eu1—Eu1i127.70 (3)O6—C27—O5125.43 (12)
N1—Eu1—Eu1i140.81 (3)O6—C27—C28116.39 (12)
N2—Eu1—Eu1i140.89 (3)O5—C27—C28118.18 (12)
O3—Eu1—Eu1i35.36 (2)C33—C28—C29119.37 (14)
C13—Eu1—Eu1i117.61 (3)C33—C28—C27119.47 (13)
C20—Eu1—Eu1i61.32 (3)C29—C28—C27121.07 (13)
C13—O1—Eu192.94 (9)C30—C29—C28120.35 (15)
C13—O2—Eu193.86 (9)C30—C29—H29A119.8
C20—O3—Eu1i165.77 (10)C28—C29—H29A119.8
C20—O3—Eu188.44 (8)C31—C30—C29119.75 (18)
Eu1i—O3—Eu1104.44 (4)C31—C30—H30A120.1
C20—O4—Eu197.52 (8)C29—C30—H30A120.1
C27—O5—Eu1133.44 (9)C30—C31—C32120.57 (18)
C27—O6—Eu1i141.23 (9)C30—C31—H31A119.7
C2—N1—C1117.91 (13)C32—C31—H31A119.7
C2—N1—Eu1121.18 (10)C31—C32—C33120.08 (19)
C1—N1—Eu1120.74 (9)C31—C32—H32A120.0
C11—N2—C12117.65 (13)C33—C32—H32A120.0
C11—N2—Eu1123.20 (10)C28—C33—C32119.82 (18)
C12—N2—Eu1119.10 (9)C28—C33—H33A120.1
N1—C1—C5122.16 (14)C32—C33—H33A120.1
N1—C1—C12118.18 (12)C34—O8—H1O8114 (2)
C5—C1—C12119.63 (14)O7—C34—O8123.2 (2)
N1—C2—C3123.21 (17)O7—C34—C35124.0 (2)
N1—C2—H2A118.4O8—C34—C35112.8 (2)
C3—C2—H2A118.4C40—C35—C36119.4 (2)
C4—C3—C2119.36 (17)C40—C35—C34122.0 (2)
C4—C3—H3A120.3C36—C35—C34118.6 (2)
C2—C3—H3A120.3C37—C36—C35119.9 (4)
C3—C4—C5119.34 (15)C37—C36—H36A120.0
C3—C4—H4A120.3C35—C36—H36A120.0
C5—C4—H4A120.3C38—C37—C36120.6 (4)
C4—C5—C1118.01 (16)C38—C37—H37A119.7
C4—C5—C6122.71 (16)C36—C37—H37A119.7
C1—C5—C6119.28 (17)C37—C38—C39120.7 (3)
C7—C6—C5121.27 (16)C37—C38—H38A119.6
C7—C6—H6A119.4C39—C38—H38A119.6
C5—C6—H6A119.4C38—C39—C40119.7 (4)
C6—C7—C8121.27 (16)C38—C39—H39A120.1
C6—C7—H7A119.4C40—C39—H39A120.1
C8—C7—H7A119.4C35—C40—C39119.6 (4)
C9—C8—C12117.84 (16)C35—C40—H40A120.2
C9—C8—C7123.03 (16)C39—C40—H40A120.2
C12—C8—C7119.12 (17)
O5—Eu1—O1—C13137.91 (9)C9—C8—C12—C1178.47 (15)
O3i—Eu1—O1—C1363.82 (8)C7—C8—C12—C11.0 (2)
O6i—Eu1—O1—C1310.75 (10)N1—C1—C12—N21.8 (2)
O4—Eu1—O1—C13139.55 (9)C5—C1—C12—N2179.89 (13)
O2—Eu1—O1—C135.99 (8)N1—C1—C12—C8177.52 (14)
N1—Eu1—O1—C1380.64 (9)C5—C1—C12—C80.8 (2)
N2—Eu1—O1—C13144.02 (9)Eu1—O2—C13—O110.94 (14)
O3—Eu1—O1—C13108.00 (11)Eu1—O2—C13—C14168.42 (11)
C20—Eu1—O1—C13165.19 (12)Eu1—O1—C13—O210.92 (14)
Eu1i—Eu1—O1—C1376.24 (9)Eu1—O1—C13—C14168.44 (11)
O5—Eu1—O2—C1340.92 (10)O5—Eu1—C13—O2146.86 (9)
O3i—Eu1—O2—C1395.95 (9)O3i—Eu1—C13—O277.47 (9)
O6i—Eu1—O2—C13177.82 (10)O6i—Eu1—C13—O22.14 (9)
O4—Eu1—O2—C13132.93 (9)O4—Eu1—C13—O290.88 (13)
O1—Eu1—O2—C136.13 (8)O1—Eu1—C13—O2169.12 (14)
N1—Eu1—O2—C13101.94 (9)N1—Eu1—C13—O272.81 (9)
N2—Eu1—O2—C1348.13 (10)N2—Eu1—C13—O2135.56 (9)
O3—Eu1—O2—C13146.34 (8)O3—Eu1—C13—O258.89 (12)
C20—Eu1—O2—C13176.56 (8)C20—Eu1—C13—O210.6 (2)
Eu1i—Eu1—O2—C13118.83 (8)Eu1i—Eu1—C13—O271.02 (9)
O5—Eu1—O3—C20109.12 (8)O5—Eu1—C13—O144.02 (9)
O3i—Eu1—O3—C20173.89 (10)O3i—Eu1—C13—O1113.41 (9)
O6i—Eu1—O3—C2090.46 (8)O6i—Eu1—C13—O1171.25 (8)
O4—Eu1—O3—C209.08 (8)O4—Eu1—C13—O178.24 (13)
O2—Eu1—O3—C20124.11 (8)O2—Eu1—C13—O1169.12 (14)
O1—Eu1—O3—C20140.10 (10)N1—Eu1—C13—O196.31 (9)
N1—Eu1—O3—C2030.32 (9)N2—Eu1—C13—O133.55 (9)
N2—Eu1—O3—C2040.86 (9)O3—Eu1—C13—O1131.99 (9)
C13—Eu1—O3—C20155.12 (9)C20—Eu1—C13—O1158.57 (16)
Eu1i—Eu1—O3—C20173.88 (10)Eu1i—Eu1—C13—O1119.86 (8)
O5—Eu1—O3—Eu1i77.00 (4)O5—Eu1—C13—C1453.4 (6)
O3i—Eu1—O3—Eu1i0.0O3i—Eu1—C13—C1416.0 (6)
O6i—Eu1—O3—Eu1i83.42 (4)O6i—Eu1—C13—C1491.3 (6)
O4—Eu1—O3—Eu1i177.04 (6)O4—Eu1—C13—C14175.7 (6)
O2—Eu1—O3—Eu1i49.77 (6)O2—Eu1—C13—C1493.4 (6)
O1—Eu1—O3—Eu1i46.02 (10)O1—Eu1—C13—C1497.4 (6)
N1—Eu1—O3—Eu1i143.56 (4)N1—Eu1—C13—C14166.3 (6)
N2—Eu1—O3—Eu1i145.25 (4)N2—Eu1—C13—C14131.0 (6)
C13—Eu1—O3—Eu1i18.77 (9)O3—Eu1—C13—C1434.6 (6)
C20—Eu1—O3—Eu1i173.88 (10)C20—Eu1—C13—C14104.0 (6)
O5—Eu1—O4—C2081.57 (9)Eu1i—Eu1—C13—C1422.4 (6)
O3i—Eu1—O4—C2012.88 (11)O2—C13—C14—C15156.05 (15)
O6i—Eu1—O4—C2055.73 (9)O1—C13—C14—C1524.6 (2)
O2—Eu1—O4—C20103.37 (10)Eu1—C13—C14—C15116.3 (6)
O1—Eu1—O4—C20163.41 (8)O2—C13—C14—C1924.7 (2)
N1—Eu1—O4—C20134.40 (10)O1—C13—C14—C19154.66 (15)
N2—Eu1—O4—C20158.96 (10)Eu1—C13—C14—C1963.0 (6)
O3—Eu1—O4—C209.32 (8)C19—C14—C15—C161.4 (2)
C13—Eu1—O4—C20152.94 (10)C13—C14—C15—C16179.34 (15)
Eu1i—Eu1—O4—C2011.04 (9)C14—C15—C16—C171.3 (3)
O3i—Eu1—O5—C2723.71 (13)C15—C16—C17—C180.1 (3)
O6i—Eu1—O5—C2729.02 (15)C16—C17—C18—C191.3 (4)
O4—Eu1—O5—C27104.93 (13)C17—C18—C19—C141.1 (3)
O2—Eu1—O5—C2778.58 (14)C15—C14—C19—C180.2 (3)
O1—Eu1—O5—C27113.93 (13)C13—C14—C19—C18179.51 (16)
N1—Eu1—O5—C27168.10 (12)Eu1—O4—C20—O317.58 (15)
N2—Eu1—O5—C27175.63 (14)Eu1—O4—C20—C21160.12 (11)
O3—Eu1—O5—C2755.17 (13)Eu1i—O3—C20—O4171.4 (3)
C13—Eu1—O5—C2795.84 (13)Eu1—O3—C20—O416.19 (14)
C20—Eu1—O5—C2779.80 (13)Eu1i—O3—C20—C216.3 (5)
Eu1i—Eu1—O5—C2718.42 (12)Eu1—O3—C20—C21161.51 (12)
O5—Eu1—N1—C2172.83 (12)Eu1i—O3—C20—Eu1155.2 (4)
O3i—Eu1—N1—C226.78 (16)O5—Eu1—C20—O496.87 (10)
O6i—Eu1—N1—C220.54 (13)O3i—Eu1—C20—O4169.43 (9)
O4—Eu1—N1—C2105.26 (13)O6i—Eu1—C20—O4118.36 (10)
O2—Eu1—N1—C256.95 (13)O2—Eu1—C20—O4112.53 (10)
O1—Eu1—N1—C2108.89 (13)O1—Eu1—C20—O439.80 (18)
N2—Eu1—N1—C2178.95 (14)N1—Eu1—C20—O443.66 (10)
O3—Eu1—N1—C274.62 (13)N2—Eu1—C20—O419.88 (10)
C13—Eu1—N1—C282.48 (13)O3—Eu1—C20—O4163.39 (14)
C20—Eu1—N1—C287.45 (13)C13—Eu1—C20—O4104.9 (2)
Eu1i—Eu1—N1—C241.66 (15)Eu1i—Eu1—C20—O4167.42 (10)
O5—Eu1—N1—C12.21 (14)O5—Eu1—C20—O366.52 (8)
O3i—Eu1—N1—C1158.18 (9)O3i—Eu1—C20—O36.04 (10)
O6i—Eu1—N1—C1154.50 (11)O6i—Eu1—C20—O378.25 (8)
O4—Eu1—N1—C169.78 (11)O4—Eu1—C20—O3163.39 (14)
O2—Eu1—N1—C1128.00 (11)O2—Eu1—C20—O384.08 (10)
O1—Eu1—N1—C176.07 (11)O1—Eu1—C20—O3123.60 (13)
N2—Eu1—N1—C16.01 (10)N1—Eu1—C20—O3152.95 (8)
O3—Eu1—N1—C1100.42 (11)N2—Eu1—C20—O3143.51 (8)
C13—Eu1—N1—C1102.48 (11)C13—Eu1—C20—O391.7 (2)
C20—Eu1—N1—C187.60 (11)Eu1i—Eu1—C20—O34.03 (7)
Eu1i—Eu1—N1—C1133.38 (9)O5—Eu1—C20—C21178.1 (3)
O5—Eu1—N2—C117.65 (13)O3i—Eu1—C20—C21105.6 (3)
O3i—Eu1—N2—C1126.80 (16)O6i—Eu1—C20—C2133.3 (3)
O6i—Eu1—N2—C11154.38 (12)O4—Eu1—C20—C2185.0 (3)
O4—Eu1—N2—C11100.15 (13)O2—Eu1—C20—C2127.5 (3)
O2—Eu1—N2—C11116.99 (13)O1—Eu1—C20—C21124.8 (3)
O1—Eu1—N2—C1182.84 (13)N1—Eu1—C20—C2141.4 (3)
N1—Eu1—N2—C11177.69 (14)N2—Eu1—C20—C21104.9 (3)
O3—Eu1—N2—C1174.53 (13)O3—Eu1—C20—C21111.6 (3)
C13—Eu1—N2—C1198.04 (13)C13—Eu1—C20—C2119.9 (4)
C20—Eu1—N2—C1191.29 (13)Eu1i—Eu1—C20—C21107.6 (3)
Eu1i—Eu1—N2—C1143.01 (14)O4—C20—C21—C22142.59 (16)
O5—Eu1—N2—C12169.73 (11)O3—C20—C21—C2235.1 (2)
O3i—Eu1—N2—C12155.82 (9)Eu1—C20—C21—C2268.0 (4)
O6i—Eu1—N2—C1223.01 (13)O4—C20—C21—C2635.0 (2)
O4—Eu1—N2—C1277.23 (10)O3—C20—C21—C26147.24 (16)
O2—Eu1—N2—C1265.62 (11)Eu1—C20—C21—C26109.6 (3)
O1—Eu1—N2—C1299.77 (11)C26—C21—C22—C230.4 (3)
N1—Eu1—N2—C124.93 (10)C20—C21—C22—C23178.04 (17)
O3—Eu1—N2—C12102.85 (10)C21—C22—C23—C240.1 (3)
C13—Eu1—N2—C1284.57 (10)C22—C23—C24—C250.6 (4)
C20—Eu1—N2—C1286.09 (10)C23—C24—C25—C260.4 (4)
Eu1i—Eu1—N2—C12134.37 (9)C24—C25—C26—C210.1 (4)
C2—N1—C1—C50.2 (2)C22—C21—C26—C250.5 (3)
Eu1—N1—C1—C5175.00 (11)C20—C21—C26—C25178.2 (2)
C2—N1—C1—C12178.03 (14)Eu1i—O6—C27—O53.4 (3)
Eu1—N1—C1—C126.77 (17)Eu1i—O6—C27—C28177.45 (10)
C1—N1—C2—C31.3 (3)Eu1—O5—C27—O621.8 (2)
Eu1—N1—C2—C3173.87 (14)Eu1—O5—C27—C28159.07 (10)
N1—C2—C3—C41.1 (3)O6—C27—C28—C3331.8 (2)
C2—C3—C4—C50.2 (3)O5—C27—C28—C33148.90 (17)
C3—C4—C5—C11.3 (3)O6—C27—C28—C29144.80 (15)
C3—C4—C5—C6177.65 (19)O5—C27—C28—C2934.4 (2)
N1—C1—C5—C41.1 (2)C33—C28—C29—C302.4 (3)
C12—C1—C5—C4179.27 (15)C27—C28—C29—C30174.23 (17)
N1—C1—C5—C6177.88 (15)C28—C29—C30—C312.3 (3)
C12—C1—C5—C60.3 (2)C29—C30—C31—C320.4 (4)
C4—C5—C6—C7179.10 (19)C30—C31—C32—C331.5 (5)
C1—C5—C6—C70.2 (3)C29—C28—C33—C320.6 (3)
C5—C6—C7—C80.5 (3)C27—C28—C33—C32176.1 (2)
C6—C7—C8—C9178.54 (19)C31—C32—C33—C281.3 (4)
C6—C7—C8—C121.0 (3)O7—C34—C35—C40178.8 (3)
C12—C8—C9—C100.5 (3)O8—C34—C35—C400.0 (3)
C7—C8—C9—C10179.98 (18)O7—C34—C35—C360.4 (3)
C8—C9—C10—C110.0 (3)O8—C34—C35—C36178.4 (2)
C12—N2—C11—C100.1 (3)C40—C35—C36—C370.1 (4)
Eu1—N2—C11—C10177.34 (14)C34—C35—C36—C37178.3 (2)
C9—C10—C11—N20.3 (3)C35—C36—C37—C380.8 (5)
C11—N2—C12—C80.7 (2)C36—C37—C38—C391.3 (6)
Eu1—N2—C12—C8176.87 (11)C37—C38—C39—C400.8 (6)
C11—N2—C12—C1178.68 (14)C36—C35—C40—C390.6 (4)
Eu1—N2—C12—C13.79 (17)C34—C35—C40—C39177.8 (3)
C9—C8—C12—N20.9 (2)C38—C39—C40—C350.1 (5)
C7—C8—C12—N2179.62 (15)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C35–C40 benzene ring.
D—H···AD—HH···AD···AD—H···A
O8—H1O8···O10.86 (3)1.82 (3)2.660 (2)166 (3)
C2—H2A···O6i0.932.433.017 (2)121
C9—H9A···O2ii0.932.513.258 (2)138
C11—H11A···O50.932.443.079 (2)126
C25—H25A···Cg1iii0.932.653.551 (3)164
Symmetry codes: (i) x+2, y, z+1; (ii) x1, y, z; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Eu2(C7H5O2)6(C12H8N2)2]·2C7H6O2
Mr1635.22
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.6688 (2), 12.8260 (2), 15.1460 (3)
α, β, γ (°)75.244 (1), 78.605 (1), 76.072 (1)
V3)1744.26 (6)
Z1
Radiation typeMo Kα
µ (mm1)1.86
Crystal size (mm)0.58 × 0.32 × 0.28
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.413, 0.628
No. of measured, independent and
observed [I > 2σ(I)] reflections
51513, 12557, 11674
Rint0.027
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.050, 1.04
No. of reflections12557
No. of parameters464
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.62, 0.44

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Eu1—O52.3667 (9)Eu1—O12.4974 (11)
Eu1—O3i2.3669 (9)Eu1—N12.5636 (11)
Eu1—O6i2.3818 (10)Eu1—N22.6134 (11)
Eu1—O42.4571 (11)Eu1—O32.6394 (11)
Eu1—O22.4933 (11)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C35–C40 benzene ring.
D—H···AD—HH···AD···AD—H···A
O8—H1O8···O10.86 (3)1.82 (3)2.660 (2)166 (3)
C2—H2A···O6i0.93002.43003.017 (2)121.00
C9—H9A···O2ii0.93002.51003.258 (2)138.00
C11—H11A···O50.93002.44003.079 (2)126.00
C25—H25A···Cg1iii0.93002.65003.551 (3)164.00
Symmetry codes: (i) x+2, y, z+1; (ii) x1, y, z; (iii) x+1, y, z+1.
 

Footnotes

Additional corresponding author, e-mail: howieooi83@gmail.com.

§Thomson Reuters ResearcherID: A-5523-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

SGT and PHO thank Universiti Sains Malaysia (USM) for the University Grant (No. 1001/229/PKIMIA/815002) for this research. HKF and CSY thank USM for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). CSY also thanks USM for the award of a USM fellowship.

References

First citationBeeby, A., Botchway, S. W., Clarkson, I. M., Faulkner, S., Parker, A. W., Parker, D. & William, J. A. G. (2003). J. Photochem. Photobiol B Biol. 57, 83–89.  Web of Science CrossRef Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFaulkner, S., Pope, S. J. A. & Burton-Pye, B. P. (2005). Appl. Spectrosc. Rev. 40, 1–31.  Web of Science CrossRef CAS Google Scholar
First citationNiu, S. Y., Jin, J., Bu, W. M., Yang, G. D., Cao, J. Q. & Yang, B. (1999). Chin. J. Struct. Chem. 18, 245–248.  CAS Google Scholar
First citationNiu, S. Y., Jin, J., Jin, X. L. & Yang, Z. Z. (2002). Solid State Sci. 4, 1103–1106.  Web of Science CSD CrossRef CAS Google Scholar
First citationOoi, P. H., Teoh, S. G., Goh, J. H. & Fun, H.-K. (2010). Acta Cryst. E66, m221–m222.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Q., Hu, M., Cao, R., Liang, Y. & Hong, M. (2001). Acta Cryst. E57, m122–m123.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, Z. H., Liu, D. Y., Tang, Y. & Cao, X. P. (2008). Z. Anorg. Allg. Chem. 634, 392–396.  Web of Science CSD CrossRef CAS Google Scholar
First citationYam, V. W. W. & Lo, K. K. W. (1999). Coord. Chem. Rev. 184, 157–240.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds