organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Fluoro­phen­yl)-3-(3,4,5-tri­meth­oxy­benzo­yl)thio­urea

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 13 April 2010; accepted 16 April 2010; online 21 April 2010)

The two m-meth­oxy groups of the title compound, C17H17FN2O4S, are almost coplanar with the aromatic ring [CH3—O—C—C = 5.8 (1) and 5.9 (1)°], whereas the meth­oxy group in the para position is bent out of the ring plane [78.6 (1)°]. Mol­ecules are connected by inter­molecular N—H⋯S hydrogen bonds to form centrosymmetric dimers that are stacked along the a axis.

Related literature

For details of the biological activity of fluorinated thio­ureas, see: Sun et al. (2006[Sun, C., Huang, H., Feng, M., Shi, X., Zhang, X. & Zhou, P. (2006). Bioorg. Med. Chem. Lett. 16, 162-166.]); Saeed et al. (2009[Saeed, A., Shaheen, U., Hameed, A. & Naqvi, S. Z. H. (2009). J. Fluorine Chem. 130, 1028-1034.]); Xu et al. (2003[Xu, X., Qian, X., Li, Z., Huang, Q. & Chen, G. (2003). J. Fluorine Chem. 121, 51-54.]). For the use of fluorinated thio­ureas in organic synthesis, see: Nosova et al. (2006[Nosova, E. V., Lipunova, G. N., Laeva, A. A. & Charushin, V. N. (2006). Zh. Org. Khim. 42, 1544-1550.], 2007[Nosova, E. V., Lipunova, G. N., Laeva, A. A., Sidorova, L. P. & Charushin, V. N. (2007). Zh. Org. Khim. 43, 68-76.]); Berkessel et al. (2006[Berkessel, A., Roland, K. & Neudorfl, J. M. (2006). Org. Lett. 8, 4195-4198.]). For fluorine-containing heterocycles, see: Lipunova et al. (2008[Lipunova, G. N., Nosova, E. V., Laeva, A. A., Trashakhova, T. V., Slepukhin, P. A. & Charushin, V. N. (2008). Russ. J. Org. Chem. 44, 741-749.]). For intra­molecular hydrogen bonds and Fermi resonance measurements, see: Hritzová & Koščík (2008[Hritzová, O. & Koščík, D. (2008). Collect. Czech. Chem. Commun. 59, 951-956.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17FN2O4S

  • Mr = 364.39

  • Triclinic, [P \overline 1]

  • a = 4.0828 (5) Å

  • b = 14.0420 (16) Å

  • c = 14.2295 (16) Å

  • α = 91.092 (2)°

  • β = 90.694 (2)°

  • γ = 91.712 (2)°

  • V = 815.21 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 120 K

  • 0.48 × 0.20 × 0.19 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.896, Tmax = 0.957

  • 7686 measured reflections

  • 3868 independent reflections

  • 3128 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.109

  • S = 1.03

  • 3868 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯S1i 0.88 2.70 3.5219 (15) 157
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Fluorinated thioureas are convenient synthons for preparation of versatile fluorine-containing heterocycles: [1,3]-benzothiazin-4-ones (Nosova et al.,2006, 2007). 1-aryl-2-ethylthio-quinazolin-4-one, thiazolidine and 1H-1,2,4-triazoles (Lipunova et al., 2008). These constitute a novel class of potent influenza virus neuraminidase inhibitors (Sun et al., 2006). Fluorinated bis-thiourea derivatives are used as organocatalyst in Morita-Baylis-Hillman reaction (Berkessel et al., 2006). N-Substituted N'-(2-fluorobenzoyl)thiourea derivatives are suitable substrates for studying Intramolecular Hydrogen Bonds and Fermi Resonance (Hritzová & Koščík 2008). Fluorinated thioureas have shown potent microbial (Saeed et al., 2009) and insecticidal activities (Xu et al., 2003). The two m-methoxy groups of the title compound, (Fig. 1), C17H17FN2O4S, are almost coplanar with the aromatic ring [CH3—O—C—C 5.8 (1)° and 5.9 (1)°] whereas the methoxygroup in para position is bent out of the ring plane [78.6 (1)°]. The molecules are connected by intermolecular N—H···S hydrogen bonds (Table 1) to centrosymmetric dimers that are stacked along the a axis (Fig. 2).

Related literature top

For details of the biological activity of fluorinated thioureas, see: Sun et al. (2006); Saeed et al. (2009); Xu et al. (2003). For the use of fluorinated thioureas in organic synthesis, see: Nosova et al. (2006, 2007); Berkessel et al. (2006). For fluorine-containing heterocycles, see: Lipunova et al. (2008). For intramolecular hydrogen bonds and Fermi resonance measurements, see: Hritzová & Koščík (2008).

Experimental top

3,4,5-Trimethoxybenzoylisothiocyante (1 mmol) in acetone w as treated with 2-fluoroaniline (1 mmol) under a nitrogen atmosphere at reflux for 2.5 h. Upon cooling, the reaction mixture was poured into aq HCl and the precipitated product was rerystallized from in methanol to afforded the title compound (86 %) as colourless crystals: Anal. calcd. for C17H17N2O4F2S: C, 56.03; H, 4.70; N, 7.69; S, 8.80%; found: C, 56.12; H, 4.76; N, 7.71; S, 8.76%.

Refinement top

Hydrogen atoms were clearly identified in difference Fourier syntheses, idealized and refined at calculated positions riding on the carbon atoms with isotropic displacement parameters Uiso(H) = 1.2Ueq(C/N) or 1.5Ueq(-CH3). All methyl H atoms were allowed to rotate but not to tip.

Structure description top

Fluorinated thioureas are convenient synthons for preparation of versatile fluorine-containing heterocycles: [1,3]-benzothiazin-4-ones (Nosova et al.,2006, 2007). 1-aryl-2-ethylthio-quinazolin-4-one, thiazolidine and 1H-1,2,4-triazoles (Lipunova et al., 2008). These constitute a novel class of potent influenza virus neuraminidase inhibitors (Sun et al., 2006). Fluorinated bis-thiourea derivatives are used as organocatalyst in Morita-Baylis-Hillman reaction (Berkessel et al., 2006). N-Substituted N'-(2-fluorobenzoyl)thiourea derivatives are suitable substrates for studying Intramolecular Hydrogen Bonds and Fermi Resonance (Hritzová & Koščík 2008). Fluorinated thioureas have shown potent microbial (Saeed et al., 2009) and insecticidal activities (Xu et al., 2003). The two m-methoxy groups of the title compound, (Fig. 1), C17H17FN2O4S, are almost coplanar with the aromatic ring [CH3—O—C—C 5.8 (1)° and 5.9 (1)°] whereas the methoxygroup in para position is bent out of the ring plane [78.6 (1)°]. The molecules are connected by intermolecular N—H···S hydrogen bonds (Table 1) to centrosymmetric dimers that are stacked along the a axis (Fig. 2).

For details of the biological activity of fluorinated thioureas, see: Sun et al. (2006); Saeed et al. (2009); Xu et al. (2003). For the use of fluorinated thioureas in organic synthesis, see: Nosova et al. (2006, 2007); Berkessel et al. (2006). For fluorine-containing heterocycles, see: Lipunova et al. (2008). For intramolecular hydrogen bonds and Fermi resonance measurements, see: Hritzová & Koščík (2008).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing viewed along [100] with intermolecular hydrogen bonds indicated as dashed lines. H-atoms not involved in hydrogen bonding are omitted.
1-(2-Fluorophenyl)-3-(3,4,5-trimethoxybenzoyl)thiourea top
Crystal data top
C17H17FN2O4SZ = 2
Mr = 364.39F(000) = 380
Triclinic, P1Dx = 1.484 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.0828 (5) ÅCell parameters from 2067 reflections
b = 14.0420 (16) Åθ = 2.9–28.2°
c = 14.2295 (16) ŵ = 0.24 mm1
α = 91.092 (2)°T = 120 K
β = 90.694 (2)°Prism, colourless
γ = 91.712 (2)°0.48 × 0.20 × 0.19 mm
V = 815.21 (16) Å3
Data collection top
Bruker SMART APEX
diffractometer
3868 independent reflections
Radiation source: sealed tube3128 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 27.9°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 55
Tmin = 0.896, Tmax = 0.957k = 1818
7686 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: difference Fourier map
wR(F2) = 0.109H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0485P)2 + 0.2731P]
where P = (Fo2 + 2Fc2)/3
3868 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C17H17FN2O4Sγ = 91.712 (2)°
Mr = 364.39V = 815.21 (16) Å3
Triclinic, P1Z = 2
a = 4.0828 (5) ÅMo Kα radiation
b = 14.0420 (16) ŵ = 0.24 mm1
c = 14.2295 (16) ÅT = 120 K
α = 91.092 (2)°0.48 × 0.20 × 0.19 mm
β = 90.694 (2)°
Data collection top
Bruker SMART APEX
diffractometer
3868 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3128 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 0.957Rint = 0.027
7686 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.03Δρmax = 0.36 e Å3
3868 reflectionsΔρmin = 0.27 e Å3
226 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.28840 (12)0.51052 (3)0.37700 (3)0.02191 (13)
F10.1367 (3)0.83707 (8)0.21822 (8)0.0346 (3)
O10.0156 (4)0.81511 (9)0.44315 (9)0.0287 (3)
O20.5433 (3)0.95757 (8)0.72291 (8)0.0239 (3)
O30.3506 (3)0.85284 (8)0.86784 (8)0.0220 (3)
O40.0054 (3)0.70067 (8)0.84415 (8)0.0228 (3)
N10.2791 (4)0.69556 (10)0.32920 (10)0.0220 (3)
H1A0.23600.75320.35000.026*
N20.0880 (4)0.65816 (10)0.47587 (10)0.0199 (3)
H2A0.05590.61480.51890.024*
C10.3979 (4)0.69150 (12)0.23660 (12)0.0199 (4)
C20.5894 (5)0.62118 (13)0.19798 (13)0.0264 (4)
H2B0.65120.56870.23470.032*
C30.6906 (5)0.62772 (13)0.10527 (14)0.0309 (5)
H3A0.82100.57920.07910.037*
C40.6043 (5)0.70389 (13)0.05025 (13)0.0279 (4)
H4A0.67290.70710.01320.033*
C50.4183 (5)0.77486 (13)0.08855 (13)0.0271 (4)
H5A0.35900.82790.05220.032*
C60.3206 (5)0.76752 (12)0.17987 (13)0.0232 (4)
C70.2210 (4)0.62634 (12)0.39079 (11)0.0176 (3)
C80.0018 (4)0.74974 (11)0.49981 (12)0.0190 (3)
C90.1053 (4)0.76904 (11)0.59750 (11)0.0174 (3)
C100.2858 (4)0.85088 (11)0.61089 (12)0.0189 (3)
H10A0.35180.88680.55840.023*
C110.3685 (4)0.87953 (11)0.70090 (12)0.0187 (3)
C120.2668 (4)0.82639 (11)0.77787 (11)0.0182 (3)
C130.0860 (4)0.74466 (11)0.76356 (11)0.0175 (3)
C140.0055 (4)0.71485 (11)0.67339 (12)0.0181 (3)
H14A0.11500.65880.66350.022*
C150.6232 (5)1.01977 (12)0.64767 (13)0.0262 (4)
H15A0.74841.07300.67230.039*
H15B0.75490.98430.59990.039*
H15C0.42101.04440.61940.039*
C160.1525 (5)0.93050 (14)0.90583 (13)0.0296 (4)
H16A0.22410.94600.96970.044*
H16B0.17530.98630.86620.044*
H16C0.07740.91240.90770.044*
C170.1706 (5)0.61312 (12)0.83456 (13)0.0247 (4)
H17B0.22310.58910.89700.037*
H17C0.37350.62370.79960.037*
H17D0.02890.56630.80040.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0321 (3)0.0160 (2)0.0179 (2)0.00099 (17)0.00664 (18)0.00108 (16)
F10.0514 (8)0.0262 (6)0.0278 (6)0.0146 (5)0.0146 (5)0.0083 (5)
O10.0488 (9)0.0200 (6)0.0181 (6)0.0067 (6)0.0106 (6)0.0048 (5)
O20.0307 (7)0.0210 (6)0.0207 (6)0.0083 (5)0.0058 (5)0.0027 (5)
O30.0309 (7)0.0197 (6)0.0152 (6)0.0016 (5)0.0066 (5)0.0027 (5)
O40.0358 (8)0.0189 (6)0.0139 (6)0.0060 (5)0.0014 (5)0.0024 (5)
N10.0360 (9)0.0155 (7)0.0147 (7)0.0027 (6)0.0068 (6)0.0006 (5)
N20.0310 (9)0.0165 (7)0.0123 (7)0.0005 (6)0.0037 (6)0.0016 (5)
C10.0266 (10)0.0195 (8)0.0135 (8)0.0010 (7)0.0035 (7)0.0018 (6)
C20.0348 (11)0.0218 (9)0.0233 (9)0.0045 (8)0.0084 (8)0.0050 (7)
C30.0431 (12)0.0252 (9)0.0250 (10)0.0035 (8)0.0141 (9)0.0003 (8)
C40.0388 (12)0.0298 (10)0.0150 (8)0.0035 (8)0.0076 (8)0.0017 (7)
C50.0339 (11)0.0277 (9)0.0199 (9)0.0004 (8)0.0022 (8)0.0091 (7)
C60.0281 (10)0.0208 (8)0.0209 (9)0.0028 (7)0.0047 (7)0.0004 (7)
C70.0211 (9)0.0196 (8)0.0122 (8)0.0004 (6)0.0017 (6)0.0002 (6)
C80.0241 (9)0.0174 (8)0.0156 (8)0.0001 (6)0.0023 (7)0.0007 (6)
C90.0215 (9)0.0160 (7)0.0146 (8)0.0031 (6)0.0038 (7)0.0019 (6)
C100.0228 (9)0.0175 (8)0.0167 (8)0.0003 (6)0.0027 (7)0.0036 (6)
C110.0201 (9)0.0159 (8)0.0202 (8)0.0004 (6)0.0033 (7)0.0000 (6)
C120.0233 (9)0.0167 (8)0.0146 (8)0.0024 (6)0.0046 (7)0.0016 (6)
C130.0221 (9)0.0150 (7)0.0153 (8)0.0024 (6)0.0004 (7)0.0032 (6)
C140.0224 (9)0.0141 (7)0.0176 (8)0.0008 (6)0.0029 (7)0.0002 (6)
C150.0312 (11)0.0219 (9)0.0260 (10)0.0063 (7)0.0017 (8)0.0053 (7)
C160.0355 (11)0.0311 (10)0.0216 (9)0.0034 (8)0.0032 (8)0.0087 (8)
C170.0320 (10)0.0207 (8)0.0217 (9)0.0059 (7)0.0006 (8)0.0031 (7)
Geometric parameters (Å, º) top
S1—C71.6659 (17)C4—H4A0.9500
F1—C61.360 (2)C5—C61.369 (2)
O1—C81.2337 (19)C5—H5A0.9500
O2—C111.359 (2)C8—C91.485 (2)
O2—C151.435 (2)C9—C101.395 (2)
O3—C121.3763 (19)C9—C141.397 (2)
O3—C161.432 (2)C10—C111.384 (2)
O4—C131.3660 (19)C10—H10A0.9500
O4—C171.425 (2)C11—C121.403 (2)
N1—C71.339 (2)C12—C131.396 (2)
N1—C11.410 (2)C13—C141.388 (2)
N1—H1A0.8800C14—H14A0.9500
N2—C81.381 (2)C15—H15A0.9800
N2—C71.404 (2)C15—H15B0.9800
N2—H2A0.8800C15—H15C0.9800
C1—C21.387 (2)C16—H16A0.9800
C1—C61.392 (2)C16—H16B0.9800
C2—C31.391 (3)C16—H16C0.9800
C2—H2B0.9500C17—H17B0.9800
C3—C41.389 (3)C17—H17C0.9800
C3—H3A0.9500C17—H17D0.9800
C4—C51.379 (3)
C11—O2—C15117.24 (13)C14—C9—C8122.59 (15)
C12—O3—C16113.37 (13)C11—C10—C9119.76 (15)
C13—O4—C17117.45 (13)C11—C10—H10A120.1
C7—N1—C1130.78 (14)C9—C10—H10A120.1
C7—N1—H1A114.6O2—C11—C10125.26 (15)
C1—N1—H1A114.6O2—C11—C12115.17 (14)
C8—N2—C7127.44 (14)C10—C11—C12119.56 (15)
C8—N2—H2A116.3O3—C12—C13119.38 (14)
C7—N2—H2A116.3O3—C12—C11120.47 (15)
C2—C1—C6117.45 (16)C13—C12—C11120.13 (15)
C2—C1—N1126.57 (15)O4—C13—C14124.86 (15)
C6—C1—N1115.96 (15)O4—C13—C12114.50 (14)
C1—C2—C3119.80 (17)C14—C13—C12120.63 (15)
C1—C2—H2B120.1C13—C14—C9118.61 (15)
C3—C2—H2B120.1C13—C14—H14A120.7
C4—C3—C2121.17 (18)C9—C14—H14A120.7
C4—C3—H3A119.4O2—C15—H15A109.5
C2—C3—H3A119.4O2—C15—H15B109.5
C5—C4—C3119.40 (17)H15A—C15—H15B109.5
C5—C4—H4A120.3O2—C15—H15C109.5
C3—C4—H4A120.3H15A—C15—H15C109.5
C6—C5—C4118.79 (16)H15B—C15—H15C109.5
C6—C5—H5A120.6O3—C16—H16A109.5
C4—C5—H5A120.6O3—C16—H16B109.5
F1—C6—C5119.23 (15)H16A—C16—H16B109.5
F1—C6—C1117.40 (15)O3—C16—H16C109.5
C5—C6—C1123.38 (17)H16A—C16—H16C109.5
N1—C7—N2114.10 (14)H16B—C16—H16C109.5
N1—C7—S1127.56 (13)O4—C17—H17B109.5
N2—C7—S1118.34 (12)O4—C17—H17C109.5
O1—C8—N2122.03 (15)H17B—C17—H17C109.5
O1—C8—C9119.80 (15)O4—C17—H17D109.5
N2—C8—C9118.16 (14)H17B—C17—H17D109.5
C10—C9—C14121.30 (15)H17C—C17—H17D109.5
C10—C9—C8115.80 (14)
C7—N1—C1—C224.6 (3)C14—C9—C10—C110.0 (3)
C7—N1—C1—C6157.28 (18)C8—C9—C10—C11173.74 (15)
C6—C1—C2—C31.2 (3)C15—O2—C11—C105.8 (3)
N1—C1—C2—C3179.34 (19)C15—O2—C11—C12173.60 (15)
C1—C2—C3—C40.2 (3)C9—C10—C11—O2179.91 (16)
C2—C3—C4—C50.8 (3)C9—C10—C11—C120.7 (3)
C3—C4—C5—C60.7 (3)C16—O3—C12—C13102.98 (18)
C4—C5—C6—F1179.93 (17)C16—O3—C12—C1178.6 (2)
C4—C5—C6—C10.3 (3)O2—C11—C12—O31.5 (2)
C2—C1—C6—F1179.10 (16)C10—C11—C12—O3179.01 (15)
N1—C1—C6—F10.8 (3)O2—C11—C12—C13179.89 (15)
C2—C1—C6—C51.3 (3)C10—C11—C12—C130.6 (3)
N1—C1—C6—C5179.62 (18)C17—O4—C13—C145.9 (2)
C1—N1—C7—N2177.33 (17)C17—O4—C13—C12175.70 (15)
C1—N1—C7—S12.7 (3)O3—C12—C13—O43.2 (2)
C8—N2—C7—N12.9 (3)C11—C12—C13—O4178.39 (15)
C8—N2—C7—S1177.17 (14)O3—C12—C13—C14178.27 (15)
C7—N2—C8—O14.8 (3)C11—C12—C13—C140.1 (3)
C7—N2—C8—C9174.22 (16)O4—C13—C14—C9177.53 (16)
O1—C8—C9—C1020.7 (3)C12—C13—C14—C90.8 (3)
N2—C8—C9—C10160.21 (16)C10—C9—C14—C130.8 (3)
O1—C8—C9—C14152.96 (18)C8—C9—C14—C13172.57 (16)
N2—C8—C9—C1426.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···S1i0.882.703.5219 (15)157
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H17FN2O4S
Mr364.39
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)4.0828 (5), 14.0420 (16), 14.2295 (16)
α, β, γ (°)91.092 (2), 90.694 (2), 91.712 (2)
V3)815.21 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.48 × 0.20 × 0.19
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.896, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
7686, 3868, 3128
Rint0.027
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.109, 1.03
No. of reflections3868
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.27

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···S1i0.882.703.5219 (15)156.8
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

The authors gratefully acknowledge a research grant from the Higher Education Commission of Pakistan under the project No. 20-Miscel/R&D/00/3834.

References

First citationBerkessel, A., Roland, K. & Neudorfl, J. M. (2006). Org. Lett. 8, 4195–4198.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHritzová, O. & Koščík, D. (2008). Collect. Czech. Chem. Commun. 59, 951–956.  Google Scholar
First citationLipunova, G. N., Nosova, E. V., Laeva, A. A., Trashakhova, T. V., Slepukhin, P. A. & Charushin, V. N. (2008). Russ. J. Org. Chem. 44, 741–749.  Web of Science CrossRef CAS Google Scholar
First citationNosova, E. V., Lipunova, G. N., Laeva, A. A. & Charushin, V. N. (2006). Zh. Org. Khim. 42, 1544–1550.  CAS Google Scholar
First citationNosova, E. V., Lipunova, G. N., Laeva, A. A., Sidorova, L. P. & Charushin, V. N. (2007). Zh. Org. Khim. 43, 68–76.  Google Scholar
First citationSaeed, A., Shaheen, U., Hameed, A. & Naqvi, S. Z. H. (2009). J. Fluorine Chem. 130, 1028–1034.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, C., Huang, H., Feng, M., Shi, X., Zhang, X. & Zhou, P. (2006). Bioorg. Med. Chem. Lett. 16, 162–166.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXu, X., Qian, X., Li, Z., Huang, Q. & Chen, G. (2003). J. Fluorine Chem. 121, 51–54.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds