organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(tert-But­oxy­carbonyl­amino)-6-(1,3-dioxo-1H-2,3-di­hydro­benzo[de]isoquinolin-2-yl)hexa­noic acid

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bSchool of Chemistry and Chemical Engineering, Key Laboratory of Analytical Chemistry for Life Science, Ministry of Education of China, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: hkfun@usm.my

(Received 24 March 2010; accepted 23 April 2010; online 28 April 2010)

In the title naphthalimide derivative, C23H26N2O6, the 1,8-naphthalimide system is essentially planar [maximum deviation = 0.0456 (16) Å]. A characteristic pattern of alternating long and short C—C bond lengths is observed in the 1,8-naphthalimide unit. The mean planes through the methyl carbamate and acetic acid groups form dihedral angles of 42.30 (9) and 61.59 (9)°, respectively, with the 1,8-naphthalimide plane. In the crystal structure, inter­molecular O—H⋯O and C—H⋯O hydrogen bonds link neighbouring mol­ecules, forming R22(9) hydrogen-bond ring motifs. These rings are further inter­connected by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds into a three-dimensional supra­molecular network.

Related literature

For general background to and applications of 1,8-naphthal­imide derivatives, see: Abraham et al. (2004[Abraham, B., McMasters, S., Mullan, M. & Kelly, L. A. (2004). J. Am. Chem. Soc. 126, 4293-4300.]); Hung et al. (2005[Hung, D. T., Shakhnovich, E. A., Pierson, E. & Mekalanos, J. J. (2005). Science, 310, 670-674.]); Le et al. (2000[Le, T. P., Rogers, J. E. & Kelly, L. A. (2000). J. Phys. Chem. A, 104, 6778-6785.]); Pogozelski & Tullius (1998[Pogozelski, W. K. & Tullius, T. D. (1998). Chem. Rev. 98, 1089-1107.]); Saito et al. (1995a[Saito, I., Takayama, M. & Kawanishi, S. (1995a). J. Am. Chem. Soc. 117, 5590-5591.],b[Saito, I., Takayama, M., Sugiyama, H., Nakatani, K., Tsuchida, A. & Yamamoto, M. (1995b). J. Am. Chem. Soc. 117, 6406-6407.]). For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Clark & Hall (1989[Clark, G. R. & Hall, S. B. (1989). Acta Cryst. C45, 67-71.]); Zarychta et al. (2003[Zarychta, B., Zaleski, J., Prezhdo, V. & Uspenskiy, B. (2003). Acta Cryst. E59, o332-o333.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C23H26N2O6

  • Mr = 426.46

  • Monoclinic, P 21

  • a = 5.1681 (13) Å

  • b = 15.427 (4) Å

  • c = 13.426 (3) Å

  • β = 91.491 (5)°

  • V = 1070.1 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.983

  • 10037 measured reflections

  • 2540 independent reflections

  • 2320 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.083

  • S = 1.04

  • 2540 reflections

  • 291 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.86 (3) 2.17 (3) 3.008 (2) 166 (3)
O6—H1O6⋯O3ii 0.87 (3) 1.84 (3) 2.695 (2) 166 (3)
C3—H3A⋯O5iii 0.93 2.41 3.331 (3) 169
C7—H7A⋯O5iv 0.93 2.45 3.183 (3) 136
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iv) x+1, y, z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,8-Naphthalimides are useful molecular probes for their unique luminescence and transient properties (Pogozelski & Tullius, 1998). They have a diversity of reactivity towards biological substrates (Pogozelski & Tullius, 1998). 1,8-Naphthalimide derivatives have attracted significant attention due to not only their participation in photoinduced electron transfer (PET) processes (Le et al., 2000; Abraham et al., 2004), but also to their applications in the fields of biology and medicine (Saito et al., 1995a). Some 1,8-naphthalimide derivatives have been reported to inhibit virulence regulation in Vibrio cholerae by inhibiting the transcriptional regulator ToxT (Hung et al., 2005). Other 1,8-naphthalimide derivatives have also been used in the photosensitized one-electron oxidation of DNA through the PET process (Saito et al., 1995b). In view of the importance of the 1,8-naphthalimide derivatives, the title compound was obtained and this paper reports its crystal structure.

In the title compound, the 1,8-naphthalimide moiety (N1/C1-C12/O3/O4) is essentially planar, with maximum deviation of 0.0456 (16) Å at atom O3. The characteristic alternating pattern of C—C bond lengths is observed in the naphthalimide ring system, specifically, C2—C3, C4—C5, C7—C8 and C9—C10 bond lengths are shorter than the expected aromatic C—C bond length [average value of 1.373 (3) Å], whereas all the other bond lengths in the aromatic rings are longer than expected value [average value of 1.412 (3) Å]. This characteristic pattern of bond length variation has been reported previously in other N-substituted naphthalimide structures (Clark & Hall, 1989; Zarychta et al., 2003). All other bond lengths (Allen et al., 1987) and angles are within normal range. The plane through the 1,8-naphthalimide ring system forms dihedral angles of 42.30 (9) and 61.59 (9)°, respectively, with those through the methyl carbamate (C17/N2/C18/O1/O2) and acetic acid (C17/C23/O5/O6) groups.

In the crystal structure, intermolecular O6—H1O6···O3 and C3—H3A···O5 hydrogen bonds (Table 1) link neighbouring molecules into R22(9) hydrogen bond ring motifs (Bernstein et al., 1995). These ring motifs are further interconnected by intermolecular N2—H1N2···O1 and C7—H7A···O5 hydrogen bonds (Table 1) into a three-dimensional supramolecular network.

Related literature top

For general background to and applications of 1,8-naphthalimide derivatives, see: Abraham et al. (2004); Hung et al. (2005); Le et al. (2000); Pogozelski & Tullius (1998); Saito et al. (1995a,b). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Clark & Hall (1989); Zarychta et al. (2003). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was derived from the reaction between 1,8-naphthalic anhydride and α-N-Boc-L-Lysine in anhydrous dimethylformamide. Removal of the solvent under reduced pressure followed by silica gel chromatography gave the title compound. X-ray quality single crystals of the tile compound were obtained from slow evaporation of a methanol/ether solution (1:2, v:v).

Refinement top

Atoms H1N2 and H1O6 were located from difference Fourier map and allowed to refine freely. All other hydrogen atoms were placed in their calculated positions, with C—H = 0.93 – 0.97 Å, and refined using a riding model, with Uiso = 1.2 or 1.5 Ueq(C). A rotating group model was used for the methyl groups. In the absence of significant anomalous dispersion, 2210 Friedel pairs were merged for the final refinement.

Structure description top

1,8-Naphthalimides are useful molecular probes for their unique luminescence and transient properties (Pogozelski & Tullius, 1998). They have a diversity of reactivity towards biological substrates (Pogozelski & Tullius, 1998). 1,8-Naphthalimide derivatives have attracted significant attention due to not only their participation in photoinduced electron transfer (PET) processes (Le et al., 2000; Abraham et al., 2004), but also to their applications in the fields of biology and medicine (Saito et al., 1995a). Some 1,8-naphthalimide derivatives have been reported to inhibit virulence regulation in Vibrio cholerae by inhibiting the transcriptional regulator ToxT (Hung et al., 2005). Other 1,8-naphthalimide derivatives have also been used in the photosensitized one-electron oxidation of DNA through the PET process (Saito et al., 1995b). In view of the importance of the 1,8-naphthalimide derivatives, the title compound was obtained and this paper reports its crystal structure.

In the title compound, the 1,8-naphthalimide moiety (N1/C1-C12/O3/O4) is essentially planar, with maximum deviation of 0.0456 (16) Å at atom O3. The characteristic alternating pattern of C—C bond lengths is observed in the naphthalimide ring system, specifically, C2—C3, C4—C5, C7—C8 and C9—C10 bond lengths are shorter than the expected aromatic C—C bond length [average value of 1.373 (3) Å], whereas all the other bond lengths in the aromatic rings are longer than expected value [average value of 1.412 (3) Å]. This characteristic pattern of bond length variation has been reported previously in other N-substituted naphthalimide structures (Clark & Hall, 1989; Zarychta et al., 2003). All other bond lengths (Allen et al., 1987) and angles are within normal range. The plane through the 1,8-naphthalimide ring system forms dihedral angles of 42.30 (9) and 61.59 (9)°, respectively, with those through the methyl carbamate (C17/N2/C18/O1/O2) and acetic acid (C17/C23/O5/O6) groups.

In the crystal structure, intermolecular O6—H1O6···O3 and C3—H3A···O5 hydrogen bonds (Table 1) link neighbouring molecules into R22(9) hydrogen bond ring motifs (Bernstein et al., 1995). These ring motifs are further interconnected by intermolecular N2—H1N2···O1 and C7—H7A···O5 hydrogen bonds (Table 1) into a three-dimensional supramolecular network.

For general background to and applications of 1,8-naphthalimide derivatives, see: Abraham et al. (2004); Hung et al. (2005); Le et al. (2000); Pogozelski & Tullius (1998); Saito et al. (1995a,b). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Clark & Hall (1989); Zarychta et al. (2003). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the a axis, showing the three-dimensional supramolecular network. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
2-(tert-Butoxycarbonylamino)-6-(1,3-dioxo-1H- 2,3-dihydrobenzo[de]isoquinolin-2-yl)hexanoic acid top
Crystal data top
C23H26N2O6F(000) = 452
Mr = 426.46Dx = 1.324 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3461 reflections
a = 5.1681 (13) Åθ = 3.0–31.4°
b = 15.427 (4) ŵ = 0.10 mm1
c = 13.426 (3) ÅT = 100 K
β = 91.491 (5)°Block, colourless
V = 1070.1 (5) Å30.22 × 0.20 × 0.18 mm
Z = 2
Data collection top
Bruker SMART APEX DUO CCD area-detector
diffractometer
2540 independent reflections
Radiation source: fine-focus sealed tube2320 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 66
Tmin = 0.980, Tmax = 0.983k = 2019
10037 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0471P)2 + 0.1369P]
where P = (Fo2 + 2Fc2)/3
2540 reflections(Δ/σ)max < 0.001
291 parametersΔρmax = 0.24 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C23H26N2O6V = 1070.1 (5) Å3
Mr = 426.46Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.1681 (13) ŵ = 0.10 mm1
b = 15.427 (4) ÅT = 100 K
c = 13.426 (3) Å0.22 × 0.20 × 0.18 mm
β = 91.491 (5)°
Data collection top
Bruker SMART APEX DUO CCD area-detector
diffractometer
2540 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2320 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.983Rint = 0.035
10037 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0321 restraint
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.24 e Å3
2540 reflectionsΔρmin = 0.20 e Å3
291 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5844 (3)0.09878 (10)0.34654 (12)0.0196 (3)
O20.2687 (3)0.19431 (9)0.29685 (12)0.0162 (3)
O30.4054 (3)0.22297 (10)0.73839 (12)0.0223 (4)
O40.1240 (3)0.03594 (11)0.85133 (11)0.0220 (3)
O50.2044 (3)0.08287 (11)0.24623 (12)0.0276 (4)
O60.4014 (3)0.14959 (11)0.37506 (12)0.0237 (4)
N10.2618 (3)0.09498 (12)0.79736 (13)0.0154 (4)
N20.1589 (3)0.06803 (11)0.36137 (13)0.0145 (4)
C10.4270 (4)0.16611 (13)0.80155 (16)0.0154 (4)
C20.6260 (4)0.16820 (14)0.88308 (16)0.0152 (4)
C30.7899 (4)0.23814 (14)0.89240 (16)0.0179 (4)
H3A0.77280.28480.84880.021*
C40.9847 (4)0.23901 (15)0.96853 (17)0.0205 (5)
H4A1.09560.28630.97480.025*
C51.0105 (4)0.17055 (15)1.03290 (17)0.0200 (5)
H5A1.14100.17161.08190.024*
C60.8428 (4)0.09837 (14)1.02641 (15)0.0163 (4)
C70.8582 (4)0.02823 (15)1.09386 (17)0.0213 (5)
H7A0.98570.02811.14400.026*
C80.6875 (4)0.03981 (16)1.08636 (17)0.0224 (5)
H8A0.69890.08531.13170.027*
C90.4951 (4)0.04085 (15)1.01006 (17)0.0198 (4)
H9A0.38010.08711.00510.024*
C100.4767 (4)0.02633 (14)0.94287 (15)0.0163 (4)
C110.2741 (4)0.02366 (13)0.86285 (16)0.0156 (4)
C120.6468 (4)0.09776 (14)0.95005 (15)0.0144 (4)
C130.0601 (4)0.09147 (14)0.71759 (15)0.0161 (4)
H13A0.01730.15000.69660.019*
H13B0.09490.06540.74360.019*
C140.1460 (4)0.03956 (14)0.62756 (16)0.0165 (4)
H14A0.21780.01540.64980.020*
H14B0.28050.07110.59400.020*
C150.0811 (4)0.02293 (14)0.55430 (15)0.0154 (4)
H15A0.22660.00130.59110.018*
H15B0.13300.07760.52410.018*
C160.0208 (4)0.04160 (14)0.47149 (15)0.0150 (4)
H16A0.17280.04780.42820.018*
H16B0.01580.09770.50120.018*
C170.2092 (4)0.01458 (13)0.40848 (15)0.0133 (4)
H17A0.36110.00810.45310.016*
C180.3572 (4)0.11921 (13)0.33550 (15)0.0145 (4)
C190.4489 (4)0.26771 (13)0.28446 (17)0.0159 (4)
C200.2696 (4)0.34116 (15)0.25217 (18)0.0209 (5)
H20A0.13940.34910.30110.031*
H20B0.18830.32710.18910.031*
H20C0.36780.39360.24600.031*
C210.5825 (5)0.28823 (16)0.38377 (18)0.0249 (5)
H21A0.70060.24230.40130.037*
H21B0.45520.29360.43420.037*
H21C0.67610.34170.37850.037*
C220.6367 (4)0.24803 (15)0.20234 (17)0.0189 (4)
H22A0.75650.20420.22470.028*
H22B0.72990.29970.18610.028*
H22C0.54240.22780.14440.028*
C230.2680 (4)0.08485 (14)0.33260 (15)0.0155 (4)
H1N20.002 (6)0.0845 (19)0.351 (2)0.029 (7)*
H1O60.451 (6)0.186 (2)0.330 (2)0.034 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0104 (6)0.0218 (8)0.0265 (9)0.0011 (6)0.0011 (6)0.0055 (6)
O20.0114 (6)0.0147 (7)0.0225 (8)0.0011 (6)0.0014 (6)0.0018 (6)
O30.0218 (8)0.0244 (9)0.0205 (8)0.0045 (6)0.0046 (6)0.0072 (6)
O40.0233 (7)0.0202 (8)0.0222 (8)0.0050 (7)0.0024 (6)0.0004 (7)
O50.0419 (10)0.0250 (9)0.0155 (8)0.0130 (8)0.0066 (7)0.0022 (7)
O60.0347 (9)0.0188 (8)0.0172 (8)0.0124 (7)0.0058 (7)0.0041 (7)
N10.0143 (7)0.0182 (9)0.0136 (9)0.0006 (7)0.0013 (6)0.0004 (7)
N20.0090 (7)0.0146 (9)0.0198 (9)0.0016 (6)0.0008 (6)0.0019 (7)
C10.0146 (9)0.0164 (10)0.0152 (10)0.0010 (8)0.0021 (7)0.0013 (8)
C20.0150 (9)0.0179 (10)0.0128 (10)0.0016 (8)0.0013 (7)0.0026 (8)
C30.0189 (9)0.0198 (11)0.0152 (11)0.0006 (8)0.0036 (8)0.0005 (8)
C40.0176 (10)0.0230 (11)0.0209 (12)0.0050 (9)0.0016 (8)0.0047 (9)
C50.0141 (9)0.0288 (12)0.0171 (11)0.0015 (9)0.0021 (8)0.0060 (9)
C60.0142 (9)0.0207 (10)0.0140 (10)0.0029 (8)0.0016 (7)0.0042 (8)
C70.0210 (10)0.0271 (12)0.0157 (11)0.0067 (9)0.0018 (8)0.0012 (9)
C80.0287 (11)0.0226 (11)0.0158 (11)0.0066 (10)0.0006 (9)0.0052 (9)
C90.0216 (10)0.0176 (10)0.0201 (11)0.0014 (9)0.0015 (8)0.0018 (9)
C100.0172 (10)0.0182 (11)0.0136 (10)0.0019 (8)0.0013 (8)0.0019 (8)
C110.0146 (9)0.0165 (10)0.0157 (10)0.0001 (8)0.0015 (8)0.0019 (8)
C120.0145 (8)0.0184 (10)0.0105 (9)0.0023 (8)0.0018 (7)0.0020 (8)
C130.0135 (8)0.0202 (10)0.0144 (10)0.0020 (8)0.0020 (7)0.0013 (8)
C140.0138 (9)0.0202 (10)0.0155 (10)0.0024 (8)0.0006 (7)0.0025 (8)
C150.0127 (9)0.0204 (10)0.0129 (10)0.0010 (8)0.0025 (7)0.0007 (8)
C160.0124 (8)0.0174 (10)0.0150 (10)0.0017 (8)0.0021 (7)0.0013 (8)
C170.0123 (8)0.0140 (10)0.0133 (10)0.0009 (7)0.0020 (7)0.0000 (7)
C180.0151 (9)0.0150 (10)0.0133 (10)0.0009 (8)0.0015 (7)0.0022 (7)
C190.0133 (9)0.0156 (10)0.0185 (11)0.0031 (8)0.0021 (8)0.0001 (8)
C200.0178 (10)0.0150 (10)0.0300 (13)0.0001 (8)0.0031 (9)0.0027 (9)
C210.0283 (11)0.0225 (12)0.0235 (12)0.0052 (10)0.0062 (9)0.0037 (10)
C220.0134 (9)0.0213 (11)0.0220 (12)0.0001 (8)0.0003 (8)0.0025 (9)
C230.0138 (8)0.0162 (10)0.0163 (10)0.0012 (8)0.0015 (7)0.0008 (8)
Geometric parameters (Å, º) top
O1—C181.221 (2)C9—H9A0.9300
O2—C181.345 (2)C10—C121.411 (3)
O2—C191.478 (2)C10—C111.481 (3)
O3—C11.223 (3)C13—C141.525 (3)
O4—C111.210 (3)C13—H13A0.9700
O5—C231.197 (3)C13—H13B0.9700
O6—C231.333 (3)C14—C151.533 (3)
O6—H1O60.87 (3)C14—H14A0.9700
N1—C11.391 (3)C14—H14B0.9700
N1—C111.409 (3)C15—C161.531 (3)
N1—C131.476 (2)C15—H15A0.9700
N2—C181.346 (3)C15—H15B0.9700
N2—C171.443 (3)C16—C171.535 (3)
N2—H1N20.86 (3)C16—H16A0.9700
C1—C21.483 (3)C16—H16B0.9700
C2—C31.375 (3)C17—C231.524 (3)
C2—C121.413 (3)C17—H17A0.9800
C3—C41.416 (3)C19—C221.518 (3)
C3—H3A0.9300C19—C211.519 (3)
C4—C51.369 (3)C19—C201.520 (3)
C4—H4A0.9300C20—H20A0.9600
C5—C61.412 (3)C20—H20B0.9600
C5—H5A0.9300C20—H20C0.9600
C6—C71.412 (3)C21—H21A0.9600
C6—C121.422 (3)C21—H21B0.9600
C7—C81.373 (3)C21—H21C0.9600
C7—H7A0.9300C22—H22A0.9600
C8—C91.409 (3)C22—H22B0.9600
C8—H8A0.9300C22—H22C0.9600
C9—C101.376 (3)
C18—O2—C19119.64 (15)C15—C14—H14A109.4
C23—O6—H1O6110 (2)C13—C14—H14B109.4
C1—N1—C11124.98 (17)C15—C14—H14B109.4
C1—N1—C13118.66 (17)H14A—C14—H14B108.0
C11—N1—C13116.34 (17)C16—C15—C14114.07 (17)
C18—N2—C17120.08 (16)C16—C15—H15A108.7
C18—N2—H1N2120.3 (19)C14—C15—H15A108.7
C17—N2—H1N2119.6 (19)C16—C15—H15B108.7
O3—C1—N1119.54 (19)C14—C15—H15B108.7
O3—C1—C2123.03 (19)H15A—C15—H15B107.6
N1—C1—C2117.42 (18)C15—C16—C17113.53 (17)
C3—C2—C12120.60 (19)C15—C16—H16A108.9
C3—C2—C1119.87 (19)C17—C16—H16A108.9
C12—C2—C1119.53 (18)C15—C16—H16B108.9
C2—C3—C4119.9 (2)C17—C16—H16B108.9
C2—C3—H3A120.1H16A—C16—H16B107.7
C4—C3—H3A120.1N2—C17—C23111.83 (17)
C5—C4—C3120.3 (2)N2—C17—C16110.37 (16)
C5—C4—H4A119.9C23—C17—C16110.26 (17)
C3—C4—H4A119.9N2—C17—H17A108.1
C4—C5—C6121.33 (19)C23—C17—H17A108.1
C4—C5—H5A119.3C16—C17—H17A108.1
C6—C5—H5A119.3O1—C18—O2125.83 (19)
C7—C6—C5122.71 (19)O1—C18—N2123.60 (19)
C7—C6—C12119.0 (2)O2—C18—N2110.57 (16)
C5—C6—C12118.3 (2)O2—C19—C22110.18 (17)
C8—C7—C6120.9 (2)O2—C19—C21109.53 (18)
C8—C7—H7A119.6C22—C19—C21113.24 (18)
C6—C7—H7A119.6O2—C19—C20102.83 (15)
C7—C8—C9120.1 (2)C22—C19—C20109.78 (18)
C7—C8—H8A119.9C21—C19—C20110.79 (18)
C9—C8—H8A119.9C19—C20—H20A109.5
C10—C9—C8120.2 (2)C19—C20—H20B109.5
C10—C9—H9A119.9H20A—C20—H20B109.5
C8—C9—H9A119.9C19—C20—H20C109.5
C9—C10—C12120.7 (2)H20A—C20—H20C109.5
C9—C10—C11119.34 (19)H20B—C20—H20C109.5
C12—C10—C11119.91 (19)C19—C21—H21A109.5
O4—C11—N1119.69 (18)C19—C21—H21B109.5
O4—C11—C10123.53 (19)H21A—C21—H21B109.5
N1—C11—C10116.78 (17)C19—C21—H21C109.5
C10—C12—C2121.35 (18)H21A—C21—H21C109.5
C10—C12—C6119.01 (19)H21B—C21—H21C109.5
C2—C12—C6119.64 (19)C19—C22—H22A109.5
N1—C13—C14112.33 (16)C19—C22—H22B109.5
N1—C13—H13A109.1H22A—C22—H22B109.5
C14—C13—H13A109.1C19—C22—H22C109.5
N1—C13—H13B109.1H22A—C22—H22C109.5
C14—C13—H13B109.1H22B—C22—H22C109.5
H13A—C13—H13B107.9O5—C23—O6124.0 (2)
C13—C14—C15111.26 (16)O5—C23—C17125.09 (19)
C13—C14—H14A109.4O6—C23—C17110.91 (17)
C11—N1—C1—O3177.12 (19)C9—C10—C12—C61.7 (3)
C13—N1—C1—O31.5 (3)C11—C10—C12—C6178.95 (18)
C11—N1—C1—C22.0 (3)C3—C2—C12—C10178.64 (19)
C13—N1—C1—C2179.44 (17)C1—C2—C12—C101.9 (3)
O3—C1—C2—C32.7 (3)C3—C2—C12—C61.4 (3)
N1—C1—C2—C3178.21 (19)C1—C2—C12—C6178.03 (18)
O3—C1—C2—C12176.7 (2)C7—C6—C12—C101.2 (3)
N1—C1—C2—C122.3 (3)C5—C6—C12—C10179.66 (19)
C12—C2—C3—C41.2 (3)C7—C6—C12—C2178.89 (19)
C1—C2—C3—C4178.20 (19)C5—C6—C12—C20.4 (3)
C2—C3—C4—C50.0 (3)C1—N1—C13—C1495.2 (2)
C3—C4—C5—C61.0 (3)C11—N1—C13—C1483.5 (2)
C4—C5—C6—C7177.6 (2)N1—C13—C14—C15169.74 (17)
C4—C5—C6—C120.8 (3)C13—C14—C15—C16170.05 (18)
C5—C6—C7—C8178.5 (2)C14—C15—C16—C1757.8 (2)
C12—C6—C7—C80.0 (3)C18—N2—C17—C2382.3 (2)
C6—C7—C8—C90.6 (3)C18—N2—C17—C16154.59 (17)
C7—C8—C9—C100.2 (3)C15—C16—C17—N259.8 (2)
C8—C9—C10—C121.0 (3)C15—C16—C17—C23176.17 (16)
C8—C9—C10—C11179.6 (2)C19—O2—C18—O113.6 (3)
C1—N1—C11—O4178.4 (2)C19—O2—C18—N2166.25 (17)
C13—N1—C11—O40.2 (3)C17—N2—C18—O12.5 (3)
C1—N1—C11—C101.1 (3)C17—N2—C18—O2177.36 (17)
C13—N1—C11—C10179.68 (17)C18—O2—C19—C2269.9 (2)
C9—C10—C11—O41.6 (3)C18—O2—C19—C2155.3 (2)
C12—C10—C11—O4179.0 (2)C18—O2—C19—C20173.11 (18)
C9—C10—C11—N1178.90 (19)N2—C17—C23—O522.3 (3)
C12—C10—C11—N10.5 (3)C16—C17—C23—O5100.9 (2)
C9—C10—C12—C2178.4 (2)N2—C17—C23—O6157.54 (16)
C11—C10—C12—C21.0 (3)C16—C17—C23—O679.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.86 (3)2.17 (3)3.008 (2)166 (3)
O6—H1O6···O3ii0.87 (3)1.84 (3)2.695 (2)166 (3)
C3—H3A···O5iii0.932.413.331 (3)169
C7—H7A···O5iv0.932.453.183 (3)136
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+1; (iii) x+1, y+1/2, z+1; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC23H26N2O6
Mr426.46
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)5.1681 (13), 15.427 (4), 13.426 (3)
β (°) 91.491 (5)
V3)1070.1 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.980, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
10037, 2540, 2320
Rint0.035
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.083, 1.04
No. of reflections2540
No. of parameters291
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.20

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.86 (3)2.17 (3)3.008 (2)166 (3)
O6—H1O6···O3ii0.87 (3)1.84 (3)2.695 (2)166 (3)
C3—H3A···O5iii0.93002.41003.331 (3)169.00
C7—H7A···O5iv0.93002.45003.183 (3)136.00
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+1; (iii) x+1, y+1/2, z+1; (iv) x+1, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7576-2009.

Acknowledgements

HKF and JHG thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship. Financial support from the National Natural Science Foundation of China (20702024) is acknowledged.

References

First citationAbraham, B., McMasters, S., Mullan, M. & Kelly, L. A. (2004). J. Am. Chem. Soc. 126, 4293–4300.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClark, G. R. & Hall, S. B. (1989). Acta Cryst. C45, 67–71.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHung, D. T., Shakhnovich, E. A., Pierson, E. & Mekalanos, J. J. (2005). Science, 310, 670–674.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLe, T. P., Rogers, J. E. & Kelly, L. A. (2000). J. Phys. Chem. A, 104, 6778–6785.  Web of Science CrossRef CAS Google Scholar
First citationPogozelski, W. K. & Tullius, T. D. (1998). Chem. Rev. 98, 1089–1107.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSaito, I., Takayama, M. & Kawanishi, S. (1995a). J. Am. Chem. Soc. 117, 5590–5591.  CrossRef CAS Web of Science Google Scholar
First citationSaito, I., Takayama, M., Sugiyama, H., Nakatani, K., Tsuchida, A. & Yamamoto, M. (1995b). J. Am. Chem. Soc. 117, 6406–6407.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZarychta, B., Zaleski, J., Prezhdo, V. & Uspenskiy, B. (2003). Acta Cryst. E59, o332–o333.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds