organic compounds
2-(tert-Butoxycarbonylamino)-6-(1,3-dioxo-1H-2,3-dihydrobenzo[de]isoquinolin-2-yl)hexanoic acid
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bSchool of Chemistry and Chemical Engineering, Key Laboratory of Analytical Chemistry for Life Science, Ministry of Education of China, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: hkfun@usm.my
In the title naphthalimide derivative, C23H26N2O6, the 1,8-naphthalimide system is essentially planar [maximum deviation = 0.0456 (16) Å]. A characteristic pattern of alternating long and short C—C bond lengths is observed in the 1,8-naphthalimide unit. The mean planes through the methyl carbamate and acetic acid groups form dihedral angles of 42.30 (9) and 61.59 (9)°, respectively, with the 1,8-naphthalimide plane. In the intermolecular O—H⋯O and C—H⋯O hydrogen bonds link neighbouring molecules, forming R22(9) hydrogen-bond ring motifs. These rings are further interconnected by intermolecular N—H⋯O and C—H⋯O hydrogen bonds into a three-dimensional supramolecular network.
Related literature
For general background to and applications of 1,8-naphthalimide derivatives, see: Abraham et al. (2004); Hung et al. (2005); Le et al. (2000); Pogozelski & Tullius (1998); Saito et al. (1995a,b). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Clark & Hall (1989); Zarychta et al. (2003). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810014935/sj2760sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810014935/sj2760Isup2.hkl
The title compound was derived from the reaction between 1,8-naphthalic anhydride and α-N-Boc-L-Lysine in anhydrous dimethylformamide. Removal of the solvent under reduced pressure followed by silica gel gave the title compound. X-ray quality single crystals of the tile compound were obtained from slow evaporation of a methanol/ether solution (1:2, v:v).
Atoms H1N2 and H1O6 were located from difference Fourier map and allowed to refine freely. All other hydrogen atoms were placed in their calculated positions, with C—H = 0.93 – 0.97 Å, and refined using a riding model, with Uiso = 1.2 or 1.5 Ueq(C). A rotating group model was used for the methyl groups. In the absence of significant
2210 Friedel pairs were merged for the final refinement.1,8-Naphthalimides are useful molecular probes for their unique luminescence and transient properties (Pogozelski & Tullius, 1998). They have a diversity of reactivity towards biological substrates (Pogozelski & Tullius, 1998). 1,8-Naphthalimide derivatives have attracted significant attention due to not only their participation in
(PET) processes (Le et al., 2000; Abraham et al., 2004), but also to their applications in the fields of biology and medicine (Saito et al., 1995a). Some 1,8-naphthalimide derivatives have been reported to inhibit virulence regulation in Vibrio cholerae by inhibiting the transcriptional regulator ToxT (Hung et al., 2005). Other 1,8-naphthalimide derivatives have also been used in the photosensitized one-electron oxidation of DNA through the PET process (Saito et al., 1995b). In view of the importance of the 1,8-naphthalimide derivatives, the title compound was obtained and this paper reports its crystal structure.In the title compound, the 1,8-naphthalimide moiety (N1/C1-C12/O3/O4) is essentially planar, with maximum deviation of 0.0456 (16) Å at atom O3. The characteristic alternating pattern of C—C bond lengths is observed in the naphthalimide ring system, specifically, C2—C3, C4—C5, C7—C8 and C9—C10 bond lengths are shorter than the expected aromatic C—C bond length [average value of 1.373 (3) Å], whereas all the other bond lengths in the aromatic rings are longer than expected value [average value of 1.412 (3) Å]. This characteristic pattern of bond length variation has been reported previously in other N-substituted naphthalimide structures (Clark & Hall, 1989; Zarychta et al., 2003). All other bond lengths (Allen et al., 1987) and angles are within normal range. The plane through the 1,8-naphthalimide ring system forms dihedral angles of 42.30 (9) and 61.59 (9)°, respectively, with those through the methyl carbamate (C17/N2/C18/O1/O2) and acetic acid (C17/C23/O5/O6) groups.
In the
intermolecular O6—H1O6···O3 and C3—H3A···O5 hydrogen bonds (Table 1) link neighbouring molecules into R22(9) hydrogen bond ring motifs (Bernstein et al., 1995). These ring motifs are further interconnected by intermolecular N2—H1N2···O1 and C7—H7A···O5 hydrogen bonds (Table 1) into a three-dimensional supramolecular network.For general background to and applications of 1,8-naphthalimide derivatives, see: Abraham et al. (2004); Hung et al. (2005); Le et al. (2000); Pogozelski & Tullius (1998); Saito et al. (1995a,b). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Clark & Hall (1989); Zarychta et al. (2003). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C23H26N2O6 | F(000) = 452 |
Mr = 426.46 | Dx = 1.324 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 3461 reflections |
a = 5.1681 (13) Å | θ = 3.0–31.4° |
b = 15.427 (4) Å | µ = 0.10 mm−1 |
c = 13.426 (3) Å | T = 100 K |
β = 91.491 (5)° | Block, colourless |
V = 1070.1 (5) Å3 | 0.22 × 0.20 × 0.18 mm |
Z = 2 |
Bruker SMART APEX DUO CCD area-detector diffractometer | 2540 independent reflections |
Radiation source: fine-focus sealed tube | 2320 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
φ and ω scans | θmax = 27.5°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −6→6 |
Tmin = 0.980, Tmax = 0.983 | k = −20→19 |
10037 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.083 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0471P)2 + 0.1369P] where P = (Fo2 + 2Fc2)/3 |
2540 reflections | (Δ/σ)max < 0.001 |
291 parameters | Δρmax = 0.24 e Å−3 |
1 restraint | Δρmin = −0.20 e Å−3 |
C23H26N2O6 | V = 1070.1 (5) Å3 |
Mr = 426.46 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 5.1681 (13) Å | µ = 0.10 mm−1 |
b = 15.427 (4) Å | T = 100 K |
c = 13.426 (3) Å | 0.22 × 0.20 × 0.18 mm |
β = 91.491 (5)° |
Bruker SMART APEX DUO CCD area-detector diffractometer | 2540 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 2320 reflections with I > 2σ(I) |
Tmin = 0.980, Tmax = 0.983 | Rint = 0.035 |
10037 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 1 restraint |
wR(F2) = 0.083 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.24 e Å−3 |
2540 reflections | Δρmin = −0.20 e Å−3 |
291 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.5844 (3) | 0.09878 (10) | 0.34654 (12) | 0.0196 (3) | |
O2 | 0.2687 (3) | 0.19431 (9) | 0.29685 (12) | 0.0162 (3) | |
O3 | 0.4054 (3) | 0.22297 (10) | 0.73839 (12) | 0.0223 (4) | |
O4 | 0.1240 (3) | −0.03594 (11) | 0.85133 (11) | 0.0220 (3) | |
O5 | 0.2044 (3) | −0.08287 (11) | 0.24623 (12) | 0.0276 (4) | |
O6 | 0.4014 (3) | −0.14959 (11) | 0.37506 (12) | 0.0237 (4) | |
N1 | 0.2618 (3) | 0.09498 (12) | 0.79736 (13) | 0.0154 (4) | |
N2 | 0.1589 (3) | 0.06803 (11) | 0.36137 (13) | 0.0145 (4) | |
C1 | 0.4270 (4) | 0.16611 (13) | 0.80155 (16) | 0.0154 (4) | |
C2 | 0.6260 (4) | 0.16820 (14) | 0.88308 (16) | 0.0152 (4) | |
C3 | 0.7899 (4) | 0.23814 (14) | 0.89240 (16) | 0.0179 (4) | |
H3A | 0.7728 | 0.2848 | 0.8488 | 0.021* | |
C4 | 0.9847 (4) | 0.23901 (15) | 0.96853 (17) | 0.0205 (5) | |
H4A | 1.0956 | 0.2863 | 0.9748 | 0.025* | |
C5 | 1.0105 (4) | 0.17055 (15) | 1.03290 (17) | 0.0200 (5) | |
H5A | 1.1410 | 0.1716 | 1.0819 | 0.024* | |
C6 | 0.8428 (4) | 0.09837 (14) | 1.02641 (15) | 0.0163 (4) | |
C7 | 0.8582 (4) | 0.02823 (15) | 1.09386 (17) | 0.0213 (5) | |
H7A | 0.9857 | 0.0281 | 1.1440 | 0.026* | |
C8 | 0.6875 (4) | −0.03981 (16) | 1.08636 (17) | 0.0224 (5) | |
H8A | 0.6989 | −0.0853 | 1.1317 | 0.027* | |
C9 | 0.4951 (4) | −0.04085 (15) | 1.01006 (17) | 0.0198 (4) | |
H9A | 0.3801 | −0.0871 | 1.0051 | 0.024* | |
C10 | 0.4767 (4) | 0.02633 (14) | 0.94287 (15) | 0.0163 (4) | |
C11 | 0.2741 (4) | 0.02366 (13) | 0.86285 (16) | 0.0156 (4) | |
C12 | 0.6468 (4) | 0.09776 (14) | 0.95005 (15) | 0.0144 (4) | |
C13 | 0.0601 (4) | 0.09147 (14) | 0.71759 (15) | 0.0161 (4) | |
H13A | 0.0173 | 0.1500 | 0.6966 | 0.019* | |
H13B | −0.0949 | 0.0654 | 0.7436 | 0.019* | |
C14 | 0.1460 (4) | 0.03956 (14) | 0.62756 (16) | 0.0165 (4) | |
H14A | 0.2178 | −0.0154 | 0.6498 | 0.020* | |
H14B | 0.2805 | 0.0711 | 0.5940 | 0.020* | |
C15 | −0.0811 (4) | 0.02293 (14) | 0.55430 (15) | 0.0154 (4) | |
H15A | −0.2266 | 0.0013 | 0.5911 | 0.018* | |
H15B | −0.1330 | 0.0776 | 0.5241 | 0.018* | |
C16 | −0.0208 (4) | −0.04160 (14) | 0.47149 (15) | 0.0150 (4) | |
H16A | −0.1728 | −0.0478 | 0.4282 | 0.018* | |
H16B | 0.0158 | −0.0977 | 0.5012 | 0.018* | |
C17 | 0.2092 (4) | −0.01458 (13) | 0.40848 (15) | 0.0133 (4) | |
H17A | 0.3611 | −0.0081 | 0.4531 | 0.016* | |
C18 | 0.3572 (4) | 0.11921 (13) | 0.33550 (15) | 0.0145 (4) | |
C19 | 0.4489 (4) | 0.26771 (13) | 0.28446 (17) | 0.0159 (4) | |
C20 | 0.2696 (4) | 0.34116 (15) | 0.25217 (18) | 0.0209 (5) | |
H20A | 0.1394 | 0.3491 | 0.3011 | 0.031* | |
H20B | 0.1883 | 0.3271 | 0.1891 | 0.031* | |
H20C | 0.3678 | 0.3936 | 0.2460 | 0.031* | |
C21 | 0.5825 (5) | 0.28823 (16) | 0.38377 (18) | 0.0249 (5) | |
H21A | 0.7006 | 0.2423 | 0.4013 | 0.037* | |
H21B | 0.4552 | 0.2936 | 0.4342 | 0.037* | |
H21C | 0.6761 | 0.3417 | 0.3785 | 0.037* | |
C22 | 0.6367 (4) | 0.24803 (15) | 0.20234 (17) | 0.0189 (4) | |
H22A | 0.7565 | 0.2042 | 0.2247 | 0.028* | |
H22B | 0.7299 | 0.2997 | 0.1861 | 0.028* | |
H22C | 0.5424 | 0.2278 | 0.1444 | 0.028* | |
C23 | 0.2680 (4) | −0.08485 (14) | 0.33260 (15) | 0.0155 (4) | |
H1N2 | 0.002 (6) | 0.0845 (19) | 0.351 (2) | 0.029 (7)* | |
H1O6 | 0.451 (6) | −0.186 (2) | 0.330 (2) | 0.034 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0104 (6) | 0.0218 (8) | 0.0265 (9) | 0.0011 (6) | −0.0011 (6) | 0.0055 (6) |
O2 | 0.0114 (6) | 0.0147 (7) | 0.0225 (8) | −0.0011 (6) | −0.0014 (6) | 0.0018 (6) |
O3 | 0.0218 (8) | 0.0244 (9) | 0.0205 (8) | −0.0045 (6) | −0.0046 (6) | 0.0072 (6) |
O4 | 0.0233 (7) | 0.0202 (8) | 0.0222 (8) | −0.0050 (7) | −0.0024 (6) | −0.0004 (7) |
O5 | 0.0419 (10) | 0.0250 (9) | 0.0155 (8) | 0.0130 (8) | −0.0066 (7) | −0.0022 (7) |
O6 | 0.0347 (9) | 0.0188 (8) | 0.0172 (8) | 0.0124 (7) | −0.0058 (7) | −0.0041 (7) |
N1 | 0.0143 (7) | 0.0182 (9) | 0.0136 (9) | −0.0006 (7) | −0.0013 (6) | −0.0004 (7) |
N2 | 0.0090 (7) | 0.0146 (9) | 0.0198 (9) | 0.0016 (6) | −0.0008 (6) | 0.0019 (7) |
C1 | 0.0146 (9) | 0.0164 (10) | 0.0152 (10) | 0.0010 (8) | 0.0021 (7) | −0.0013 (8) |
C2 | 0.0150 (9) | 0.0179 (10) | 0.0128 (10) | 0.0016 (8) | 0.0013 (7) | −0.0026 (8) |
C3 | 0.0189 (9) | 0.0198 (11) | 0.0152 (11) | −0.0006 (8) | 0.0036 (8) | −0.0005 (8) |
C4 | 0.0176 (10) | 0.0230 (11) | 0.0209 (12) | −0.0050 (9) | 0.0016 (8) | −0.0047 (9) |
C5 | 0.0141 (9) | 0.0288 (12) | 0.0171 (11) | 0.0015 (9) | −0.0021 (8) | −0.0060 (9) |
C6 | 0.0142 (9) | 0.0207 (10) | 0.0140 (10) | 0.0029 (8) | 0.0016 (7) | −0.0042 (8) |
C7 | 0.0210 (10) | 0.0271 (12) | 0.0157 (11) | 0.0067 (9) | −0.0018 (8) | −0.0012 (9) |
C8 | 0.0287 (11) | 0.0226 (11) | 0.0158 (11) | 0.0066 (10) | 0.0006 (9) | 0.0052 (9) |
C9 | 0.0216 (10) | 0.0176 (10) | 0.0201 (11) | −0.0014 (9) | 0.0015 (8) | 0.0018 (9) |
C10 | 0.0172 (10) | 0.0182 (11) | 0.0136 (10) | 0.0019 (8) | 0.0013 (8) | −0.0019 (8) |
C11 | 0.0146 (9) | 0.0165 (10) | 0.0157 (10) | −0.0001 (8) | 0.0015 (8) | −0.0019 (8) |
C12 | 0.0145 (8) | 0.0184 (10) | 0.0105 (9) | 0.0023 (8) | 0.0018 (7) | −0.0020 (8) |
C13 | 0.0135 (8) | 0.0202 (10) | 0.0144 (10) | 0.0020 (8) | −0.0020 (7) | −0.0013 (8) |
C14 | 0.0138 (9) | 0.0202 (10) | 0.0155 (10) | 0.0024 (8) | −0.0006 (7) | −0.0025 (8) |
C15 | 0.0127 (9) | 0.0204 (10) | 0.0129 (10) | 0.0010 (8) | −0.0025 (7) | −0.0007 (8) |
C16 | 0.0124 (8) | 0.0174 (10) | 0.0150 (10) | −0.0017 (8) | −0.0021 (7) | −0.0013 (8) |
C17 | 0.0123 (8) | 0.0140 (10) | 0.0133 (10) | 0.0009 (7) | −0.0020 (7) | 0.0000 (7) |
C18 | 0.0151 (9) | 0.0150 (10) | 0.0133 (10) | 0.0009 (8) | −0.0015 (7) | −0.0022 (7) |
C19 | 0.0133 (9) | 0.0156 (10) | 0.0185 (11) | −0.0031 (8) | −0.0021 (8) | 0.0001 (8) |
C20 | 0.0178 (10) | 0.0150 (10) | 0.0300 (13) | 0.0001 (8) | 0.0031 (9) | 0.0027 (9) |
C21 | 0.0283 (11) | 0.0225 (12) | 0.0235 (12) | −0.0052 (10) | −0.0062 (9) | −0.0037 (10) |
C22 | 0.0134 (9) | 0.0213 (11) | 0.0220 (12) | 0.0001 (8) | 0.0003 (8) | 0.0025 (9) |
C23 | 0.0138 (8) | 0.0162 (10) | 0.0163 (10) | 0.0012 (8) | −0.0015 (7) | −0.0008 (8) |
O1—C18 | 1.221 (2) | C9—H9A | 0.9300 |
O2—C18 | 1.345 (2) | C10—C12 | 1.411 (3) |
O2—C19 | 1.478 (2) | C10—C11 | 1.481 (3) |
O3—C1 | 1.223 (3) | C13—C14 | 1.525 (3) |
O4—C11 | 1.210 (3) | C13—H13A | 0.9700 |
O5—C23 | 1.197 (3) | C13—H13B | 0.9700 |
O6—C23 | 1.333 (3) | C14—C15 | 1.533 (3) |
O6—H1O6 | 0.87 (3) | C14—H14A | 0.9700 |
N1—C1 | 1.391 (3) | C14—H14B | 0.9700 |
N1—C11 | 1.409 (3) | C15—C16 | 1.531 (3) |
N1—C13 | 1.476 (2) | C15—H15A | 0.9700 |
N2—C18 | 1.346 (3) | C15—H15B | 0.9700 |
N2—C17 | 1.443 (3) | C16—C17 | 1.535 (3) |
N2—H1N2 | 0.86 (3) | C16—H16A | 0.9700 |
C1—C2 | 1.483 (3) | C16—H16B | 0.9700 |
C2—C3 | 1.375 (3) | C17—C23 | 1.524 (3) |
C2—C12 | 1.413 (3) | C17—H17A | 0.9800 |
C3—C4 | 1.416 (3) | C19—C22 | 1.518 (3) |
C3—H3A | 0.9300 | C19—C21 | 1.519 (3) |
C4—C5 | 1.369 (3) | C19—C20 | 1.520 (3) |
C4—H4A | 0.9300 | C20—H20A | 0.9600 |
C5—C6 | 1.412 (3) | C20—H20B | 0.9600 |
C5—H5A | 0.9300 | C20—H20C | 0.9600 |
C6—C7 | 1.412 (3) | C21—H21A | 0.9600 |
C6—C12 | 1.422 (3) | C21—H21B | 0.9600 |
C7—C8 | 1.373 (3) | C21—H21C | 0.9600 |
C7—H7A | 0.9300 | C22—H22A | 0.9600 |
C8—C9 | 1.409 (3) | C22—H22B | 0.9600 |
C8—H8A | 0.9300 | C22—H22C | 0.9600 |
C9—C10 | 1.376 (3) | ||
C18—O2—C19 | 119.64 (15) | C15—C14—H14A | 109.4 |
C23—O6—H1O6 | 110 (2) | C13—C14—H14B | 109.4 |
C1—N1—C11 | 124.98 (17) | C15—C14—H14B | 109.4 |
C1—N1—C13 | 118.66 (17) | H14A—C14—H14B | 108.0 |
C11—N1—C13 | 116.34 (17) | C16—C15—C14 | 114.07 (17) |
C18—N2—C17 | 120.08 (16) | C16—C15—H15A | 108.7 |
C18—N2—H1N2 | 120.3 (19) | C14—C15—H15A | 108.7 |
C17—N2—H1N2 | 119.6 (19) | C16—C15—H15B | 108.7 |
O3—C1—N1 | 119.54 (19) | C14—C15—H15B | 108.7 |
O3—C1—C2 | 123.03 (19) | H15A—C15—H15B | 107.6 |
N1—C1—C2 | 117.42 (18) | C15—C16—C17 | 113.53 (17) |
C3—C2—C12 | 120.60 (19) | C15—C16—H16A | 108.9 |
C3—C2—C1 | 119.87 (19) | C17—C16—H16A | 108.9 |
C12—C2—C1 | 119.53 (18) | C15—C16—H16B | 108.9 |
C2—C3—C4 | 119.9 (2) | C17—C16—H16B | 108.9 |
C2—C3—H3A | 120.1 | H16A—C16—H16B | 107.7 |
C4—C3—H3A | 120.1 | N2—C17—C23 | 111.83 (17) |
C5—C4—C3 | 120.3 (2) | N2—C17—C16 | 110.37 (16) |
C5—C4—H4A | 119.9 | C23—C17—C16 | 110.26 (17) |
C3—C4—H4A | 119.9 | N2—C17—H17A | 108.1 |
C4—C5—C6 | 121.33 (19) | C23—C17—H17A | 108.1 |
C4—C5—H5A | 119.3 | C16—C17—H17A | 108.1 |
C6—C5—H5A | 119.3 | O1—C18—O2 | 125.83 (19) |
C7—C6—C5 | 122.71 (19) | O1—C18—N2 | 123.60 (19) |
C7—C6—C12 | 119.0 (2) | O2—C18—N2 | 110.57 (16) |
C5—C6—C12 | 118.3 (2) | O2—C19—C22 | 110.18 (17) |
C8—C7—C6 | 120.9 (2) | O2—C19—C21 | 109.53 (18) |
C8—C7—H7A | 119.6 | C22—C19—C21 | 113.24 (18) |
C6—C7—H7A | 119.6 | O2—C19—C20 | 102.83 (15) |
C7—C8—C9 | 120.1 (2) | C22—C19—C20 | 109.78 (18) |
C7—C8—H8A | 119.9 | C21—C19—C20 | 110.79 (18) |
C9—C8—H8A | 119.9 | C19—C20—H20A | 109.5 |
C10—C9—C8 | 120.2 (2) | C19—C20—H20B | 109.5 |
C10—C9—H9A | 119.9 | H20A—C20—H20B | 109.5 |
C8—C9—H9A | 119.9 | C19—C20—H20C | 109.5 |
C9—C10—C12 | 120.7 (2) | H20A—C20—H20C | 109.5 |
C9—C10—C11 | 119.34 (19) | H20B—C20—H20C | 109.5 |
C12—C10—C11 | 119.91 (19) | C19—C21—H21A | 109.5 |
O4—C11—N1 | 119.69 (18) | C19—C21—H21B | 109.5 |
O4—C11—C10 | 123.53 (19) | H21A—C21—H21B | 109.5 |
N1—C11—C10 | 116.78 (17) | C19—C21—H21C | 109.5 |
C10—C12—C2 | 121.35 (18) | H21A—C21—H21C | 109.5 |
C10—C12—C6 | 119.01 (19) | H21B—C21—H21C | 109.5 |
C2—C12—C6 | 119.64 (19) | C19—C22—H22A | 109.5 |
N1—C13—C14 | 112.33 (16) | C19—C22—H22B | 109.5 |
N1—C13—H13A | 109.1 | H22A—C22—H22B | 109.5 |
C14—C13—H13A | 109.1 | C19—C22—H22C | 109.5 |
N1—C13—H13B | 109.1 | H22A—C22—H22C | 109.5 |
C14—C13—H13B | 109.1 | H22B—C22—H22C | 109.5 |
H13A—C13—H13B | 107.9 | O5—C23—O6 | 124.0 (2) |
C13—C14—C15 | 111.26 (16) | O5—C23—C17 | 125.09 (19) |
C13—C14—H14A | 109.4 | O6—C23—C17 | 110.91 (17) |
C11—N1—C1—O3 | 177.12 (19) | C9—C10—C12—C6 | 1.7 (3) |
C13—N1—C1—O3 | −1.5 (3) | C11—C10—C12—C6 | −178.95 (18) |
C11—N1—C1—C2 | −2.0 (3) | C3—C2—C12—C10 | 178.64 (19) |
C13—N1—C1—C2 | 179.44 (17) | C1—C2—C12—C10 | −1.9 (3) |
O3—C1—C2—C3 | 2.7 (3) | C3—C2—C12—C6 | −1.4 (3) |
N1—C1—C2—C3 | −178.21 (19) | C1—C2—C12—C6 | 178.03 (18) |
O3—C1—C2—C12 | −176.7 (2) | C7—C6—C12—C10 | −1.2 (3) |
N1—C1—C2—C12 | 2.3 (3) | C5—C6—C12—C10 | −179.66 (19) |
C12—C2—C3—C4 | 1.2 (3) | C7—C6—C12—C2 | 178.89 (19) |
C1—C2—C3—C4 | −178.20 (19) | C5—C6—C12—C2 | 0.4 (3) |
C2—C3—C4—C5 | 0.0 (3) | C1—N1—C13—C14 | 95.2 (2) |
C3—C4—C5—C6 | −1.0 (3) | C11—N1—C13—C14 | −83.5 (2) |
C4—C5—C6—C7 | −177.6 (2) | N1—C13—C14—C15 | 169.74 (17) |
C4—C5—C6—C12 | 0.8 (3) | C13—C14—C15—C16 | −170.05 (18) |
C5—C6—C7—C8 | 178.5 (2) | C14—C15—C16—C17 | −57.8 (2) |
C12—C6—C7—C8 | 0.0 (3) | C18—N2—C17—C23 | −82.3 (2) |
C6—C7—C8—C9 | 0.6 (3) | C18—N2—C17—C16 | 154.59 (17) |
C7—C8—C9—C10 | −0.2 (3) | C15—C16—C17—N2 | −59.8 (2) |
C8—C9—C10—C12 | −1.0 (3) | C15—C16—C17—C23 | 176.17 (16) |
C8—C9—C10—C11 | 179.6 (2) | C19—O2—C18—O1 | −13.6 (3) |
C1—N1—C11—O4 | −178.4 (2) | C19—O2—C18—N2 | 166.25 (17) |
C13—N1—C11—O4 | 0.2 (3) | C17—N2—C18—O1 | 2.5 (3) |
C1—N1—C11—C10 | 1.1 (3) | C17—N2—C18—O2 | −177.36 (17) |
C13—N1—C11—C10 | 179.68 (17) | C18—O2—C19—C22 | 69.9 (2) |
C9—C10—C11—O4 | −1.6 (3) | C18—O2—C19—C21 | −55.3 (2) |
C12—C10—C11—O4 | 179.0 (2) | C18—O2—C19—C20 | −173.11 (18) |
C9—C10—C11—N1 | 178.90 (19) | N2—C17—C23—O5 | −22.3 (3) |
C12—C10—C11—N1 | −0.5 (3) | C16—C17—C23—O5 | 100.9 (2) |
C9—C10—C12—C2 | −178.4 (2) | N2—C17—C23—O6 | 157.54 (16) |
C11—C10—C12—C2 | 1.0 (3) | C16—C17—C23—O6 | −79.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1N2···O1i | 0.86 (3) | 2.17 (3) | 3.008 (2) | 166 (3) |
O6—H1O6···O3ii | 0.87 (3) | 1.84 (3) | 2.695 (2) | 166 (3) |
C3—H3A···O5iii | 0.93 | 2.41 | 3.331 (3) | 169 |
C7—H7A···O5iv | 0.93 | 2.45 | 3.183 (3) | 136 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, y−1/2, −z+1; (iii) −x+1, y+1/2, −z+1; (iv) x+1, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | C23H26N2O6 |
Mr | 426.46 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 100 |
a, b, c (Å) | 5.1681 (13), 15.427 (4), 13.426 (3) |
β (°) | 91.491 (5) |
V (Å3) | 1070.1 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.22 × 0.20 × 0.18 |
Data collection | |
Diffractometer | Bruker SMART APEX DUO CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.980, 0.983 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10037, 2540, 2320 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.083, 1.04 |
No. of reflections | 2540 |
No. of parameters | 291 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.24, −0.20 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1N2···O1i | 0.86 (3) | 2.17 (3) | 3.008 (2) | 166 (3) |
O6—H1O6···O3ii | 0.87 (3) | 1.84 (3) | 2.695 (2) | 166 (3) |
C3—H3A···O5iii | 0.9300 | 2.4100 | 3.331 (3) | 169.00 |
C7—H7A···O5iv | 0.9300 | 2.4500 | 3.183 (3) | 136.00 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, y−1/2, −z+1; (iii) −x+1, y+1/2, −z+1; (iv) x+1, y, z+1. |
Acknowledgements
HKF and JHG thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship. Financial support from the National Natural Science Foundation of China (20702024) is acknowledged.
References
Abraham, B., McMasters, S., Mullan, M. & Kelly, L. A. (2004). J. Am. Chem. Soc. 126, 4293–4300. Web of Science CrossRef PubMed CAS Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Clark, G. R. & Hall, S. B. (1989). Acta Cryst. C45, 67–71. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hung, D. T., Shakhnovich, E. A., Pierson, E. & Mekalanos, J. J. (2005). Science, 310, 670–674. Web of Science CrossRef PubMed CAS Google Scholar
Le, T. P., Rogers, J. E. & Kelly, L. A. (2000). J. Phys. Chem. A, 104, 6778–6785. Web of Science CrossRef CAS Google Scholar
Pogozelski, W. K. & Tullius, T. D. (1998). Chem. Rev. 98, 1089–1107. Web of Science CrossRef PubMed CAS Google Scholar
Saito, I., Takayama, M. & Kawanishi, S. (1995a). J. Am. Chem. Soc. 117, 5590–5591. CrossRef CAS Web of Science Google Scholar
Saito, I., Takayama, M., Sugiyama, H., Nakatani, K., Tsuchida, A. & Yamamoto, M. (1995b). J. Am. Chem. Soc. 117, 6406–6407. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zarychta, B., Zaleski, J., Prezhdo, V. & Uspenskiy, B. (2003). Acta Cryst. E59, o332–o333. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1,8-Naphthalimides are useful molecular probes for their unique luminescence and transient properties (Pogozelski & Tullius, 1998). They have a diversity of reactivity towards biological substrates (Pogozelski & Tullius, 1998). 1,8-Naphthalimide derivatives have attracted significant attention due to not only their participation in photoinduced electron transfer (PET) processes (Le et al., 2000; Abraham et al., 2004), but also to their applications in the fields of biology and medicine (Saito et al., 1995a). Some 1,8-naphthalimide derivatives have been reported to inhibit virulence regulation in Vibrio cholerae by inhibiting the transcriptional regulator ToxT (Hung et al., 2005). Other 1,8-naphthalimide derivatives have also been used in the photosensitized one-electron oxidation of DNA through the PET process (Saito et al., 1995b). In view of the importance of the 1,8-naphthalimide derivatives, the title compound was obtained and this paper reports its crystal structure.
In the title compound, the 1,8-naphthalimide moiety (N1/C1-C12/O3/O4) is essentially planar, with maximum deviation of 0.0456 (16) Å at atom O3. The characteristic alternating pattern of C—C bond lengths is observed in the naphthalimide ring system, specifically, C2—C3, C4—C5, C7—C8 and C9—C10 bond lengths are shorter than the expected aromatic C—C bond length [average value of 1.373 (3) Å], whereas all the other bond lengths in the aromatic rings are longer than expected value [average value of 1.412 (3) Å]. This characteristic pattern of bond length variation has been reported previously in other N-substituted naphthalimide structures (Clark & Hall, 1989; Zarychta et al., 2003). All other bond lengths (Allen et al., 1987) and angles are within normal range. The plane through the 1,8-naphthalimide ring system forms dihedral angles of 42.30 (9) and 61.59 (9)°, respectively, with those through the methyl carbamate (C17/N2/C18/O1/O2) and acetic acid (C17/C23/O5/O6) groups.
In the crystal structure, intermolecular O6—H1O6···O3 and C3—H3A···O5 hydrogen bonds (Table 1) link neighbouring molecules into R22(9) hydrogen bond ring motifs (Bernstein et al., 1995). These ring motifs are further interconnected by intermolecular N2—H1N2···O1 and C7—H7A···O5 hydrogen bonds (Table 1) into a three-dimensional supramolecular network.