organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(E)-(3,4-Di­methyl­isoxazol-5-yl)imino­meth­yl]-2-naphthol

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Faculty of Science, King Abdu Aziz University, Jeddah, Saudi Arabia
*Correspondence e-mail: hkfun@usm.my

(Received 24 March 2010; accepted 31 March 2010; online 10 April 2010)

The title Schiff base compound, C16H14N2O2, has been synthesized by the reaction of 5-amino-3,4-dimethyl­isoxazole and 2-hydr­oxy-1-naphthaldehyde. The dihedral angle between the isoxazole ring and the napthyl ring system is 3.29 (7)°. The mol­ecule adopts an E configuration about the central C=N double bond. Intra­molecular O—H⋯N hydrogen bonding generates an S(6) ring motif. In the crystal structure, ππ inter­actions are observed involving the isoxazole ring and the substituted benzene ring of the naphthyl unit, with centroid–centroid distances of 3.5200 (10) Å.

Related literature

For related background and the biological activity of isoxazol, see: Howell & Kimmel (2008[Howell, L. L. & Kimmel, H. L. (2008). Biochem. Pharmacol. 75, 196-217.]); Bartlett & Schleyerbach (1985[Bartlett, R. R. & Schleyerbach, R. (1985). Int. J. Immunophamacol. 7, 7-18.]); Lamani et al. (2009[Lamani, R. S., Shetty, N. S., Kamble, R. R. & Khazi, I. A. M. (2009). Eur. J. Med. Chem. 44, 2828-2833.]); Jayashankar et al. (2009[Jayashankar, B., Rai, K. M. L., Baskaran, N. & Sathish, H. S. (2009). Eur. J. Med. Chem. 44, 3898-3902.]). For related structures, see: Alvarez-Thon et al. (2006[Alvarez-Thon, L., Bustos, C., Schott, E., Sanchez, C. & Ibañez, A. (2006). Acta Cryst. E62, o595-o597.]); Tahir et al. (2008[Tahir, M. N., Chohan, Z. H., Shad, H. A. & Khan, I. U. (2008). Acta Cryst. E64, o720.]); Shad et al. (2008[Shad, H. A., Chohan, Z. H., Tahir, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o635.]); Fun et al. (2010[Fun, H.-K., Hemamalini, M., Asiri, A. M., Khan, S. A. & Khan, K. A. (2010). Acta Cryst. E66, o773-o774.]). For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14N2O2

  • Mr = 266.29

  • Monoclinic, P 21 /c

  • a = 7.5250 (6) Å

  • b = 15.4643 (12) Å

  • c = 12.3982 (7) Å

  • β = 117.377 (4)°

  • V = 1281.17 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.79 × 0.06 × 0.05 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.930, Tmax = 0.996

  • 16577 measured reflections

  • 3704 independent reflections

  • 2843 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.134

  • S = 1.05

  • 3704 reflections

  • 237 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N1 0.97 (2) 1.66 (3) 2.5471 (15) 150 (2)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL and PLATON.

Supporting information


Comment top

Five-membered heterocyclic compounds, natural as well as synthetic, are important for their biological activities. Compounds with isoxazol rings are of interest due to their broad spectrum of biological activities against monoamine oxidase inhibitor (Howell & Kimmel, 2008), bacterial (Bartlett & Schleyerbach, 1985), depression (Lamani et al., 2009), hypertensive (Howell & Kimmel, 2008), pyretic and inflammatory diseases (Jayashankar et al., 2009). The crystal structures of 2-[(E)-(3,5-dimethylisoxazol- 4-yl)diazenyl]benzoic acid (Alvarez-Thon et al., 2006), 4-Bromo-2-((E)-{4-[(3,4-dimethylisoxazol-5-yl)sulfamoyl]phenyl}iminiomethyl)phenolate (Tahir et al., 2008), 4-Chloro-2-[(E)-({4-[N-(3,4-dimethyl isoxazol-5-yl)sulfamoyl]phenyl}iminio)methyl]phenolate (Shad et al., 2008) and 2-[(E)-(3,4-Dimethylisoxazol-5-yl) iminomethyl]phenol (Fun et al., 2010) have been reported previously. In view of the importance of the title compound, (I), its crystal structure is reported here.

In the title compound (Fig. 1), the isoxazole ring is essentially planar with a maximum deviation of 0.007 (2) Å for atom C13. The dihedral angle between the isoxazole (O2/N2/C12–C14) ring and the (C1–C4/C9–C10) ring of the naphthyl unit, is 3.29 (7)°. The C12—O2 and C11N1 bond lengths are 1.3635 (14) Å and 1.3036 (15) Å, respectively, and agree with the corresponding values in 2-[(E)-(3,4-dimethylisoxazol-5-yl)iminomethyl]phenol [1.344 (3) and 1.292 (4) Å; Fun et al., 2010].

In the crystal structure (Fig. 2), the imino N atoms are linked to the phenol O atoms and act as hydrogen-bond acceptors in intramolecular O1—H1O1···N1 interactions (Table 1) , which generate S(6) ring motifs (Bernstein et al., 1995). The crystal structure is further stabilized by ππ interactions involving the isoxazole (O2/N2/C12–C14)ring and the (C1–C4/C9–C10) ring of the naphthyl unit, with centroid to centroid distance of 3.5200 (10) Å [symmetry code: -x, 2-y, 1-z].

Related literature top

For related background and the biological activity of isoxazol, see: Howell & Kimmel (2008); Bartlett & Schleyerbach (1985); Lamani et al. (2009); Jayashankar et al. (2009). For related structures, see: Alvarez-Thon et al. (2006); Tahir et al. (2008); Shad et al. (2008); Fun et al. (2010). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 5-amino-3,4-dimethylisoxazole (0.50 g, 0.0025 mol) and 2-hydroxy-1-naphthaledhyde (0.43 g, 0.0025 mol) in methanol (15 mL) was refluxed for 5 h with stirring to give a light yellow precipitate. Then it was filtered and washed with methanol to give the pure compound. Yield: 72%; m. p. 160° C. The sample was recrystalized from methanol by dissolving the crude product and leaving the solution to evaporate slowly at room temperature. IR (KBr) v(max) cm-1: 2933 (C—H aromatic), 1626 (CC), 1585 (HCN), 1123 (C—N). 1H NMR (600 MHz, CDCl3) d: 8.30 (H3, d, J=12.72 Hz), 7.99 (H4, d, J=13.5 Hz), 7.87 (H5, d, J=11.76 Hz), 7.70 (H6, dd, J=8.58 Hz, J=5.1 Hz), 7.49 (H7, dd, J=10.8 Hz, J= 5.4 Hz), 7.34 (H9, s), 2.36 (-CH3, s), 2.15 (-CH3, s).

Refinement top

All the H atoms were located in a difference Fourier map and allowed to refine freely [O—H = 0.97 (2) Å, C—H = 0.916 (19)–1.004 (19) Å].

Structure description top

Five-membered heterocyclic compounds, natural as well as synthetic, are important for their biological activities. Compounds with isoxazol rings are of interest due to their broad spectrum of biological activities against monoamine oxidase inhibitor (Howell & Kimmel, 2008), bacterial (Bartlett & Schleyerbach, 1985), depression (Lamani et al., 2009), hypertensive (Howell & Kimmel, 2008), pyretic and inflammatory diseases (Jayashankar et al., 2009). The crystal structures of 2-[(E)-(3,5-dimethylisoxazol- 4-yl)diazenyl]benzoic acid (Alvarez-Thon et al., 2006), 4-Bromo-2-((E)-{4-[(3,4-dimethylisoxazol-5-yl)sulfamoyl]phenyl}iminiomethyl)phenolate (Tahir et al., 2008), 4-Chloro-2-[(E)-({4-[N-(3,4-dimethyl isoxazol-5-yl)sulfamoyl]phenyl}iminio)methyl]phenolate (Shad et al., 2008) and 2-[(E)-(3,4-Dimethylisoxazol-5-yl) iminomethyl]phenol (Fun et al., 2010) have been reported previously. In view of the importance of the title compound, (I), its crystal structure is reported here.

In the title compound (Fig. 1), the isoxazole ring is essentially planar with a maximum deviation of 0.007 (2) Å for atom C13. The dihedral angle between the isoxazole (O2/N2/C12–C14) ring and the (C1–C4/C9–C10) ring of the naphthyl unit, is 3.29 (7)°. The C12—O2 and C11N1 bond lengths are 1.3635 (14) Å and 1.3036 (15) Å, respectively, and agree with the corresponding values in 2-[(E)-(3,4-dimethylisoxazol-5-yl)iminomethyl]phenol [1.344 (3) and 1.292 (4) Å; Fun et al., 2010].

In the crystal structure (Fig. 2), the imino N atoms are linked to the phenol O atoms and act as hydrogen-bond acceptors in intramolecular O1—H1O1···N1 interactions (Table 1) , which generate S(6) ring motifs (Bernstein et al., 1995). The crystal structure is further stabilized by ππ interactions involving the isoxazole (O2/N2/C12–C14)ring and the (C1–C4/C9–C10) ring of the naphthyl unit, with centroid to centroid distance of 3.5200 (10) Å [symmetry code: -x, 2-y, 1-z].

For related background and the biological activity of isoxazol, see: Howell & Kimmel (2008); Bartlett & Schleyerbach (1985); Lamani et al. (2009); Jayashankar et al. (2009). For related structures, see: Alvarez-Thon et al. (2006); Tahir et al. (2008); Shad et al. (2008); Fun et al. (2010). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the hydrogen-bonded network (dashed lines). H atoms are not involved in hydrogen bond interactions are omitted for clarity.
1-[(E)-(3,4-Dimethylisoxazol-5-yl)iminomethyl]-2-naphthol top
Crystal data top
C16H14N2O2F(000) = 560
Mr = 266.29Dx = 1.381 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3616 reflections
a = 7.5250 (6) Åθ = 2.6–34.2°
b = 15.4643 (12) ŵ = 0.09 mm1
c = 12.3982 (7) ÅT = 100 K
β = 117.377 (4)°Needle, yellow
V = 1281.17 (16) Å30.79 × 0.06 × 0.05 mm
Z = 4
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
3704 independent reflections
Radiation source: fine-focus sealed tube2843 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 30.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.930, Tmax = 0.996k = 2121
16577 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0698P)2 + 0.3682P]
where P = (Fo2 + 2Fc2)/3
3704 reflections(Δ/σ)max = 0.001
237 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C16H14N2O2V = 1281.17 (16) Å3
Mr = 266.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5250 (6) ŵ = 0.09 mm1
b = 15.4643 (12) ÅT = 100 K
c = 12.3982 (7) Å0.79 × 0.06 × 0.05 mm
β = 117.377 (4)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
3704 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2843 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.996Rint = 0.041
16577 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.45 e Å3
3704 reflectionsΔρmin = 0.23 e Å3
237 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.20289 (17)1.11942 (6)0.64493 (8)0.0209 (2)
O20.24094 (15)0.97368 (6)0.30327 (8)0.0173 (2)
N10.24292 (17)1.04190 (6)0.47613 (9)0.0152 (2)
N20.21030 (18)0.99921 (7)0.18571 (9)0.0182 (2)
C10.2410 (2)1.04273 (7)0.70239 (11)0.0150 (2)
C20.2479 (2)1.04255 (8)0.81837 (11)0.0179 (3)
C30.2877 (2)0.96778 (8)0.88407 (11)0.0172 (3)
C40.3177 (2)0.88841 (8)0.83642 (11)0.0149 (2)
C50.3597 (2)0.81113 (8)0.90574 (12)0.0184 (3)
C60.3833 (2)0.73399 (8)0.85954 (12)0.0201 (3)
C70.3626 (2)0.73093 (8)0.74058 (12)0.0207 (3)
C80.3253 (2)0.80526 (8)0.67215 (12)0.0177 (3)
C90.30404 (19)0.88660 (7)0.71809 (11)0.0141 (2)
C100.26908 (19)0.96648 (7)0.65075 (11)0.0138 (2)
C110.2611 (2)0.96861 (8)0.53223 (11)0.0148 (2)
C120.2289 (2)1.04637 (7)0.36180 (11)0.0146 (2)
C130.1957 (2)1.11763 (7)0.29069 (11)0.0140 (2)
C140.18303 (19)1.08332 (8)0.18048 (11)0.0151 (2)
C150.1393 (2)1.13268 (9)0.06759 (12)0.0201 (3)
C160.1737 (2)1.20938 (8)0.31960 (12)0.0175 (3)
H2A0.222 (3)1.0979 (12)0.8512 (16)0.029 (5)*
H3A0.290 (3)0.9681 (11)0.9648 (16)0.024 (4)*
H5A0.375 (3)0.8132 (11)0.9894 (16)0.027 (4)*
H6A0.416 (3)0.6822 (12)0.9078 (16)0.027 (4)*
H7A0.376 (3)0.6775 (12)0.7059 (16)0.029 (5)*
H8A0.309 (3)0.8009 (11)0.5908 (15)0.022 (4)*
H11A0.272 (3)0.9140 (11)0.4942 (15)0.026 (4)*
H15A0.091 (3)1.0970 (12)0.0011 (17)0.032 (5)*
H15B0.256 (3)1.1642 (14)0.0772 (18)0.043 (6)*
H15C0.034 (3)1.1763 (14)0.0517 (18)0.043 (6)*
H16A0.202 (3)1.2197 (12)0.4021 (18)0.036 (5)*
H16B0.263 (4)1.2459 (16)0.302 (2)0.053 (6)*
H16C0.041 (4)1.2329 (14)0.266 (2)0.047 (6)*
H1O10.207 (4)1.1091 (15)0.569 (2)0.055 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0339 (6)0.0115 (4)0.0197 (4)0.0004 (4)0.0144 (4)0.0013 (3)
O20.0244 (5)0.0130 (4)0.0163 (4)0.0015 (4)0.0109 (4)0.0002 (3)
N10.0175 (5)0.0146 (5)0.0133 (5)0.0000 (4)0.0069 (4)0.0012 (3)
N20.0232 (6)0.0186 (5)0.0150 (5)0.0001 (4)0.0107 (5)0.0001 (4)
C10.0173 (6)0.0123 (5)0.0150 (5)0.0015 (4)0.0070 (5)0.0004 (4)
C20.0223 (7)0.0155 (5)0.0166 (5)0.0020 (5)0.0095 (5)0.0032 (4)
C30.0189 (6)0.0188 (6)0.0143 (5)0.0033 (5)0.0080 (5)0.0013 (4)
C40.0135 (6)0.0160 (5)0.0149 (5)0.0009 (4)0.0061 (5)0.0014 (4)
C50.0183 (6)0.0204 (6)0.0170 (5)0.0006 (5)0.0085 (5)0.0046 (4)
C60.0193 (6)0.0171 (6)0.0246 (6)0.0001 (5)0.0106 (5)0.0063 (5)
C70.0240 (7)0.0147 (6)0.0261 (6)0.0033 (5)0.0139 (6)0.0029 (5)
C80.0218 (7)0.0146 (5)0.0199 (6)0.0017 (5)0.0123 (5)0.0007 (4)
C90.0141 (6)0.0137 (5)0.0150 (5)0.0004 (4)0.0072 (5)0.0013 (4)
C100.0148 (6)0.0125 (5)0.0144 (5)0.0000 (4)0.0068 (5)0.0003 (4)
C110.0151 (6)0.0139 (5)0.0153 (5)0.0004 (5)0.0069 (5)0.0004 (4)
C120.0158 (6)0.0141 (5)0.0132 (5)0.0011 (5)0.0062 (5)0.0014 (4)
C130.0147 (6)0.0136 (5)0.0139 (5)0.0009 (4)0.0066 (5)0.0003 (4)
C140.0142 (6)0.0166 (5)0.0152 (5)0.0005 (5)0.0073 (5)0.0001 (4)
C150.0244 (7)0.0220 (6)0.0153 (6)0.0011 (6)0.0105 (5)0.0017 (5)
C160.0216 (7)0.0130 (5)0.0175 (6)0.0006 (5)0.0085 (5)0.0001 (4)
Geometric parameters (Å, º) top
O1—C11.3448 (14)C6—H6A0.962 (18)
O1—H1O10.97 (2)C7—C81.3787 (17)
O2—C121.3635 (14)C7—H7A0.957 (19)
O2—N21.4229 (13)C8—C91.4198 (16)
N1—C111.3036 (15)C8—H8A0.962 (17)
N1—C121.3739 (15)C9—C101.4457 (16)
N2—C141.3138 (16)C10—C111.4431 (16)
C1—C101.4033 (16)C11—H11A0.989 (18)
C1—C21.4147 (17)C12—C131.3607 (16)
C2—C31.3659 (17)C13—C141.4274 (16)
C2—H2A1.004 (19)C13—C161.4912 (16)
C3—C41.4245 (17)C14—C151.4920 (17)
C3—H3A0.991 (18)C15—H15A0.916 (19)
C4—C51.4203 (17)C15—H15B0.96 (2)
C4—C91.4231 (16)C15—H15C0.99 (2)
C5—C61.3696 (19)C16—H16A0.96 (2)
C5—H5A0.990 (18)C16—H16B0.98 (3)
C6—C71.4108 (19)C16—H16C0.98 (2)
C1—O1—H1O1105.9 (14)C8—C9—C10123.34 (11)
C12—O2—N2107.29 (9)C4—C9—C10119.09 (11)
C11—N1—C12122.26 (10)C1—C10—C11120.06 (10)
C14—N2—O2105.86 (9)C1—C10—C9118.69 (11)
O1—C1—C10122.65 (11)C11—C10—C9121.25 (10)
O1—C1—C2116.06 (10)N1—C11—C10120.54 (11)
C10—C1—C2121.28 (11)N1—C11—H11A120.0 (10)
C3—C2—C1120.22 (11)C10—C11—H11A119.5 (10)
C3—C2—H2A120.6 (10)C13—C12—O2111.11 (10)
C1—C2—H2A119.2 (10)C13—C12—N1127.84 (11)
C2—C3—C4121.00 (11)O2—C12—N1121.01 (10)
C2—C3—H3A119.7 (10)C12—C13—C14103.35 (10)
C4—C3—H3A119.3 (10)C12—C13—C16128.48 (11)
C5—C4—C9119.85 (11)C14—C13—C16128.16 (11)
C5—C4—C3120.52 (11)N2—C14—C13112.37 (11)
C9—C4—C3119.63 (11)N2—C14—C15120.98 (11)
C6—C5—C4121.03 (12)C13—C14—C15126.63 (11)
C6—C5—H5A119.4 (10)C14—C15—H15A111.2 (12)
C4—C5—H5A119.5 (10)C14—C15—H15B110.3 (12)
C5—C6—C7119.55 (12)H15A—C15—H15B112.1 (18)
C5—C6—H6A120.8 (11)C14—C15—H15C110.3 (12)
C7—C6—H6A119.7 (11)H15A—C15—H15C106.4 (16)
C8—C7—C6120.58 (12)H15B—C15—H15C106.3 (18)
C8—C7—H7A118.5 (11)C13—C16—H16A114.9 (11)
C6—C7—H7A120.9 (11)C13—C16—H16B109.5 (14)
C7—C8—C9121.36 (12)H16A—C16—H16B107.7 (18)
C7—C8—H8A118.6 (10)C13—C16—H16C112.3 (13)
C9—C8—H8A120.0 (10)H16A—C16—H16C108.8 (19)
C8—C9—C4117.57 (11)H16B—C16—H16C102.8 (19)
C12—O2—N2—C140.20 (14)C8—C9—C10—C1177.05 (13)
O1—C1—C2—C3179.34 (12)C4—C9—C10—C12.75 (19)
C10—C1—C2—C31.7 (2)C8—C9—C10—C112.4 (2)
C1—C2—C3—C41.7 (2)C4—C9—C10—C11177.78 (12)
C2—C3—C4—C5179.74 (13)C12—N1—C11—C10178.04 (12)
C2—C3—C4—C90.7 (2)C1—C10—C11—N15.2 (2)
C9—C4—C5—C61.5 (2)C9—C10—C11—N1175.36 (12)
C3—C4—C5—C6178.15 (13)N2—O2—C12—C131.01 (15)
C4—C5—C6—C70.9 (2)N2—O2—C12—N1176.88 (12)
C5—C6—C7—C82.1 (2)C11—N1—C12—C13175.02 (14)
C6—C7—C8—C90.8 (2)C11—N1—C12—O22.5 (2)
C7—C8—C9—C41.5 (2)O2—C12—C13—C141.33 (15)
C7—C8—C9—C10178.66 (13)N1—C12—C13—C14176.38 (13)
C5—C4—C9—C82.64 (19)O2—C12—C13—C16179.77 (13)
C3—C4—C9—C8176.96 (12)N1—C12—C13—C162.5 (2)
C5—C4—C9—C10177.54 (12)O2—N2—C14—C130.64 (15)
C3—C4—C9—C102.85 (19)O2—N2—C14—C15177.96 (12)
O1—C1—C10—C111.1 (2)C12—C13—C14—N21.23 (16)
C2—C1—C10—C11179.96 (13)C16—C13—C14—N2179.86 (13)
O1—C1—C10—C9178.36 (12)C12—C13—C14—C15177.28 (13)
C2—C1—C10—C90.5 (2)C16—C13—C14—C151.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.97 (2)1.66 (3)2.5471 (15)150 (2)

Experimental details

Crystal data
Chemical formulaC16H14N2O2
Mr266.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.5250 (6), 15.4643 (12), 12.3982 (7)
β (°) 117.377 (4)
V3)1281.17 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.79 × 0.06 × 0.05
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.930, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
16577, 3704, 2843
Rint0.041
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.134, 1.05
No. of reflections3704
No. of parameters237
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.97 (2)1.66 (3)2.5471 (15)150 (2)
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§On secondment to: The Center of Excellence for Advanced Materials Research, King Abdu Aziz University, Jeddah 21589, Saudi Arabia.

Acknowledgements

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks Universiti Sains Malaysia for a post-doctoral research fellowship. AMA and SAK thank the Chemistry Department, King Abdul Aziz University, Jeddah, for providing research facilities. AMA would also like to thank the deanship of scientific research at KAU for the financial grant No. 171/428.

References

First citationAlvarez-Thon, L., Bustos, C., Schott, E., Sanchez, C. & Ibañez, A. (2006). Acta Cryst. E62, o595–o597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBartlett, R. R. & Schleyerbach, R. (1985). Int. J. Immunophamacol. 7, 7–18.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Asiri, A. M., Khan, S. A. & Khan, K. A. (2010). Acta Cryst. E66, o773–o774.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHowell, L. L. & Kimmel, H. L. (2008). Biochem. Pharmacol. 75, 196–217.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJayashankar, B., Rai, K. M. L., Baskaran, N. & Sathish, H. S. (2009). Eur. J. Med. Chem. 44, 3898–3902.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLamani, R. S., Shetty, N. S., Kamble, R. R. & Khazi, I. A. M. (2009). Eur. J. Med. Chem. 44, 2828–2833.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShad, H. A., Chohan, Z. H., Tahir, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o635.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Chohan, Z. H., Shad, H. A. & Khan, I. U. (2008). Acta Cryst. E64, o720.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds