metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Undeca­carbonyl-1κ3C,2κ4C,3κ4C-[tris­­(3-chloro­phen­yl)phosphine-1κP]-triangulo-triruthenium(0)

aChemical Sciences Programme, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: omarsa@usm.my

(Received 24 March 2010; accepted 14 April 2010; online 28 April 2010)

In the title triangulo-triruthenium compound, [Ru3(C18H12Cl3P)(CO)11], one equatorial carbonyl group has been substituted by the monodentate phosphine ligand, leaving one equatorial and two axial carbonyl substituents on the Ru atom. The remaining two Ru atoms each carry two equatorial and two axial terminal carbonyl ligands. The three benzene rings make dihedral angles of 87.83 (17), 69.91 (17) and 68.26 (17)° with each other. In the crystal structure, mol­ecules are linked into dimers by inter­molecular C—H⋯O hydrogen bonds. The mol­ecular structure is stabilized by an intra­molecular C—H⋯O hydrogen bond.

Related literature

For related structures, see: Bruce et al. (1988[Bruce, M. I., Liddell, M. J., Hughes, C. A., Patrick, J. M., Skelton, B. W. & White, A. H. (1988). J. Organomet. Chem. 347, 181-205.]); Churchill et al. (1977[Churchill, M. R., Hollander, F. J. & Hutchison, P. J. (1977). Inorg. Chem. 16, 2655-2659.]). For the synthesis, see: Bruce et al. (1987[Bruce, M. I., Nicholson, B. K. & Williams, M. L. (1987). Inorg. Synth. 26, 273.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru3(C18H12Cl3P)(CO)11]

  • Mr = 976.92

  • Monoclinic, C 2/c

  • a = 21.8834 (6) Å

  • b = 17.1060 (5) Å

  • c = 18.4776 (5) Å

  • β = 107.766 (2)°

  • V = 6587.0 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.71 mm−1

  • T = 100 K

  • 0.24 × 0.19 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.686, Tmax = 0.820

  • 39715 measured reflections

  • 9694 independent reflections

  • 7635 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.111

  • S = 1.03

  • 9694 reflections

  • 425 parameters

  • H-atom parameters constrained

  • Δρmax = 2.26 e Å−3

  • Δρmin = −1.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17A⋯O5i 0.93 2.48 3.277 (5) 143
C18—H18A⋯O3 0.93 2.59 3.165 (5) 121
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Syntheses and structures of substituted triangulo-triruthenium clusters have been of interest to researchers due to observed structural variations and their potential catalytic activity. As part of our ongoing studies on phosphine substituted triangulo-triruthenium clusters, herein we report the structure of title compound (I).

In the title compound (I), the monodentate phosphine ligand has replaced a single carbonyl group in the equatorial plane of the Ru3 triangle. The triangulo-triruthenium is bonded equatorially to a monodentate phosphine ligand. The Ru1–Ru2 bond is noticeably longer [2.9002 (4) Å] compared to the other two Ru–Ru bonds [2.8600 (3) and 2.8611 (4) Å]. The unusual increase in the length of Ru–Ru bond in comparison to those in Ru3(CO)12 (Churchill et al., 1977), can be attributed to the steric effect induced by the bulky substituent.

As observed in Ru3(CO)12, the bond from metal atoms to the axial CO ligands in complex (I) are longer (Ru–C(ave) = 1.934 Å) compared to the equatorial CO groups (Ru–C(ave) = 1.918 Å). The equatorial Ru–C–O substituents are linear (average value: 177.94°) while the axial Ru–C–O ligands are slightly bent (average value: 173.55°). Similar observations were made by Bruce and co-workers for the range of monosubstituted complexes they synthesized (Bruce et al., 1988).

The three phosphine-substituted benzene rings make dihedral angles (C1–C6/C7–C12, C1–C6/C13–C18 and C7–C12/C13–C18) of 87.83 (17), 69.91 (17) and 68.26 (17)° with each other respectively. In the crystal structure, the molecules are linked into dimers by intermolecular C17—H17A···O5 hydrogen bonds (Fig. 2, Table 1). The molecular structure is stabilized by an intramolecular C18—H18A···O3 hydrogen bond.

Related literature top

For related structures, see: Bruce et al. (1988); Churchill et al. (1977). For the synthesis, see: Bruce et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

All the manipulations were performed under a dry oxygen-free nitrogen atmosphere using standard Schlenk techniques. THF was dried over sodium wire and freshly distilled from sodium benzophenone ketyl solution. The title compound (I) was prepared by mixing Ru3(CO)12 (Aldrich) and P(3-Cl-C6H4)3 (Maybridge) in a 1:1 molar ratio in THF at 40 °C. About 0.2 ml of diphenylketyl radical anion initiator (synthesized as per the method of Bruce et al., 1987) was introduced into the reaction mixture under a current of nitrogen. After 15 min. of stirring, the solvent was removed under vacuum. Separation of the product in the pure form was done by column chromatography (Florisil, 100-200 mesh, eluant, dichloromethane: hexane). IR (cyclohexane): ν (CO) 2100, 2049, 2033 and 2019 cm-1. 1H-NMR (CDCl3, δ); 7.23-7.25 (m, aromatic protons). Crystals suitable for X-ray diffraction were grown from n-pentane solution at 10°C.

Refinement top

All hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C).

Structure description top

Syntheses and structures of substituted triangulo-triruthenium clusters have been of interest to researchers due to observed structural variations and their potential catalytic activity. As part of our ongoing studies on phosphine substituted triangulo-triruthenium clusters, herein we report the structure of title compound (I).

In the title compound (I), the monodentate phosphine ligand has replaced a single carbonyl group in the equatorial plane of the Ru3 triangle. The triangulo-triruthenium is bonded equatorially to a monodentate phosphine ligand. The Ru1–Ru2 bond is noticeably longer [2.9002 (4) Å] compared to the other two Ru–Ru bonds [2.8600 (3) and 2.8611 (4) Å]. The unusual increase in the length of Ru–Ru bond in comparison to those in Ru3(CO)12 (Churchill et al., 1977), can be attributed to the steric effect induced by the bulky substituent.

As observed in Ru3(CO)12, the bond from metal atoms to the axial CO ligands in complex (I) are longer (Ru–C(ave) = 1.934 Å) compared to the equatorial CO groups (Ru–C(ave) = 1.918 Å). The equatorial Ru–C–O substituents are linear (average value: 177.94°) while the axial Ru–C–O ligands are slightly bent (average value: 173.55°). Similar observations were made by Bruce and co-workers for the range of monosubstituted complexes they synthesized (Bruce et al., 1988).

The three phosphine-substituted benzene rings make dihedral angles (C1–C6/C7–C12, C1–C6/C13–C18 and C7–C12/C13–C18) of 87.83 (17), 69.91 (17) and 68.26 (17)° with each other respectively. In the crystal structure, the molecules are linked into dimers by intermolecular C17—H17A···O5 hydrogen bonds (Fig. 2, Table 1). The molecular structure is stabilized by an intramolecular C18—H18A···O3 hydrogen bond.

For related structures, see: Bruce et al. (1988); Churchill et al. (1977). For the synthesis, see: Bruce et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A pair of molecules is linked into a dimer by intermolecular hydrogen bonds (dashed lines).
Undecacarbonyl-1κ3C,2κ4C,3κ4C-[tris(3- chlorophenyl)phosphine-1κP]-triangulo-triruthenium(0) top
Crystal data top
[Ru3(C18H12Cl3P)(CO)11]F(000) = 3776
Mr = 976.92Dx = 1.970 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9924 reflections
a = 21.8834 (6) Åθ = 2.5–30.1°
b = 17.1060 (5) ŵ = 1.71 mm1
c = 18.4776 (5) ÅT = 100 K
β = 107.766 (2)°Block, orange
V = 6587.0 (3) Å30.24 × 0.19 × 0.12 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9694 independent reflections
Radiation source: fine-focus sealed tube7635 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
φ and ω scansθmax = 30.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 3030
Tmin = 0.686, Tmax = 0.820k = 2124
39715 measured reflectionsl = 2625
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0605P)2 + 18.2026P]
where P = (Fo2 + 2Fc2)/3
9694 reflections(Δ/σ)max = 0.002
425 parametersΔρmax = 2.26 e Å3
0 restraintsΔρmin = 1.16 e Å3
Crystal data top
[Ru3(C18H12Cl3P)(CO)11]V = 6587.0 (3) Å3
Mr = 976.92Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.8834 (6) ŵ = 1.71 mm1
b = 17.1060 (5) ÅT = 100 K
c = 18.4776 (5) Å0.24 × 0.19 × 0.12 mm
β = 107.766 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9694 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
7635 reflections with I > 2σ(I)
Tmin = 0.686, Tmax = 0.820Rint = 0.044
39715 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0605P)2 + 18.2026P]
where P = (Fo2 + 2Fc2)/3
9694 reflectionsΔρmax = 2.26 e Å3
425 parametersΔρmin = 1.16 e Å3
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.265976 (11)0.441176 (16)0.750536 (14)0.01723 (7)
Ru20.320122 (13)0.531715 (18)0.887920 (15)0.02321 (8)
Ru30.398579 (12)0.484230 (17)0.797051 (16)0.02177 (7)
Cl10.09752 (5)0.27671 (6)0.46981 (5)0.0353 (2)
Cl20.09334 (6)0.46270 (8)1.01036 (6)0.0443 (3)
Cl30.12225 (5)0.73140 (6)0.79389 (6)0.03193 (19)
P10.15807 (4)0.42273 (5)0.74605 (5)0.01757 (16)
O10.22735 (13)0.59340 (17)0.65962 (15)0.0311 (6)
O20.27915 (13)0.36091 (19)0.60988 (15)0.0372 (7)
O30.30269 (12)0.28275 (16)0.83071 (15)0.0291 (6)
O40.29618 (14)0.68820 (18)0.80133 (16)0.0373 (7)
O50.3271 (2)0.3759 (2)0.9712 (2)0.0693 (13)
O60.44161 (14)0.5858 (2)1.00971 (16)0.0422 (7)
O70.21662 (16)0.5775 (3)0.95945 (19)0.0553 (10)
O80.52487 (13)0.56379 (18)0.88341 (19)0.0401 (7)
O90.43184 (15)0.39590 (19)0.67010 (19)0.0409 (7)
O100.36786 (15)0.62871 (19)0.6937 (2)0.0435 (8)
O110.43524 (14)0.33874 (19)0.89892 (19)0.0471 (9)
C10.11003 (15)0.3518 (2)0.67796 (19)0.0212 (6)
C20.12037 (15)0.3422 (2)0.60809 (19)0.0236 (7)
H2A0.15320.36950.59700.028*
C30.08139 (16)0.2915 (2)0.55467 (19)0.0257 (7)
C40.03140 (17)0.2512 (2)0.5694 (2)0.0289 (8)
H4A0.00540.21800.53310.035*
C50.02093 (17)0.2612 (2)0.6382 (2)0.0312 (8)
H5A0.01250.23450.64850.037*
C60.05988 (16)0.3110 (2)0.6931 (2)0.0267 (7)
H6A0.05240.31710.73970.032*
C70.10694 (15)0.5099 (2)0.72235 (18)0.0194 (6)
C80.12995 (15)0.5795 (2)0.76087 (19)0.0229 (7)
H8A0.16930.58020.79880.028*
C90.09408 (16)0.6470 (2)0.7424 (2)0.0234 (7)
C100.03585 (17)0.6488 (2)0.6848 (2)0.0252 (7)
H10A0.01270.69500.67220.030*
C110.01323 (16)0.5797 (2)0.6467 (2)0.0252 (7)
H11A0.02560.57980.60780.030*
C120.04753 (15)0.5103 (2)0.66568 (19)0.0214 (6)
H12A0.03100.46420.64070.026*
C130.14856 (14)0.3873 (2)0.83526 (18)0.0200 (6)
C140.12485 (16)0.4338 (2)0.88253 (19)0.0233 (7)
H14A0.11020.48410.86760.028*
C150.12338 (17)0.4044 (2)0.9522 (2)0.0278 (7)
C160.14433 (18)0.3296 (2)0.9762 (2)0.0315 (8)
H16A0.14350.31111.02320.038*
C170.16670 (19)0.2831 (2)0.9279 (2)0.0320 (8)
H17A0.18060.23250.94260.038*
C180.16863 (16)0.3109 (2)0.8584 (2)0.0252 (7)
H18A0.18340.27880.82670.030*
C190.24350 (15)0.5393 (2)0.69618 (19)0.0227 (7)
C200.27195 (15)0.3914 (2)0.66209 (19)0.0242 (7)
C210.29008 (15)0.3434 (2)0.80467 (19)0.0236 (7)
C220.30548 (17)0.6282 (2)0.8299 (2)0.0277 (7)
C230.3247 (2)0.4307 (3)0.9355 (2)0.0413 (11)
C240.39645 (18)0.5678 (2)0.9644 (2)0.0308 (8)
C250.2546 (2)0.5596 (3)0.9320 (2)0.0382 (10)
C260.47775 (17)0.5337 (2)0.8521 (2)0.0297 (8)
C270.41920 (17)0.4287 (2)0.7170 (2)0.0281 (8)
C280.37533 (16)0.5754 (2)0.7328 (2)0.0293 (8)
C290.41894 (17)0.3925 (2)0.8626 (2)0.0331 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01205 (11)0.01875 (14)0.01862 (12)0.00079 (9)0.00130 (8)0.00045 (9)
Ru20.02123 (13)0.02513 (16)0.02064 (13)0.00779 (10)0.00248 (10)0.00305 (10)
Ru30.01236 (11)0.01986 (15)0.03029 (14)0.00061 (9)0.00233 (9)0.00255 (10)
Cl10.0368 (5)0.0417 (6)0.0245 (4)0.0026 (4)0.0050 (3)0.0055 (4)
Cl20.0517 (6)0.0592 (7)0.0245 (4)0.0184 (5)0.0156 (4)0.0018 (4)
Cl30.0349 (4)0.0196 (4)0.0422 (5)0.0040 (4)0.0131 (4)0.0062 (3)
P10.0128 (3)0.0178 (4)0.0202 (4)0.0014 (3)0.0022 (3)0.0025 (3)
O10.0281 (12)0.0282 (15)0.0317 (13)0.0005 (11)0.0013 (10)0.0076 (11)
O20.0290 (13)0.051 (2)0.0274 (13)0.0147 (13)0.0030 (11)0.0069 (12)
O30.0272 (12)0.0228 (14)0.0327 (13)0.0011 (10)0.0023 (10)0.0036 (10)
O40.0382 (15)0.0279 (16)0.0378 (15)0.0029 (12)0.0002 (12)0.0003 (12)
O50.133 (4)0.038 (2)0.0383 (18)0.027 (2)0.028 (2)0.0040 (15)
O60.0384 (15)0.0443 (19)0.0321 (14)0.0141 (14)0.0070 (12)0.0015 (13)
O70.0343 (16)0.091 (3)0.0429 (18)0.0146 (17)0.0154 (14)0.0321 (18)
O80.0219 (12)0.0332 (17)0.060 (2)0.0075 (11)0.0048 (12)0.0073 (14)
O90.0397 (16)0.0364 (18)0.0541 (19)0.0133 (13)0.0256 (14)0.0115 (14)
O100.0369 (16)0.0356 (18)0.063 (2)0.0065 (13)0.0220 (15)0.0194 (15)
O110.0288 (14)0.0358 (18)0.0574 (19)0.0068 (12)0.0157 (13)0.0203 (14)
C10.0157 (13)0.0187 (17)0.0253 (15)0.0003 (12)0.0005 (11)0.0039 (12)
C20.0158 (13)0.0256 (19)0.0250 (15)0.0034 (12)0.0004 (12)0.0019 (13)
C30.0209 (15)0.0282 (19)0.0234 (15)0.0029 (13)0.0001 (12)0.0058 (13)
C40.0227 (15)0.027 (2)0.0317 (18)0.0005 (14)0.0000 (13)0.0084 (14)
C50.0224 (16)0.028 (2)0.040 (2)0.0093 (14)0.0049 (14)0.0079 (15)
C60.0201 (15)0.027 (2)0.0312 (17)0.0053 (14)0.0053 (13)0.0069 (14)
C70.0164 (13)0.0214 (17)0.0214 (14)0.0010 (12)0.0072 (11)0.0004 (12)
C80.0169 (13)0.0260 (19)0.0261 (16)0.0005 (13)0.0070 (12)0.0037 (13)
C90.0259 (16)0.0190 (17)0.0280 (16)0.0026 (13)0.0123 (13)0.0030 (12)
C100.0236 (15)0.0222 (18)0.0306 (17)0.0040 (13)0.0096 (13)0.0031 (13)
C110.0210 (14)0.0252 (19)0.0289 (17)0.0032 (13)0.0070 (13)0.0029 (13)
C120.0171 (13)0.0209 (17)0.0256 (15)0.0008 (12)0.0054 (12)0.0010 (12)
C130.0139 (12)0.0226 (17)0.0210 (14)0.0063 (12)0.0018 (11)0.0009 (11)
C140.0200 (14)0.0259 (19)0.0225 (15)0.0003 (13)0.0043 (12)0.0001 (12)
C150.0216 (15)0.036 (2)0.0237 (16)0.0020 (14)0.0038 (12)0.0016 (14)
C160.0270 (17)0.037 (2)0.0294 (18)0.0038 (16)0.0073 (14)0.0067 (15)
C170.0328 (18)0.027 (2)0.037 (2)0.0033 (15)0.0115 (15)0.0065 (15)
C180.0242 (15)0.0197 (18)0.0329 (18)0.0027 (13)0.0107 (13)0.0015 (13)
C190.0162 (13)0.0268 (19)0.0234 (15)0.0040 (13)0.0036 (12)0.0023 (13)
C200.0144 (13)0.031 (2)0.0256 (16)0.0036 (13)0.0033 (12)0.0021 (13)
C210.0154 (13)0.028 (2)0.0246 (16)0.0047 (13)0.0023 (11)0.0031 (13)
C220.0233 (15)0.029 (2)0.0263 (16)0.0028 (14)0.0015 (13)0.0057 (14)
C230.063 (3)0.034 (2)0.0273 (19)0.017 (2)0.0127 (19)0.0054 (16)
C240.0278 (17)0.029 (2)0.0305 (18)0.0052 (15)0.0019 (14)0.0006 (14)
C250.034 (2)0.052 (3)0.0261 (18)0.0146 (19)0.0058 (15)0.0151 (17)
C260.0206 (15)0.025 (2)0.041 (2)0.0007 (14)0.0067 (14)0.0013 (15)
C270.0210 (15)0.0245 (19)0.038 (2)0.0061 (14)0.0082 (14)0.0025 (15)
C280.0168 (14)0.027 (2)0.045 (2)0.0006 (14)0.0097 (14)0.0049 (16)
C290.0184 (15)0.029 (2)0.041 (2)0.0057 (14)0.0067 (14)0.0055 (16)
Geometric parameters (Å, º) top
Ru1—C201.882 (4)O11—C291.130 (5)
Ru1—C211.938 (4)C1—C21.387 (5)
Ru1—C191.941 (4)C1—C61.398 (5)
Ru1—P12.3587 (8)C2—C31.393 (5)
Ru1—Ru32.8600 (3)C2—H2A0.9300
Ru1—Ru22.9002 (4)C3—C41.388 (5)
Ru2—C251.912 (4)C4—C51.369 (5)
Ru2—C231.928 (5)C4—H4A0.9300
Ru2—C241.930 (4)C5—C61.399 (5)
Ru2—C221.941 (4)C5—H5A0.9300
Ru2—Ru32.8611 (4)C6—H6A0.9300
Ru3—C261.918 (4)C7—C121.399 (4)
Ru3—C271.923 (4)C7—C81.399 (5)
Ru3—C281.932 (4)C8—C91.380 (5)
Ru3—C291.949 (4)C8—H8A0.9300
Cl1—C31.728 (4)C9—C101.388 (5)
Cl2—C151.735 (4)C10—C111.388 (5)
Cl3—C91.736 (4)C10—H10A0.9300
P1—C131.827 (3)C11—C121.391 (5)
P1—C11.832 (3)C11—H11A0.9300
P1—C71.836 (3)C12—H12A0.9300
O1—C191.136 (4)C13—C141.394 (5)
O2—C201.149 (4)C13—C181.402 (5)
O3—C211.141 (4)C14—C151.393 (5)
O4—C221.143 (5)C14—H14A0.9300
O5—C231.138 (5)C15—C161.385 (6)
O6—C241.126 (4)C16—C171.392 (6)
O7—C251.140 (5)C16—H16A0.9300
O8—C261.140 (4)C17—C181.382 (5)
O9—C271.136 (5)C17—H17A0.9300
O10—C281.144 (5)C18—H18A0.9300
C20—Ru1—C2188.73 (15)C4—C3—Cl1119.8 (3)
C20—Ru1—C1990.89 (15)C2—C3—Cl1118.9 (3)
C21—Ru1—C19178.89 (14)C5—C4—C3119.0 (3)
C20—Ru1—P1104.07 (10)C5—C4—H4A120.5
C21—Ru1—P190.84 (10)C3—C4—H4A120.5
C19—Ru1—P190.27 (10)C4—C5—C6120.8 (4)
C20—Ru1—Ru392.55 (10)C4—C5—H5A119.6
C21—Ru1—Ru388.61 (9)C6—C5—H5A119.6
C19—Ru1—Ru390.36 (9)C1—C6—C5120.0 (3)
P1—Ru1—Ru3163.36 (2)C1—C6—H6A120.0
C20—Ru1—Ru2152.05 (10)C5—C6—H6A120.0
C21—Ru1—Ru292.01 (10)C12—C7—C8119.0 (3)
C19—Ru1—Ru287.84 (10)C12—C7—P1122.8 (3)
P1—Ru1—Ru2103.85 (2)C8—C7—P1118.1 (2)
Ru3—Ru1—Ru259.559 (9)C9—C8—C7119.8 (3)
C25—Ru2—C2388.3 (2)C9—C8—H8A120.1
C25—Ru2—C24101.67 (17)C7—C8—H8A120.1
C23—Ru2—C2492.28 (18)C8—C9—C10121.9 (3)
C25—Ru2—C2290.27 (19)C8—C9—Cl3118.7 (3)
C23—Ru2—C22172.41 (17)C10—C9—Cl3119.4 (3)
C24—Ru2—C2295.30 (16)C11—C10—C9118.1 (3)
C25—Ru2—Ru3169.30 (11)C11—C10—H10A120.9
C23—Ru2—Ru393.22 (15)C9—C10—H10A120.9
C24—Ru2—Ru388.86 (13)C10—C11—C12121.2 (3)
C22—Ru2—Ru386.82 (11)C10—C11—H11A119.4
C25—Ru2—Ru1110.29 (11)C12—C11—H11A119.4
C23—Ru2—Ru182.60 (12)C11—C12—C7120.0 (3)
C24—Ru2—Ru1147.40 (13)C11—C12—H12A120.0
C22—Ru2—Ru190.92 (10)C7—C12—H12A120.0
Ru3—Ru2—Ru159.521 (9)C14—C13—C18118.9 (3)
C26—Ru3—C27103.89 (16)C14—C13—P1122.8 (3)
C26—Ru3—C2889.76 (16)C18—C13—P1118.2 (3)
C27—Ru3—C2890.31 (17)C15—C14—C13119.4 (3)
C26—Ru3—C2991.55 (16)C15—C14—H14A120.3
C27—Ru3—C2991.02 (18)C13—C14—H14A120.3
C28—Ru3—C29177.85 (16)C16—C15—C14122.0 (4)
C26—Ru3—Ru1160.49 (12)C16—C15—Cl2119.0 (3)
C27—Ru3—Ru195.53 (10)C14—C15—Cl2119.0 (3)
C28—Ru3—Ru188.31 (10)C15—C16—C17118.1 (4)
C29—Ru3—Ru189.89 (10)C15—C16—H16A121.0
C26—Ru3—Ru299.78 (12)C17—C16—H16A121.0
C27—Ru3—Ru2156.20 (10)C18—C17—C16121.0 (4)
C28—Ru3—Ru292.22 (12)C18—C17—H17A119.5
C29—Ru3—Ru285.88 (13)C16—C17—H17A119.5
Ru1—Ru3—Ru260.919 (9)C17—C18—C13120.6 (3)
C13—P1—C1101.54 (15)C17—C18—H18A119.7
C13—P1—C7104.84 (15)C13—C18—H18A119.7
C1—P1—C7101.22 (15)O1—C19—Ru1174.5 (3)
C13—P1—Ru1113.65 (10)O2—C20—Ru1176.3 (3)
C1—P1—Ru1118.13 (11)O3—C21—Ru1174.2 (3)
C7—P1—Ru1115.50 (11)O4—C22—Ru2173.9 (3)
C2—C1—C6119.2 (3)O5—C23—Ru2171.7 (4)
C2—C1—P1119.7 (3)O6—C24—Ru2177.2 (4)
C6—C1—P1120.9 (3)O7—C25—Ru2178.2 (4)
C1—C2—C3119.6 (3)O8—C26—Ru3178.5 (4)
C1—C2—H2A120.2O9—C27—Ru3179.5 (4)
C3—C2—H2A120.2O10—C28—Ru3172.7 (3)
C4—C3—C2121.3 (3)O11—C29—Ru3174.3 (4)
C20—Ru1—Ru2—C25172.5 (3)C25—Ru2—Ru3—Ru118.5 (8)
C21—Ru1—Ru2—C2596.40 (19)C23—Ru2—Ru3—Ru179.46 (13)
C19—Ru1—Ru2—C2584.70 (19)C24—Ru2—Ru3—Ru1171.68 (12)
P1—Ru1—Ru2—C255.04 (16)C22—Ru2—Ru3—Ru192.94 (10)
Ru3—Ru1—Ru2—C25176.39 (16)C20—Ru1—P1—C13131.87 (17)
C20—Ru1—Ru2—C23102.0 (3)C21—Ru1—P1—C1342.97 (16)
C21—Ru1—Ru2—C2310.97 (19)C19—Ru1—P1—C13137.15 (16)
C19—Ru1—Ru2—C23170.13 (19)Ru3—Ru1—P1—C1344.98 (16)
P1—Ru1—Ru2—C2380.39 (16)Ru2—Ru1—P1—C1349.31 (13)
Ru3—Ru1—Ru2—C2398.18 (16)C20—Ru1—P1—C113.06 (17)
C20—Ru1—Ru2—C2419.4 (3)C21—Ru1—P1—C175.83 (16)
C21—Ru1—Ru2—C2471.6 (2)C19—Ru1—P1—C1104.05 (16)
C19—Ru1—Ru2—C24107.3 (2)Ru3—Ru1—P1—C1163.78 (13)
P1—Ru1—Ru2—C24163.0 (2)Ru2—Ru1—P1—C1168.11 (13)
Ru3—Ru1—Ru2—C2415.6 (2)C20—Ru1—P1—C7106.90 (16)
C20—Ru1—Ru2—C2281.9 (3)C21—Ru1—P1—C7164.21 (15)
C21—Ru1—Ru2—C22172.98 (15)C19—Ru1—P1—C715.91 (15)
C19—Ru1—Ru2—C225.93 (15)Ru3—Ru1—P1—C776.26 (15)
P1—Ru1—Ru2—C2295.67 (11)Ru2—Ru1—P1—C771.93 (12)
Ru3—Ru1—Ru2—C2285.77 (11)C13—P1—C1—C2159.5 (3)
C20—Ru1—Ru2—Ru33.9 (2)C7—P1—C1—C292.6 (3)
C21—Ru1—Ru2—Ru387.21 (10)Ru1—P1—C1—C234.6 (3)
C19—Ru1—Ru2—Ru391.69 (10)C13—P1—C1—C625.1 (3)
P1—Ru1—Ru2—Ru3178.56 (3)C7—P1—C1—C682.8 (3)
C20—Ru1—Ru3—C26169.2 (4)Ru1—P1—C1—C6150.1 (3)
C21—Ru1—Ru3—C26102.1 (4)C6—C1—C2—C30.9 (5)
C19—Ru1—Ru3—C2678.3 (4)P1—C1—C2—C3176.3 (3)
P1—Ru1—Ru3—C2613.9 (4)C1—C2—C3—C41.2 (5)
Ru2—Ru1—Ru3—C269.0 (4)C1—C2—C3—Cl1176.9 (3)
C20—Ru1—Ru3—C275.45 (16)C2—C3—C4—C50.7 (6)
C21—Ru1—Ru3—C2783.22 (15)Cl1—C3—C4—C5177.3 (3)
C19—Ru1—Ru3—C2796.36 (15)C3—C4—C5—C60.1 (6)
P1—Ru1—Ru3—C27171.49 (14)C2—C1—C6—C50.2 (5)
Ru2—Ru1—Ru3—C27176.36 (11)P1—C1—C6—C5175.5 (3)
C20—Ru1—Ru3—C2884.71 (17)C4—C5—C6—C10.3 (6)
C21—Ru1—Ru3—C28173.37 (16)C13—P1—C7—C12104.4 (3)
C19—Ru1—Ru3—C286.20 (16)C1—P1—C7—C120.8 (3)
P1—Ru1—Ru3—C2898.35 (15)Ru1—P1—C7—C12129.7 (3)
Ru2—Ru1—Ru3—C2893.48 (13)C13—P1—C7—C878.2 (3)
C20—Ru1—Ru3—C2996.46 (17)C1—P1—C7—C8176.6 (3)
C21—Ru1—Ru3—C297.80 (17)Ru1—P1—C7—C847.7 (3)
C19—Ru1—Ru3—C29172.63 (17)C12—C7—C8—C90.2 (5)
P1—Ru1—Ru3—C2980.48 (16)P1—C7—C8—C9177.3 (3)
Ru2—Ru1—Ru3—C2985.35 (13)C7—C8—C9—C101.5 (5)
C20—Ru1—Ru3—Ru2178.19 (11)C7—C8—C9—Cl3177.3 (3)
C21—Ru1—Ru3—Ru293.15 (10)C8—C9—C10—C111.5 (5)
C19—Ru1—Ru3—Ru287.28 (10)Cl3—C9—C10—C11177.3 (3)
P1—Ru1—Ru3—Ru24.87 (9)C9—C10—C11—C120.4 (5)
C25—Ru2—Ru3—C26158.4 (8)C10—C11—C12—C72.1 (5)
C23—Ru2—Ru3—C26103.57 (18)C8—C7—C12—C112.0 (5)
C24—Ru2—Ru3—C2611.35 (17)P1—C7—C12—C11175.4 (3)
C22—Ru2—Ru3—C2684.02 (16)C1—P1—C13—C14123.6 (3)
Ru1—Ru2—Ru3—C26176.96 (12)C7—P1—C13—C1418.5 (3)
C25—Ru2—Ru3—C2727.5 (9)Ru1—P1—C13—C14108.5 (3)
C23—Ru2—Ru3—C2770.5 (3)C1—P1—C13—C1859.2 (3)
C24—Ru2—Ru3—C27162.7 (3)C7—P1—C13—C18164.3 (2)
C22—Ru2—Ru3—C27101.9 (3)Ru1—P1—C13—C1868.7 (3)
Ru1—Ru2—Ru3—C279.0 (3)C18—C13—C14—C151.8 (5)
C25—Ru2—Ru3—C2868.3 (8)P1—C13—C14—C15175.4 (3)
C23—Ru2—Ru3—C28166.29 (18)C13—C14—C15—C160.5 (5)
C24—Ru2—Ru3—C28101.49 (17)C13—C14—C15—Cl2179.6 (3)
C22—Ru2—Ru3—C286.11 (15)C14—C15—C16—C170.7 (6)
Ru1—Ru2—Ru3—C2886.83 (11)Cl2—C15—C16—C17178.4 (3)
C25—Ru2—Ru3—C29110.7 (8)C15—C16—C17—C180.7 (6)
C23—Ru2—Ru3—C2912.70 (17)C16—C17—C18—C130.6 (6)
C24—Ru2—Ru3—C2979.52 (16)C14—C13—C18—C171.9 (5)
C22—Ru2—Ru3—C29174.89 (14)P1—C13—C18—C17175.5 (3)
Ru1—Ru2—Ru3—C2992.17 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···O5i0.932.483.277 (5)143
C18—H18A···O30.932.593.165 (5)121
Symmetry code: (i) x+1/2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formula[Ru3(C18H12Cl3P)(CO)11]
Mr976.92
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)21.8834 (6), 17.1060 (5), 18.4776 (5)
β (°) 107.766 (2)
V3)6587.0 (3)
Z8
Radiation typeMo Kα
µ (mm1)1.71
Crystal size (mm)0.24 × 0.19 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.686, 0.820
No. of measured, independent and
observed [I > 2σ(I)] reflections
39715, 9694, 7635
Rint0.044
(sin θ/λ)max1)0.707
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.111, 1.03
No. of reflections9694
No. of parameters425
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0605P)2 + 18.2026P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.26, 1.16

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···O5i0.93002.48003.277 (5)143.00
C18—H18A···O30.93002.59003.165 (5)121.00
Symmetry code: (i) x+1/2, y+1/2, z+2.
 

Footnotes

On secondment to: Multimedia University, Melaka Campus, Jalan Ayer Keroh Lama, 74750 Melaka, Malaysia.

§Thomson Reuters ResearcherID: A-5523-2009.

Thomson Reuters ResearcherID: A-3561-2009. Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

We gratefully acknowledge funding from the Malaysian Government and Universiti Sains Malaysia (USM) under the University Research Grant 1001/PJJAUH/811115. MAAP thanks USM for a post-doctoral fellowship, HKF thanks USM for the Research University Golden Goose Grant 1001/PFIZIK/811012 and CSY thanks USM for the award of a USM Fellowship.

References

First citationBruce, M. I., Liddell, M. J., Hughes, C. A., Patrick, J. M., Skelton, B. W. & White, A. H. (1988). J. Organomet. Chem. 347, 181–205.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruce, M. I., Nicholson, B. K. & Williams, M. L. (1987). Inorg. Synth. 26, 273.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChurchill, M. R., Hollander, F. J. & Hutchison, P. J. (1977). Inorg. Chem. 16, 2655–2659.  CSD CrossRef CAS Web of Science Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds