metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Octa­kis(2-chloro­benz­yl)di-μ2-hydroxido-di-μ3-oxido-bis­­(2-phenyl­acetato)tetra­tin(IV)

aKey Laboratory of Marine Drugs, Chinese Ministry of Education, Marine Drug and Food Institute, Ocean University of China, Qingdao 266003, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: guoqiangliouc@163.com

(Received 24 March 2010; accepted 3 April 2010; online 17 April 2010)

The asymmetric unit of the title compound, [Sn4(C7H6Cl)8(C8H7O2)2O2(OH)2], comprises one-half of the centrosymmetric tin(IV) complex. μ3-Oxide and μ2-hydroxide bridges link the four five-coordinate SnIV atoms to generate three fused four-membered Sn—O—Sn—O rings in a ladder-like structure. The two endocyclic Sn atoms each bind to two μ3-oxide anions and a μ2-hydroxide ligand, together with two 2-chloro­benzyl groups. The exocyclic Sn atoms each carry a monodentate phenyl­acetate ligand, two 2-chloro­benzyl groups, and μ3-oxide and μ2-hydroxide ligands. Both types of Sn atoms adopt a distorted trigonal–bipyramidal coordination geometry. The mol­ecular conformation is stabilized by intra­molecular O—H⋯O inter­actions involving the μ2-hydroxide ligands and the C=O group of the phenyl­acetate ligand.

Related literature

For the anti­fungal activity of organotin compounds, see: Ruzicka et al. (2002[Ruzicka, A., Dostal, L. & Jambor, R. (2002). Appl. Organomet. Chem. 16, 315-322.]); Nath et al. (1999[Nath, M., Yadav, R., Eng, G. & Musigarimi, P. (1999). Appl. Organomet. Chem. 13, 29-37.]). For a related structure, see: Wu et al. (2009[Wu, X., Kang, W., Zhu, D., Zhu, C. & Liu, S. (2009). J. Organomet. Chem. 694, 2981-2986.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn4(C7H6Cl)8(C8H7O2)2O2(OH)2]

  • Mr = 1815.59

  • Triclinic, [P \overline 1]

  • a = 10.7095 (14) Å

  • b = 11.4846 (16) Å

  • c = 15.2412 (18) Å

  • α = 98.311 (2)°

  • β = 90.982 (1)°

  • γ = 98.404 (2)°

  • V = 1833.6 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.69 mm−1

  • T = 298 K

  • 0.49 × 0.48 × 0.40 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.491, Tmax = 0.551

  • 9422 measured reflections

  • 6322 independent reflections

  • 4437 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.121

  • S = 1.05

  • 6322 reflections

  • 415 parameters

  • H-atom parameters constrained

  • Δρmax = 1.18 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—O3 2.023 (4)
Sn1—O2 2.114 (4)
Sn1—C9 2.145 (6)
Sn1—C16 2.145 (7)
Sn1—O4 2.157 (3)
Sn2—O4 2.033 (4)
Sn2—O4i 2.089 (3)
Sn2—C30 2.146 (6)
Sn2—O3 2.163 (4)
Sn2—C23 2.165 (6)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1 0.82 1.78 2.554 (7) 157

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently considerable attention has been paid to organotin(IV) derivatives, owing to their high in vitro antifungal activities against some medically important fungi (Ruzicka et al., 2002; Nath et al., 1999). As a continuation of our study of organotin compounds, we present here the synthesis and crystal structure of the title compound (I).

The title compound (Fig. 1, Table 1) is a centrosymmetric dimer and displays a ladder type structural motif. The ladder consists of four tin centers held together by two µ3-oxygen atoms. According to their different coordination environments, the four tin atoms can be divided into two types, viz. two endocyclic and two exocyclic. The endo- and exocyclic tin centers are linked by µ2-hydroxide anions and µ3-oxide anions. Each of the tin atoms is five-coordinate, adopting approximate trigonal bipyramidal coordination. The 2-phenylacetato ligands coordinate to the exocyclic tin atoms in a monodentate fashion, and the molecular conformation is stabilized by intramolecular O3—H3···O1 hydrogen bonds (Table 2). The crystal structure of a similiar compound has been reported recently (Wu et al., 2009).

Related literature top

For the antifungal activity of organotin compounds, see: Ruzicka et al. (2002); Nath et al. (1999). For a related structure, see: Wu et al. (2009).

Experimental top

The reaction was carried out under a nitrogen atmosphere. 2-phenylacetic acid (2 mmol) and sodium ethoxide (2.2 mmol) were added to a stirred solution of benzene (30 ml) in a Schlenk flask and stirred for 0.5 h. Bis(2-chlorobenzyl)dichlorostannane (4 mmol) was then added to the reactor. After stirring for 10 h at 323 K, a white paste was obtained and filtered off. Colourless crystals suitable for X-ray analysis were obtained by slow evaporation of dichloromethane/methanol (1:1 v/v) solution over a period of six days (yield 86%. m.p. 438 K ).

Refinement top

H atoms were positioned geometrically, with C—H = 0.93, 0.97 and O—H = 0.82 Å for aromatic, methylene and hydroxyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(O) for hydroxyl groups

Structure description top

Recently considerable attention has been paid to organotin(IV) derivatives, owing to their high in vitro antifungal activities against some medically important fungi (Ruzicka et al., 2002; Nath et al., 1999). As a continuation of our study of organotin compounds, we present here the synthesis and crystal structure of the title compound (I).

The title compound (Fig. 1, Table 1) is a centrosymmetric dimer and displays a ladder type structural motif. The ladder consists of four tin centers held together by two µ3-oxygen atoms. According to their different coordination environments, the four tin atoms can be divided into two types, viz. two endocyclic and two exocyclic. The endo- and exocyclic tin centers are linked by µ2-hydroxide anions and µ3-oxide anions. Each of the tin atoms is five-coordinate, adopting approximate trigonal bipyramidal coordination. The 2-phenylacetato ligands coordinate to the exocyclic tin atoms in a monodentate fashion, and the molecular conformation is stabilized by intramolecular O3—H3···O1 hydrogen bonds (Table 2). The crystal structure of a similiar compound has been reported recently (Wu et al., 2009).

For the antifungal activity of organotin compounds, see: Ruzicka et al. (2002); Nath et al. (1999). For a related structure, see: Wu et al. (2009).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.
Octakis(2-chlorobenzyl)di-µ2-hydroxido-di-µ3-oxido- bis(2-phenylacetato)tetratin(IV) top
Crystal data top
[Sn4(C7H6Cl)8(C8H7O2)2O2(OH)2]Z = 1
Mr = 1815.59F(000) = 896
Triclinic, P1Dx = 1.644 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.7095 (14) ÅCell parameters from 4098 reflections
b = 11.4846 (16) Åθ = 2.3–27.0°
c = 15.2412 (18) ŵ = 1.69 mm1
α = 98.311 (2)°T = 298 K
β = 90.982 (1)°Block, colourless
γ = 98.404 (2)°0.49 × 0.48 × 0.40 mm
V = 1833.6 (4) Å3
Data collection top
Siemens SMART CCD area-detector
diffractometer
6322 independent reflections
Radiation source: fine-focus sealed tube4437 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.491, Tmax = 0.551k = 713
9422 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0507P)2 + 2.5952P]
where P = (Fo2 + 2Fc2)/3
6322 reflections(Δ/σ)max = 0.001
415 parametersΔρmax = 1.18 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
[Sn4(C7H6Cl)8(C8H7O2)2O2(OH)2]γ = 98.404 (2)°
Mr = 1815.59V = 1833.6 (4) Å3
Triclinic, P1Z = 1
a = 10.7095 (14) ÅMo Kα radiation
b = 11.4846 (16) ŵ = 1.69 mm1
c = 15.2412 (18) ÅT = 298 K
α = 98.311 (2)°0.49 × 0.48 × 0.40 mm
β = 90.982 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
6322 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4437 reflections with I > 2σ(I)
Tmin = 0.491, Tmax = 0.551Rint = 0.027
9422 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.05Δρmax = 1.18 e Å3
6322 reflectionsΔρmin = 0.70 e Å3
415 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn20.37891 (4)0.50151 (4)0.43671 (3)0.03405 (14)
Sn10.52617 (4)0.29250 (4)0.32149 (3)0.03909 (15)
O10.2765 (5)0.2430 (7)0.1747 (4)0.108 (3)
Cl10.7318 (2)0.0520 (2)0.31794 (16)0.0817 (7)
Cl30.1945 (2)0.7643 (2)0.47210 (16)0.0889 (7)
O40.5297 (4)0.4138 (3)0.4439 (2)0.0333 (9)
O30.3714 (4)0.3739 (4)0.3168 (3)0.0457 (11)
H30.32300.33820.27630.069*
C240.1584 (6)0.3003 (6)0.4525 (5)0.0455 (16)
C300.3829 (6)0.6432 (6)0.3587 (4)0.0424 (15)
H30A0.40720.71960.39570.051*
H30B0.44310.63490.31220.051*
O20.4756 (5)0.2118 (4)0.1896 (3)0.0555 (13)
C260.1527 (8)0.0966 (8)0.4741 (7)0.077 (3)
H260.17340.04190.50920.093*
C200.4618 (10)0.1761 (7)0.1799 (6)0.077 (3)
H200.45600.24250.13630.092*
C360.2531 (6)0.6347 (6)0.3195 (4)0.0416 (15)
C20.3728 (9)0.1342 (8)0.0521 (5)0.078 (3)
H2A0.44920.16570.02500.094*
H2B0.37660.05120.05590.094*
C320.0369 (8)0.6721 (9)0.3344 (7)0.087 (3)
H320.02330.70940.36610.104*
C230.1962 (6)0.4311 (6)0.4814 (5)0.0479 (17)
H23A0.19750.44700.54570.057*
H23B0.13280.47280.45900.057*
C310.1583 (7)0.6850 (7)0.3675 (5)0.059 (2)
C170.4781 (7)0.0212 (6)0.3103 (4)0.0475 (17)
C180.5837 (7)0.0225 (6)0.2777 (5)0.0513 (18)
C10.3705 (8)0.2012 (7)0.1456 (5)0.058 (2)
C160.4855 (7)0.1312 (6)0.3779 (4)0.0505 (18)
H16A0.55080.12980.42260.061*
H16B0.40580.13040.40730.061*
C280.0522 (8)0.1387 (11)0.3465 (6)0.089 (3)
H280.00670.11130.29320.107*
C250.1922 (7)0.2164 (7)0.4999 (5)0.0556 (19)
C220.3625 (8)0.0376 (7)0.2728 (5)0.063 (2)
H220.28870.00980.29170.075*
C350.2176 (8)0.5672 (7)0.2378 (5)0.064 (2)
H350.27730.53190.20410.076*
C290.0866 (7)0.2605 (8)0.3724 (5)0.067 (2)
H290.06280.31450.33780.081*
C190.5779 (9)0.1213 (7)0.2139 (5)0.068 (2)
H190.65110.14980.19440.082*
C210.3545 (9)0.1354 (7)0.2086 (6)0.074 (3)
H210.27610.17360.18490.089*
Cl40.2865 (2)0.2618 (2)0.59644 (16)0.0855 (7)
Cl20.5677 (3)0.5040 (3)0.1524 (2)0.1111 (10)
C150.8327 (7)0.2995 (7)0.1657 (5)0.064 (2)
H150.86990.26300.20780.077*
C100.7379 (7)0.3672 (6)0.1912 (4)0.0533 (19)
C90.7019 (6)0.3859 (6)0.2859 (4)0.0531 (19)
H9A0.70040.47040.30310.064*
H9B0.76870.36470.32150.064*
C30.2613 (8)0.1411 (7)0.0071 (4)0.058 (2)
C110.6853 (8)0.4162 (7)0.1265 (5)0.065 (2)
C140.8730 (9)0.2849 (8)0.0798 (7)0.083 (3)
H140.93810.24120.06470.100*
C40.2413 (9)0.2473 (8)0.0274 (6)0.078 (3)
H40.29430.31600.00240.093*
C270.0837 (9)0.0588 (9)0.3973 (8)0.090 (3)
H270.05770.02220.37940.108*
C130.8155 (11)0.3359 (9)0.0172 (6)0.094 (4)
H130.84120.32570.04100.112*
C80.1816 (11)0.0414 (8)0.0418 (6)0.099 (3)
H80.19370.03250.02790.119*
C70.0792 (11)0.0515 (12)0.0997 (7)0.106 (4)
H70.02310.01590.12310.127*
C120.7206 (10)0.4017 (9)0.0394 (6)0.087 (3)
H120.68110.43570.00320.104*
C340.0942 (10)0.5521 (9)0.2061 (7)0.087 (3)
H340.07110.50610.15130.105*
C330.0056 (10)0.6040 (11)0.2544 (9)0.103 (4)
H330.07740.59250.23230.124*
C50.1443 (11)0.2550 (11)0.0843 (7)0.098 (3)
H50.13340.32910.09850.118*
C60.0637 (10)0.1576 (14)0.1206 (6)0.101 (4)
H60.00180.16430.15950.121*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn20.0364 (2)0.0383 (3)0.0277 (2)0.00952 (19)0.00245 (17)0.00236 (18)
Sn10.0458 (3)0.0380 (3)0.0327 (3)0.0095 (2)0.00195 (19)0.00089 (19)
O10.050 (4)0.200 (8)0.062 (4)0.038 (4)0.011 (3)0.038 (4)
Cl10.0591 (13)0.0889 (17)0.0930 (17)0.0115 (11)0.0016 (12)0.0006 (13)
Cl30.0980 (18)0.0925 (18)0.0805 (16)0.0418 (14)0.0156 (13)0.0022 (13)
O40.040 (2)0.035 (2)0.025 (2)0.0114 (18)0.0045 (17)0.0011 (17)
O30.046 (3)0.049 (3)0.038 (2)0.014 (2)0.009 (2)0.012 (2)
C240.035 (4)0.048 (4)0.052 (4)0.002 (3)0.007 (3)0.009 (3)
C300.043 (4)0.046 (4)0.041 (4)0.013 (3)0.000 (3)0.011 (3)
O20.072 (3)0.050 (3)0.042 (3)0.010 (3)0.007 (3)0.005 (2)
C260.071 (6)0.062 (6)0.104 (8)0.009 (5)0.025 (5)0.025 (5)
C200.111 (8)0.047 (5)0.067 (6)0.004 (5)0.004 (6)0.001 (4)
C360.046 (4)0.039 (4)0.042 (4)0.003 (3)0.006 (3)0.016 (3)
C20.106 (7)0.085 (6)0.041 (5)0.029 (5)0.004 (4)0.011 (4)
C320.054 (5)0.109 (8)0.112 (8)0.016 (5)0.001 (5)0.061 (7)
C230.041 (4)0.056 (4)0.048 (4)0.009 (3)0.008 (3)0.009 (3)
C310.047 (4)0.065 (5)0.074 (5)0.014 (4)0.002 (4)0.031 (4)
C170.059 (4)0.038 (4)0.048 (4)0.008 (3)0.006 (3)0.011 (3)
C180.057 (4)0.049 (4)0.048 (4)0.009 (3)0.002 (3)0.005 (3)
C10.075 (6)0.056 (5)0.036 (4)0.004 (4)0.009 (4)0.005 (3)
C160.068 (5)0.038 (4)0.048 (4)0.011 (3)0.015 (4)0.008 (3)
C280.067 (6)0.115 (9)0.064 (6)0.026 (6)0.010 (5)0.022 (6)
C250.046 (4)0.056 (5)0.065 (5)0.002 (4)0.019 (4)0.011 (4)
C220.062 (5)0.054 (5)0.073 (5)0.008 (4)0.006 (4)0.011 (4)
C350.082 (6)0.059 (5)0.049 (5)0.002 (4)0.021 (4)0.018 (4)
C290.055 (5)0.077 (6)0.063 (5)0.001 (4)0.007 (4)0.002 (4)
C190.089 (6)0.055 (5)0.063 (5)0.027 (5)0.016 (5)0.001 (4)
C210.084 (7)0.050 (5)0.080 (6)0.012 (5)0.013 (5)0.006 (4)
Cl40.0702 (14)0.1108 (19)0.0823 (16)0.0166 (13)0.0149 (12)0.0361 (14)
Cl20.127 (2)0.114 (2)0.118 (2)0.0578 (18)0.0473 (18)0.0594 (18)
C150.070 (5)0.051 (5)0.070 (5)0.011 (4)0.019 (4)0.002 (4)
C100.063 (5)0.051 (4)0.039 (4)0.011 (4)0.015 (3)0.002 (3)
C90.051 (4)0.057 (5)0.043 (4)0.005 (3)0.007 (3)0.005 (3)
C30.079 (5)0.064 (5)0.032 (4)0.019 (4)0.001 (4)0.003 (3)
C110.081 (6)0.053 (5)0.061 (5)0.010 (4)0.019 (4)0.010 (4)
C140.098 (7)0.066 (6)0.082 (7)0.008 (5)0.041 (6)0.003 (5)
C40.099 (7)0.070 (6)0.064 (6)0.020 (5)0.000 (5)0.002 (5)
C270.079 (7)0.064 (6)0.115 (9)0.015 (5)0.043 (7)0.007 (6)
C130.144 (10)0.074 (7)0.054 (6)0.007 (7)0.045 (6)0.002 (5)
C80.150 (10)0.058 (6)0.080 (7)0.002 (6)0.030 (7)0.004 (5)
C70.114 (9)0.111 (10)0.077 (7)0.010 (7)0.028 (6)0.010 (7)
C120.119 (8)0.088 (7)0.053 (5)0.009 (6)0.018 (5)0.015 (5)
C340.092 (7)0.085 (7)0.078 (7)0.024 (6)0.039 (6)0.034 (5)
C330.058 (6)0.125 (10)0.130 (10)0.024 (6)0.039 (7)0.077 (8)
C50.116 (9)0.121 (10)0.071 (7)0.053 (7)0.007 (6)0.024 (6)
C60.089 (8)0.160 (12)0.055 (6)0.037 (8)0.008 (5)0.006 (7)
Geometric parameters (Å, º) top
Sn1—O32.023 (4)C18—C191.377 (10)
Sn1—O22.114 (4)C16—H16A0.9700
Sn1—C92.145 (6)C16—H16B0.9700
Sn1—C162.145 (7)C28—C271.356 (14)
Sn1—O42.157 (3)C28—C291.390 (12)
Sn2—O42.033 (4)C28—H280.9300
Sn2—O4i2.089 (3)C25—Cl41.740 (8)
Sn2—C302.146 (6)C22—C211.369 (11)
Sn2—O32.163 (4)C22—H220.9300
Sn2—C232.165 (6)C35—C341.377 (11)
Sn2—Sn2i3.2130 (8)C35—H350.9300
O1—C11.238 (9)C29—H290.9300
Cl1—C181.745 (7)C19—H190.9300
Cl3—C311.725 (8)C21—H210.9300
O4—Sn2i2.089 (3)Cl2—C111.741 (8)
O3—H30.8200C15—C141.379 (11)
C24—C251.370 (10)C15—C101.395 (10)
C24—C291.412 (10)C15—H150.9300
C24—C231.496 (9)C10—C111.357 (11)
C30—C361.487 (8)C10—C91.494 (9)
C30—H30A0.9700C9—H9A0.9700
C30—H30B0.9700C9—H9B0.9700
O2—C11.281 (8)C3—C41.346 (11)
C26—C271.355 (13)C3—C81.357 (11)
C26—C251.377 (11)C11—C121.380 (11)
C26—H260.9300C14—C131.371 (14)
C20—C211.359 (12)C14—H140.9300
C20—C191.366 (11)C4—C51.362 (12)
C20—H200.9300C4—H40.9300
C36—C351.384 (9)C27—H270.9300
C36—C311.405 (10)C13—C121.371 (14)
C2—C31.503 (11)C13—H130.9300
C2—C11.521 (9)C8—C71.425 (14)
C2—H2A0.9700C8—H80.9300
C2—H2B0.9700C7—C61.335 (15)
C32—C331.358 (14)C7—H70.9300
C32—C311.366 (11)C12—H120.9300
C32—H320.9300C34—C331.364 (15)
C23—H23A0.9700C34—H340.9300
C23—H23B0.9700C33—H330.9300
C17—C181.374 (9)C5—C61.352 (14)
C17—C221.392 (10)C5—H50.9300
C17—C161.502 (9)C6—H60.9300
O4—Sn2—O4i77.61 (16)C17—C16—H16A109.0
O4—Sn2—C30120.9 (2)Sn1—C16—H16A109.0
O4i—Sn2—C30103.2 (2)C17—C16—H16B109.0
O4—Sn2—O372.95 (15)Sn1—C16—H16B109.0
O4i—Sn2—O3150.47 (16)H16A—C16—H16B107.8
C30—Sn2—O390.1 (2)C27—C28—C29121.5 (9)
O4—Sn2—C23121.1 (2)C27—C28—H28119.3
O4i—Sn2—C23101.5 (2)C29—C28—H28119.3
C30—Sn2—C23116.6 (3)C24—C25—C26121.9 (8)
O3—Sn2—C2395.6 (2)C24—C25—Cl4119.4 (6)
O4—Sn2—Sn2i39.43 (10)C26—C25—Cl4118.7 (7)
O4i—Sn2—Sn2i38.18 (11)C21—C22—C17121.7 (8)
C30—Sn2—Sn2i118.26 (17)C21—C22—H22119.2
O3—Sn2—Sn2i112.35 (11)C17—C22—H22119.2
C23—Sn2—Sn2i117.14 (19)C34—C35—C36120.4 (9)
O3—Sn1—O286.93 (17)C34—C35—H35119.8
O3—Sn1—C9117.5 (3)C36—C35—H35119.8
O2—Sn1—C993.6 (2)C28—C29—C24118.5 (9)
O3—Sn1—C16111.2 (2)C28—C29—H29120.8
O2—Sn1—C1695.2 (2)C24—C29—H29120.8
C9—Sn1—C16130.8 (3)C20—C19—C18118.2 (8)
O3—Sn1—O473.29 (15)C20—C19—H19120.9
O2—Sn1—O4159.50 (18)C18—C19—H19120.9
C9—Sn1—O490.9 (2)C20—C21—C22119.6 (8)
C16—Sn1—O496.9 (2)C20—C21—H21120.2
Sn2—O4—Sn2i102.39 (16)C22—C21—H21120.2
Sn2—O4—Sn1106.75 (16)C14—C15—C10122.0 (9)
Sn2i—O4—Sn1150.5 (2)C14—C15—H15119.0
Sn1—O3—Sn2106.89 (18)C10—C15—H15119.0
Sn1—O3—H3109.5C11—C10—C15116.4 (7)
Sn2—O3—H3142.1C11—C10—C9123.4 (7)
C25—C24—C29118.0 (7)C15—C10—C9120.2 (8)
C25—C24—C23122.7 (6)C10—C9—Sn1118.6 (4)
C29—C24—C23119.2 (7)C10—C9—H9A107.7
C36—C30—Sn2106.7 (4)Sn1—C9—H9A107.7
C36—C30—H30A110.4C10—C9—H9B107.7
Sn2—C30—H30A110.4Sn1—C9—H9B107.7
C36—C30—H30B110.4H9A—C9—H9B107.1
Sn2—C30—H30B110.4C4—C3—C8119.5 (9)
H30A—C30—H30B108.6C4—C3—C2119.6 (8)
C1—O2—Sn1129.9 (5)C8—C3—C2120.9 (8)
C27—C26—C25119.8 (9)C10—C11—C12123.5 (8)
C27—C26—H26120.1C10—C11—Cl2119.6 (6)
C25—C26—H26120.1C12—C11—Cl2116.8 (8)
C21—C20—C19121.2 (8)C13—C14—C15118.9 (9)
C21—C20—H20119.4C13—C14—H14120.5
C19—C20—H20119.4C15—C14—H14120.5
C35—C36—C31117.1 (7)C3—C4—C5120.6 (9)
C35—C36—C30121.3 (7)C3—C4—H4119.7
C31—C36—C30121.4 (6)C5—C4—H4119.7
C3—C2—C1114.5 (7)C26—C27—C28120.2 (9)
C3—C2—H2A108.6C26—C27—H27119.9
C1—C2—H2A108.6C28—C27—H27119.9
C3—C2—H2B108.6C12—C13—C14120.8 (8)
C1—C2—H2B108.6C12—C13—H13119.6
H2A—C2—H2B107.6C14—C13—H13119.6
C33—C32—C31118.9 (10)C3—C8—C7119.1 (10)
C33—C32—H32120.5C3—C8—H8120.5
C31—C32—H32120.5C7—C8—H8120.5
C24—C23—Sn2114.0 (4)C6—C7—C8120.2 (10)
C24—C23—H23A108.8C6—C7—H7119.9
Sn2—C23—H23A108.8C8—C7—H7119.9
C24—C23—H23B108.8C13—C12—C11118.4 (10)
Sn2—C23—H23B108.8C13—C12—H12120.8
H23A—C23—H23B107.7C11—C12—H12120.8
C32—C31—C36122.1 (8)C33—C34—C35120.6 (9)
C32—C31—Cl3118.4 (7)C33—C34—H34119.7
C36—C31—Cl3119.5 (5)C35—C34—H34119.7
C18—C17—C22116.3 (6)C32—C33—C34120.9 (9)
C18—C17—C16122.6 (6)C32—C33—H33119.5
C22—C17—C16121.0 (7)C34—C33—H33119.5
C17—C18—C19123.1 (7)C6—C5—C4121.5 (11)
C17—C18—Cl1118.5 (5)C6—C5—H5119.2
C19—C18—Cl1118.5 (6)C4—C5—H5119.2
O1—C1—O2124.1 (6)C7—C6—C5119.1 (11)
O1—C1—C2122.6 (7)C7—C6—H6120.5
O2—C1—C2113.2 (7)C5—C6—H6120.5
C17—C16—Sn1113.0 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.821.782.554 (7)157

Experimental details

Crystal data
Chemical formula[Sn4(C7H6Cl)8(C8H7O2)2O2(OH)2]
Mr1815.59
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.7095 (14), 11.4846 (16), 15.2412 (18)
α, β, γ (°)98.311 (2), 90.982 (1), 98.404 (2)
V3)1833.6 (4)
Z1
Radiation typeMo Kα
µ (mm1)1.69
Crystal size (mm)0.49 × 0.48 × 0.40
Data collection
DiffractometerSiemens SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.491, 0.551
No. of measured, independent and
observed [I > 2σ(I)] reflections
9422, 6322, 4437
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.121, 1.05
No. of reflections6322
No. of parameters415
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.18, 0.70

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Sn1—O32.023 (4)Sn2—O42.033 (4)
Sn1—O22.114 (4)Sn2—O4i2.089 (3)
Sn1—C92.145 (6)Sn2—C302.146 (6)
Sn1—C162.145 (7)Sn2—O32.163 (4)
Sn1—O42.157 (3)Sn2—C232.165 (6)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.821.782.554 (7)156.9
 

Acknowledgements

The authors acknowledge the National Natural Science Foundation of China (grant No. 20771053) and the Natural Science Foundation of Shandong Province (grant No. Y2008B48) for financial support.

References

First citationNath, M., Yadav, R., Eng, G. & Musigarimi, P. (1999). Appl. Organomet. Chem. 13, 29–37.  CrossRef CAS Google Scholar
First citationRuzicka, A., Dostal, L. & Jambor, R. (2002). Appl. Organomet. Chem. 16, 315–322.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWu, X., Kang, W., Zhu, D., Zhu, C. & Liu, S. (2009). J. Organomet. Chem. 694, 2981–2986.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds