organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-[(2-Amino-5-nitro­phen­yl)iminio­meth­yl]naphthalen-2-olate

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 11 April 2010; accepted 23 April 2010; online 30 April 2010)

The title Schiff base compound, C17H13N3O3, crystallizes in a zwitterionic form and exists in a trans configuration about the C=N bond. The mol­ecule is slightly twisted, the dihedral angle between the benzene ring and naphthalene ring system being 10.80 (9)°. The nitro group is twisted relative to the plane of the benzene ring [dihedral angle = 8.88 (12)°]. Bifurcated intra­molecular N—H⋯N and N—H⋯O hydrogen bonds formed between iminium groups and amine N atoms and naphthalen-2-olate O atoms generate S(5) and S(6) ring motifs, respectively. In the crystal, neighbouring zwitterions are linked through weak C—H⋯O inter­actions, giving rise to screw chains along [010]. Mol­ecules in these chains are linked to those of an adjacent chains through N—H⋯O hydrogen bonds and weak C—H⋯O inter­actions, forming sheets parallel to the ac plane. O⋯C [2.895 (3) Å] short contacts and ππ inter­actions [centroid–centroid distance = 3.8249 (19) Å] are also observed.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For background to Schiff bases and their applications, see: Eltayeb et al. (2007[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007). Acta Cryst. E63, m1672-m1673.]; 2008[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, m570-m571.]); Dao et al. (2000[Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805-813.]); Kagkelari et al. (2009[Kagkelari, A., Papaefstahiou, G. S., Raptopoulou, C. P. & Zafiropoulos, T. F. (2009). Polyhedron, 28, 3279-3283.]); Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]); Sondhi et al. (2006[Sondhi, S. M., Singh, N., Kumar, A., Lozach, O. & Meijer, L. (2006). Bioorg. Med. Chem.. 14, 3758-3765.]); Sriram et al. (2006[Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127-2129.]). For related structures, see: Eltayeb et al. (2009[Eltayeb, N. E., Teoh, S. G., Yeap, C. S., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o2065-o2066.]; 2010[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o934-o935.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13N3O3

  • Mr = 307.30

  • Monoclinic, P 21 /c

  • a = 10.369 (4) Å

  • b = 4.6442 (18) Å

  • c = 28.539 (9) Å

  • β = 103.548 (12)°

  • V = 1336.1 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.48 × 0.10 × 0.04 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.950, Tmax = 0.996

  • 14018 measured reflections

  • 3887 independent reflections

  • 2341 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.151

  • S = 1.02

  • 3887 reflections

  • 220 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1 1.01 (3) 1.61 (3) 2.505 (2) 146 (3)
N1—H1N1⋯N2 1.01 (3) 2.39 (3) 2.737 (3) 100 (2)
N2—H1N2⋯O1i 0.89 (3) 2.47 (3) 3.219 (3) 142.0 (19)
N2—H2N2⋯O1ii 0.95 (3) 1.98 (3) 2.879 (3) 158.6 (19)
C6—H6A⋯O3iii 0.93 2.57 3.489 (3) 168
C15—H15A⋯O2iv 0.93 2.51 3.161 (3) 127
Symmetry codes: (i) -x+2, -y, -z+2; (ii) -x+2, -y-1, -z+2; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+2, y+{\script{3\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff base ligands are members of an important class of compounds, possessing a wide spectrum of biological and pharmacological activities such as antibacterial and antifungal (Karthikeyan et al., 2006), anticancer (Dao et al., 2000), anti-HIV (Sriram et al., 2006), activities. Apart of these activities they have also been used as ligands to study coordination chemistry (Kagkelari et al., 2009). As part of our ongoing research on the synthesis of Schiff base ligands and their complexes (Eltayeb et al., 2007; 2008; 2009; 2010), the title compound (I) was synthesized and its crystal structure was determined. The title Schiff base ligand in neutral form was tested for anti-inflammatory, analgesic and kinase inhibition activities and showed moderate anti-inflammatory and analgesic activities (Sondhi et al., 2006).

The molecule of (I) (Fig. 1), C13H9BrNO2, crystallizes in a zwitterionic form with cationic iminium and anionic enolate, and exists in a trans configuration about the CN bond [1.315 (3) Å] and the torsion angle C1–N1–C7–C8 = 175.18 (19)°. The naphthalene ring system [C8–C17] is planar with the r.m.s. 0.0069 (2) Å. The molecule is twisted with the dihedral angle between the benzene and naphthalene rings being 10.80 (9)°. The nitro group is twisted relative to the plane of the C8–C13 benzene ring with an interplanar angle of 8.88 (12)° and torsion angles O2–N3–C5–C4 = 8.4 (3) and O3–N3–C5–C4 = -171.70 (19)°. Bifurcated intramolecular N1—H1N1···N2 and N1—H1N1···O1 hydrogen bonds (Fig.1) which formed between the NH+ and amino N atom and to the naphthalen-2-olate O- generates an S(5) and S(6) ring motifs, respectively (Bernstein et al., 1995). The bond distances are in normal ranges (Allen et al., 1987) and comparable with the related structures (Eltayeb et al., 2009; 2010).

In the crystal packing, neighbouring zwitterions are linked through weak C—H···O interactions (Table 1) giving rise to screw chains along the [010] direction (Fig. 2). Molecules in a chain are linked to those of adjacent chains through N—H···O(naphthalen-2-olate) hydrogen bonds and weak C—H···O(nitro) interactions (Table 1, Fig. 3), forming sheets parallel to the ac plane. O···C [2.895 (3) Å] short contacts and ππ interactions with centroid···centroid distances of 3.8249 (19) Å are also observed.

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For background to Schiff bases and their applications, see: Eltayeb et al. (2007; 2008); Dao et al. (2000); Kagkelari et al. (2009); Karthikeyan et al. (2006); Sondhi et al. (2006); Sriram et al. (2006). For related structures, see: Eltayeb et al. (2009; 2010). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).

Experimental top

The title compound was synthesized by adding 2-hydroxy-1-naphthaldehyde (0.688 g, 4 mmol) to the solution of 4-nitrobenzene-1,2-diamine (0.306 g, 2 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for 3 hrs. The resultant solid was obtained and then filtered and washed with ethanol. Red plate-shaped single crystals of the title compound suitable for x-ray structure determination were obtained from acetone by slow evaporation at room temperature after several days.

Refinement top

Amine and iminium H atoms were located from the difference maps and were refined isotropically. The remaining H atoms were placed in calculated positions with d(C—H) = 0.93 Å for aromatic and CH atoms and the Uiso values were constrained to be 1.2Ueq of the carrier atoms. The highest residual electron density peak is located at 0.70 Å from H4A and the deepest hole is located at 0.65 Å from C4.

Structure description top

Schiff base ligands are members of an important class of compounds, possessing a wide spectrum of biological and pharmacological activities such as antibacterial and antifungal (Karthikeyan et al., 2006), anticancer (Dao et al., 2000), anti-HIV (Sriram et al., 2006), activities. Apart of these activities they have also been used as ligands to study coordination chemistry (Kagkelari et al., 2009). As part of our ongoing research on the synthesis of Schiff base ligands and their complexes (Eltayeb et al., 2007; 2008; 2009; 2010), the title compound (I) was synthesized and its crystal structure was determined. The title Schiff base ligand in neutral form was tested for anti-inflammatory, analgesic and kinase inhibition activities and showed moderate anti-inflammatory and analgesic activities (Sondhi et al., 2006).

The molecule of (I) (Fig. 1), C13H9BrNO2, crystallizes in a zwitterionic form with cationic iminium and anionic enolate, and exists in a trans configuration about the CN bond [1.315 (3) Å] and the torsion angle C1–N1–C7–C8 = 175.18 (19)°. The naphthalene ring system [C8–C17] is planar with the r.m.s. 0.0069 (2) Å. The molecule is twisted with the dihedral angle between the benzene and naphthalene rings being 10.80 (9)°. The nitro group is twisted relative to the plane of the C8–C13 benzene ring with an interplanar angle of 8.88 (12)° and torsion angles O2–N3–C5–C4 = 8.4 (3) and O3–N3–C5–C4 = -171.70 (19)°. Bifurcated intramolecular N1—H1N1···N2 and N1—H1N1···O1 hydrogen bonds (Fig.1) which formed between the NH+ and amino N atom and to the naphthalen-2-olate O- generates an S(5) and S(6) ring motifs, respectively (Bernstein et al., 1995). The bond distances are in normal ranges (Allen et al., 1987) and comparable with the related structures (Eltayeb et al., 2009; 2010).

In the crystal packing, neighbouring zwitterions are linked through weak C—H···O interactions (Table 1) giving rise to screw chains along the [010] direction (Fig. 2). Molecules in a chain are linked to those of adjacent chains through N—H···O(naphthalen-2-olate) hydrogen bonds and weak C—H···O(nitro) interactions (Table 1, Fig. 3), forming sheets parallel to the ac plane. O···C [2.895 (3) Å] short contacts and ππ interactions with centroid···centroid distances of 3.8249 (19) Å are also observed.

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For background to Schiff bases and their applications, see: Eltayeb et al. (2007; 2008); Dao et al. (2000); Kagkelari et al. (2009); Karthikeyan et al. (2006); Sondhi et al. (2006); Sriram et al. (2006). For related structures, see: Eltayeb et al. (2009; 2010). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50° probability displacement ellipsoids and the atom-numbering scheme. Intramolecular hydrogen bonds are shown as dashed lines." is correct.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the a, showing screw chains running along the b axis. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. The crystal packing of the title compound viewed down the b, showing sheet parallel to the ac plane. Hydrogen bonds are shown as dashed lines.
(E)-1-[(2-Amino-5-nitrophenyl)iminiomethyl]naphthalen-2-olate top
Crystal data top
C17H13N3O3F(000) = 640
Mr = 307.30Dx = 1.528 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3887 reflections
a = 10.369 (4) Åθ = 1.5–30.0°
b = 4.6442 (18) ŵ = 0.11 mm1
c = 28.539 (9) ÅT = 100 K
β = 103.548 (12)°Plate, red
V = 1336.1 (8) Å30.48 × 0.10 × 0.04 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3887 independent reflections
Radiation source: sealed tube2341 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
φ and ω scansθmax = 30.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1413
Tmin = 0.950, Tmax = 0.996k = 66
14018 measured reflectionsl = 3940
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.059P)2 + 0.6347P]
where P = (Fo2 + 2Fc2)/3
3887 reflections(Δ/σ)max = 0.001
220 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C17H13N3O3V = 1336.1 (8) Å3
Mr = 307.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.369 (4) ŵ = 0.11 mm1
b = 4.6442 (18) ÅT = 100 K
c = 28.539 (9) Å0.48 × 0.10 × 0.04 mm
β = 103.548 (12)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3887 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2341 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.996Rint = 0.057
14018 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.36 e Å3
3887 reflectionsΔρmin = 0.30 e Å3
220 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.82332 (14)0.0589 (3)0.96873 (5)0.0254 (4)
O21.22099 (15)0.6304 (4)0.76236 (5)0.0338 (4)
O31.09865 (15)0.2495 (4)0.74798 (5)0.0317 (4)
N10.92876 (16)0.1176 (4)0.89879 (5)0.0198 (4)
H1N10.911 (3)0.151 (6)0.9315 (10)0.053 (8)*
N21.08296 (18)0.4892 (5)0.96268 (6)0.0250 (4)
H1N21.068 (2)0.318 (6)0.9746 (9)0.038 (7)*
H2N21.134 (2)0.630 (6)0.9828 (9)0.036 (7)*
N31.15214 (17)0.4461 (4)0.77485 (6)0.0254 (4)
C11.02284 (18)0.2851 (5)0.88271 (6)0.0189 (4)
C21.09971 (19)0.4753 (5)0.91675 (6)0.0200 (4)
C31.1889 (2)0.6596 (5)0.90188 (7)0.0231 (5)
H3A1.23830.78890.92380.028*
C41.2048 (2)0.6533 (5)0.85552 (7)0.0234 (5)
H4A1.26360.77830.84580.028*
C51.13185 (19)0.4580 (5)0.82357 (6)0.0215 (4)
C61.04003 (19)0.2757 (5)0.83600 (6)0.0216 (4)
H6A0.99070.14920.81350.026*
C70.84656 (19)0.0765 (5)0.87499 (6)0.0196 (4)
H7A0.85140.12690.84390.023*
C80.75161 (19)0.2092 (5)0.89575 (6)0.0194 (4)
C90.7424 (2)0.1231 (5)0.94325 (6)0.0211 (4)
C100.6390 (2)0.2452 (5)0.96265 (6)0.0243 (5)
H10A0.63000.18720.99290.029*
C110.5547 (2)0.4420 (5)0.93792 (7)0.0242 (5)
H11A0.48940.51730.95180.029*
C120.56177 (19)0.5396 (5)0.89118 (6)0.0208 (4)
C130.4720 (2)0.7454 (5)0.86662 (7)0.0239 (5)
H13A0.40880.82220.88140.029*
C140.4757 (2)0.8357 (5)0.82110 (7)0.0252 (5)
H14A0.41480.97010.80490.030*
C150.5722 (2)0.7223 (5)0.79976 (6)0.0230 (5)
H15A0.57580.78340.76910.028*
C160.66212 (19)0.5223 (5)0.82295 (6)0.0214 (4)
H16A0.72580.45150.80780.026*
C170.65970 (19)0.4222 (5)0.86945 (6)0.0188 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0339 (8)0.0264 (9)0.0168 (6)0.0063 (7)0.0075 (6)0.0041 (6)
O20.0391 (9)0.0402 (11)0.0257 (7)0.0115 (8)0.0148 (7)0.0053 (7)
O30.0429 (9)0.0331 (10)0.0218 (7)0.0053 (8)0.0127 (6)0.0051 (7)
N10.0263 (8)0.0187 (10)0.0156 (7)0.0005 (7)0.0069 (6)0.0004 (7)
N20.0335 (10)0.0246 (11)0.0176 (8)0.0047 (9)0.0075 (7)0.0008 (8)
N30.0306 (9)0.0270 (11)0.0204 (8)0.0009 (8)0.0097 (7)0.0028 (7)
C10.0249 (9)0.0159 (11)0.0177 (8)0.0038 (8)0.0085 (7)0.0033 (7)
C20.0245 (9)0.0185 (12)0.0177 (8)0.0038 (9)0.0063 (7)0.0012 (8)
C30.0257 (10)0.0203 (12)0.0237 (9)0.0012 (9)0.0065 (8)0.0008 (8)
C40.0260 (10)0.0207 (12)0.0249 (9)0.0014 (9)0.0086 (8)0.0032 (8)
C50.0250 (9)0.0247 (13)0.0160 (8)0.0022 (9)0.0075 (7)0.0033 (8)
C60.0268 (9)0.0208 (12)0.0173 (8)0.0022 (9)0.0053 (7)0.0005 (8)
C70.0262 (9)0.0171 (11)0.0155 (8)0.0028 (8)0.0049 (7)0.0001 (7)
C80.0250 (9)0.0178 (11)0.0152 (8)0.0017 (8)0.0046 (7)0.0003 (8)
C90.0284 (10)0.0182 (11)0.0165 (8)0.0003 (9)0.0045 (7)0.0000 (8)
C100.0343 (11)0.0246 (13)0.0158 (8)0.0029 (10)0.0098 (8)0.0029 (8)
C110.0289 (10)0.0241 (13)0.0211 (9)0.0016 (9)0.0093 (8)0.0007 (8)
C120.0249 (9)0.0190 (12)0.0182 (8)0.0031 (9)0.0047 (7)0.0005 (8)
C130.0270 (10)0.0233 (13)0.0218 (9)0.0025 (9)0.0063 (8)0.0000 (8)
C140.0300 (10)0.0233 (13)0.0212 (9)0.0001 (9)0.0035 (8)0.0021 (8)
C150.0299 (10)0.0232 (12)0.0155 (8)0.0023 (9)0.0046 (7)0.0008 (8)
C160.0272 (10)0.0205 (12)0.0173 (8)0.0035 (9)0.0069 (7)0.0011 (8)
C170.0238 (9)0.0162 (11)0.0160 (8)0.0039 (8)0.0039 (7)0.0008 (7)
Geometric parameters (Å, º) top
O1—C91.289 (2)C7—C81.405 (3)
O2—N31.220 (2)C7—H7A0.9300
O3—N31.237 (2)C8—C91.438 (3)
N1—C71.315 (3)C8—C171.454 (3)
N1—C11.406 (2)C9—C101.434 (3)
N1—H1N11.00 (3)C10—C111.344 (3)
N2—C21.364 (2)C10—H10A0.9300
N2—H1N20.89 (3)C11—C121.427 (3)
N2—H2N20.94 (3)C11—H11A0.9300
N3—C51.455 (2)C12—C131.402 (3)
C1—C61.386 (2)C12—C171.417 (3)
C1—C21.413 (3)C13—C141.374 (3)
C2—C31.397 (3)C13—H13A0.9300
C3—C41.371 (3)C14—C151.391 (3)
C3—H3A0.9300C14—H14A0.9300
C4—C51.380 (3)C15—C161.372 (3)
C4—H4A0.9300C15—H15A0.9300
C5—C61.381 (3)C16—C171.412 (3)
C6—H6A0.9300C16—H16A0.9300
C7—N1—C1128.76 (16)C7—C8—C9118.92 (18)
C7—N1—H1N1110.5 (16)C7—C8—C17121.33 (16)
C1—N1—H1N1120.5 (16)C9—C8—C17119.71 (17)
C2—N2—H1N2113.4 (17)O1—C9—C10119.21 (17)
C2—N2—H2N2116.1 (15)O1—C9—C8122.43 (18)
H1N2—N2—H2N2120 (2)C10—C9—C8118.36 (18)
O2—N3—O3123.00 (17)C11—C10—C9121.25 (17)
O2—N3—C5118.54 (18)C11—C10—H10A119.4
O3—N3—C5118.46 (17)C9—C10—H10A119.4
C6—C1—N1123.48 (18)C10—C11—C12122.52 (19)
C6—C1—C2120.14 (18)C10—C11—H11A118.7
N1—C1—C2116.36 (16)C12—C11—H11A118.7
N2—C2—C3120.35 (19)C13—C12—C17120.24 (17)
N2—C2—C1120.83 (19)C13—C12—C11120.69 (18)
C3—C2—C1118.74 (17)C17—C12—C11119.05 (18)
C4—C3—C2121.19 (19)C14—C13—C12121.21 (19)
C4—C3—H3A119.4C14—C13—H13A119.4
C2—C3—H3A119.4C12—C13—H13A119.4
C3—C4—C5118.71 (19)C13—C14—C15118.7 (2)
C3—C4—H4A120.6C13—C14—H14A120.6
C5—C4—H4A120.6C15—C14—H14A120.6
C4—C5—C6122.52 (17)C16—C15—C14121.52 (18)
C4—C5—N3118.49 (18)C16—C15—H15A119.2
C6—C5—N3118.99 (18)C14—C15—H15A119.2
C5—C6—C1118.63 (19)C15—C16—C17121.11 (19)
C5—C6—H6A120.7C15—C16—H16A119.4
C1—C6—H6A120.7C17—C16—H16A119.4
N1—C7—C8121.09 (17)C16—C17—C12117.18 (18)
N1—C7—H7A119.5C16—C17—C8123.74 (18)
C8—C7—H7A119.5C12—C17—C8119.08 (16)
C7—N1—C1—C62.5 (3)C17—C8—C9—O1178.14 (19)
C7—N1—C1—C2179.1 (2)C7—C8—C9—C10175.65 (19)
C6—C1—C2—N2179.3 (2)C17—C8—C9—C102.0 (3)
N1—C1—C2—N20.8 (3)O1—C9—C10—C11178.1 (2)
C6—C1—C2—C32.4 (3)C8—C9—C10—C112.0 (3)
N1—C1—C2—C3176.07 (18)C9—C10—C11—C120.5 (3)
N2—C2—C3—C4178.5 (2)C10—C11—C12—C13179.9 (2)
C1—C2—C3—C41.6 (3)C10—C11—C12—C171.1 (3)
C2—C3—C4—C50.8 (3)C17—C12—C13—C140.6 (3)
C3—C4—C5—C62.4 (3)C11—C12—C13—C14178.3 (2)
C3—C4—C5—N3178.11 (19)C12—C13—C14—C151.0 (3)
O2—N3—C5—C48.4 (3)C13—C14—C15—C160.5 (3)
O3—N3—C5—C4171.70 (19)C14—C15—C16—C170.4 (3)
O2—N3—C5—C6171.2 (2)C15—C16—C17—C120.8 (3)
O3—N3—C5—C68.8 (3)C15—C16—C17—C8179.5 (2)
C4—C5—C6—C11.5 (3)C13—C12—C17—C160.3 (3)
N3—C5—C6—C1178.97 (19)C11—C12—C17—C16179.27 (19)
N1—C1—C6—C5177.46 (19)C13—C12—C17—C8179.96 (19)
C2—C1—C6—C50.9 (3)C11—C12—C17—C81.0 (3)
C1—N1—C7—C8175.18 (19)C7—C8—C17—C163.2 (3)
N1—C7—C8—C91.9 (3)C9—C8—C17—C16179.21 (19)
N1—C7—C8—C17179.45 (19)C7—C8—C17—C12177.07 (19)
C7—C8—C9—O14.3 (3)C9—C8—C17—C120.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O11.01 (3)1.61 (3)2.505 (2)146 (3)
N1—H1N1···N21.01 (3)2.39 (3)2.737 (3)100 (2)
N2—H1N2···O1i0.89 (3)2.47 (3)3.219 (3)142.0 (19)
N2—H2N2···O1ii0.95 (3)1.98 (3)2.879 (3)158.6 (19)
C6—H6A···O3iii0.932.573.489 (3)168
C15—H15A···O2iv0.932.513.161 (3)127
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y1, z+2; (iii) x+2, y+1/2, z+3/2; (iv) x+2, y+3/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC17H13N3O3
Mr307.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.369 (4), 4.6442 (18), 28.539 (9)
β (°) 103.548 (12)
V3)1336.1 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.48 × 0.10 × 0.04
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.950, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
14018, 3887, 2341
Rint0.057
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.151, 1.02
No. of reflections3887
No. of parameters220
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.30

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O11.01 (3)1.61 (3)2.505 (2)146 (3)
N1—H1N1···N21.01 (3)2.39 (3)2.737 (3)100 (2)
N2—H1N2···O1i0.89 (3)2.47 (3)3.219 (3)142.0 (19)
N2—H2N2···O1ii0.95 (3)1.98 (3)2.879 (3)158.6 (19)
C6—H6A···O3iii0.932.573.489 (3)168
C15—H15A···O2iv0.932.513.161 (3)127
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y1, z+2; (iii) x+2, y+1/2, z+3/2; (iv) x+2, y+3/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Malaysian Government, the Ministry of Science, Technology and Innovation (MOSTI) and Universiti Sains Malaysia for the RU research grants (1001/PKIMIA/815002 and 1001/PKIMIA/811120). AMF thanks the Libyan Government for providing a scholarship and Dr Naser Eltaher Eltayeb for his useful suggestions. The authors also thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805–813.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o934–o935.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, m570–m571.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007). Acta Cryst. E63, m1672–m1673.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Yeap, C. S., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o2065–o2066.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKagkelari, A., Papaefstahiou, G. S., Raptopoulou, C. P. & Zafiropoulos, T. F. (2009). Polyhedron, 28, 3279–3283.  Web of Science CSD CrossRef CAS Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSondhi, S. M., Singh, N., Kumar, A., Lozach, O. & Meijer, L. (2006). Bioorg. Med. Chem.. 14, 3758–3765.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127–2129.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds