metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-phenyl­tellurido-κ2Te:Te)bis­­[tetra­carbonyl­rhenium(I)]

aCentre for Bioinformatics, Pondicherry University, Puducherry 605 014, India, and bDepartment of Chemistry, Pondicherry University, Puducherry 605 014, India
*Correspondence e-mail: krishstrucbio@gmail.com

(Received 13 April 2010; accepted 19 April 2010; online 24 April 2010)

The title compound, [Re2(C6H5Te)2(CO)8], crystallizes with two mol­ecules in the asymmetric unit, in which two Re atoms are coordinated in a slightly distorted octa­hedral environment and are bridged by two Te atoms, which show a distorted trigonal-pyramidal geometry. The torsion angles for the Te—Re—Te—Re sequence of atoms are 19.29 (18) and 16.54 (16)° in the two mol­ecules. Thus, the Re—Te four-membered rings in the two mol­ecules deviate significantly from planarity. Two intra­molecular C—H⋯O inter­actions occur in one of the mol­ecules. Te—Te [4.0551 (10) Å] inter­actions between the two mol­ecules and weak inter­molecular C—H⋯O inter­actions stabilize the crystal packing.

Related literature

For the biological importances of Re and Te compounds, see: Begum et al. (2008[Begum, N., Hyder, M. I., Hassan, M. R., Kabir, S. E., Bennett, D. W., Haworth, D. T., Siddiquee, T. A., Rokhsana, D., Sharmin, A. & Rosenberg, E. (2008). Organometallics, 27, 1550-1560.]); Atwood et al. (1983[Atwood, J. L., Bernal, J., Calderazzo, F., Canada, L. G., Poli, R., Rogers, R. D., Veracini, C. A. & Vitali, D. (1983). Inorg. Chem. 22, 1797-1804.]); Zhang & Leong (2000[Zhang, J. & Leong, W. K. (2000). J. Chem. Soc. Dalton Trans. pp. 1249-1253.]); Lima et al. (2009[Lima, C. B. C., Arrais-Silva, W. W., Cunha, R. L. O. R. & Giorgio, S. (2009). Korean J. Parasitol. 47, 213-218.]); Cunha et al. (2009[Cunha, R. L., Gouvea, I. E. & Juliano, L. (2009). Ann. Acad. Bras. Cienc. 81, 393-407.]); Kopf-Maier & Klapötke (1992[Kopf-Maier, P. & Klapötke, T. (1992). Cancer Chemother. Pharmacol. 29, 361-366.]); Cerecetto et al. (1997[Cerecetto, H., Di Maio, R., Gonzalez, M. & Seoane, G. (1997). Heterocycles, 45, 2023-2031.]). For a related structure, see: Cecconi et al. (1998[Cecconi, F., Ghilardi, C. A., Midollini, S. & Orlandini, A. (1998). Inorg. Chem. Commun. 1, 150-151.]). For a structure with weak Te⋯Te contacts, see: Ritch & Chivers (2009[Ritch, S. R. & Chivers, T. (2009). Inorg. Chem. 48, 3857-3865.]). For puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.])

[Scheme 1]

Experimental

Crystal data
  • [Re2(C6H5Te)2(CO)8]

  • Mr = 2011.76

  • Triclinic, [P \overline 1]

  • a = 9.8062 (13) Å

  • b = 16.3418 (15) Å

  • c = 17.1000 (14) Å

  • α = 106.593 (7)°

  • β = 99.932 (9)°

  • γ = 105.572 (10)°

  • V = 2435.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 12.32 mm−1

  • T = 150 K

  • 0.32 × 0.28 × 0.22 mm

Data collection
  • Oxford Diffraction Xcalibur-S diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.110, Tmax = 0.173

  • 20451 measured reflections

  • 8557 independent reflections

  • 7388 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.079

  • S = 1.06

  • 8557 reflections

  • 577 parameters

  • H-atom parameters constrained

  • Δρmax = 2.27 e Å−3

  • Δρmin = −2.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16A—H16A⋯O6A 0.95 2.74 3.592 (11) 149
C20A—H20A⋯O2A 0.95 2.87 3.678 (12) 143
C12B—H12B⋯O5Bi 0.95 2.63 3.433 (11) 143
Symmetry code: (i) -x+1, -y, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The biological activities of rhenium and tellurium compounds have been studied and revealed interesting and promising applications (Begum et al., 2008; Atwood et al., 1983; Zhang & Leong, 2000). Rhenium derivatives have a wide range of biological applications such as antitumor, cytostatic (Kopf-Maier & Klapotke, 1992) and antitrypanosomal activity (Cerecetto et al., 1997). Organo tellurium compounds are the inhibitors of human cathepsin B, which is a highly predictive indicator for prognosis and diagnosis of cancer. Some of the tellurium derivatives exhibit antioxidant and immunomodulatory effects (Cunha et al., 2009). Recently, a novel organotellurium compound-RT01 was proved to act as antileishmanial agent (Lima et al., 2009). In view of these important features we have chosen the title compound for crystal structure analysis.

The title compound was crystallized with two independent molecules (A & B) in the asymmetric unit (Fig. 1), which adopted dinuclear metallacyclic structure, where each rhenium Re(CO)4 core is bonded by two phenyl tellurolate groups and hence Re centers attained a distorted octahedral geometry. The r.m.s deviation for four-membered ring with carbonyl atoms of two molecules is 0.016 Å, calculated by Platon - automolfit program (Spek, 2009) and the maximum deviation was observed in phenyl tellurolate groups. The Re—Te bond distances are nearly equal in both the molecules and are similar to those in a related structure (Cecconi et al., 1998). The six atoms (C9A—Te1A—Re2A—Te2A—C15A—Re1A & C15B—Te2B—Re2B—Te1B—C9B—Re1B) generate six-membered rings each with a boat conformation; puckering parameters (Cremer & Pople, 1975) A: q2 = 0.3707(0.0000) Å, q3 = -1.8679 (0.0001) Å, phi2 = 113.59 (0.01)°, QT =1.9043 (0.0001), theta2 = 168.78 (0.00)° and B: q2 = 0.5108(0.0002) Å, q3 = -1.9993(0.0002)Å , phi2 =125.79(0.02)°, QT = 2.0635(0.0003), theta2 = 165.67(0.01)° . The crystal packing (Fig. 2) of the molecule in the unit cell is influenced by C—H···O and Te—Te interactions. The two molecules in the unit cell are interconnected with each other through Te—Te interaction [4.0551 (10) Å] and illustrated in Fig. 3. This Te···Te separation is similar to that observed previously (Ritch & Chivers, 2009). In their study, weak intermolecular Te···Te contacts were observed in the compound C36H84Cu3N3O3P6Te3 ranging from 3.891 Å to 4.039 Å. However, the Te···Te separation observed here is smaller than that in NaCuTe, 4.38Å, (Seong et al., 1994). Based on these previous studies, the observed Te···Te contact is significant and contributes to the packing. Intermolecular and interatomic O—O bond distances are also observed for O6B—O4B, O5A—O8B, O5A—O4B, O8B—O8B, O5A—O3A, O1B—O5B, O4A—O8A with distances of 2.928 (9) Å, 2.975 (10) Å, 3.025 (9) Å, 3.014 (13) Å,2.951 (9) Å, 2.9710 (89) Å and 2.9387 (87) Å respectively.

Related literature top

For the biological importances of Re and Te compounds, see: Begum et al. (2008); Atwood et al. (1983); Zhang & Leong (2000); Lima et al. (2009); Cunha et al. (2009); Kopf-Maier & Klapotke (1992); Cerecetto et al. (1997). For a related structure, see Cecconi et al. (1998). For a structure with weak Te···Te contacts, see: Ritch & Chivers (2009). For puckering analysis, see: Cremer & Pople (1975)

Experimental top

A mixture of Re2(CO)10 (130 mg, 0.2 mmol) and diphenyl ditelluride (41 mg, 0.1 mmol), 4-phenylpyridine (93 mg, 0.6 mmol) were taken in a 50 ml two neck Schlenk flask and fitted with a reflux condenser. The system was evacuated and purged with N2. Freshly distilled mesitylene (30 ml) was added under N2 atmosphere. The reaction mixture was heated to 403 K under N2 for 6 h and allowed to cool to room temperature. The mesitylene was removed by vacuum distillation and the solid mixture was washed with hexane, chromatographed on silica gel using dichloromethane and hexane (1:9) as eluent to obtain the yellow color solid of without phenylpyridine substituted compound [(CO)4Re(µ-TeC6H5)2Re(CO)4]. Single crystal of the title compound was obtained by slow diffusion of hexane into a concentrated solution of the title compound in dichloromethane at 278 K.

Refinement top

The hydrogen atoms were placed in calculated positions (C—H = 0.95 Å) and included in the refinement in riding-model approximation with Uĩso(H) = 1.2Ueq(C).

Structure description top

The biological activities of rhenium and tellurium compounds have been studied and revealed interesting and promising applications (Begum et al., 2008; Atwood et al., 1983; Zhang & Leong, 2000). Rhenium derivatives have a wide range of biological applications such as antitumor, cytostatic (Kopf-Maier & Klapotke, 1992) and antitrypanosomal activity (Cerecetto et al., 1997). Organo tellurium compounds are the inhibitors of human cathepsin B, which is a highly predictive indicator for prognosis and diagnosis of cancer. Some of the tellurium derivatives exhibit antioxidant and immunomodulatory effects (Cunha et al., 2009). Recently, a novel organotellurium compound-RT01 was proved to act as antileishmanial agent (Lima et al., 2009). In view of these important features we have chosen the title compound for crystal structure analysis.

The title compound was crystallized with two independent molecules (A & B) in the asymmetric unit (Fig. 1), which adopted dinuclear metallacyclic structure, where each rhenium Re(CO)4 core is bonded by two phenyl tellurolate groups and hence Re centers attained a distorted octahedral geometry. The r.m.s deviation for four-membered ring with carbonyl atoms of two molecules is 0.016 Å, calculated by Platon - automolfit program (Spek, 2009) and the maximum deviation was observed in phenyl tellurolate groups. The Re—Te bond distances are nearly equal in both the molecules and are similar to those in a related structure (Cecconi et al., 1998). The six atoms (C9A—Te1A—Re2A—Te2A—C15A—Re1A & C15B—Te2B—Re2B—Te1B—C9B—Re1B) generate six-membered rings each with a boat conformation; puckering parameters (Cremer & Pople, 1975) A: q2 = 0.3707(0.0000) Å, q3 = -1.8679 (0.0001) Å, phi2 = 113.59 (0.01)°, QT =1.9043 (0.0001), theta2 = 168.78 (0.00)° and B: q2 = 0.5108(0.0002) Å, q3 = -1.9993(0.0002)Å , phi2 =125.79(0.02)°, QT = 2.0635(0.0003), theta2 = 165.67(0.01)° . The crystal packing (Fig. 2) of the molecule in the unit cell is influenced by C—H···O and Te—Te interactions. The two molecules in the unit cell are interconnected with each other through Te—Te interaction [4.0551 (10) Å] and illustrated in Fig. 3. This Te···Te separation is similar to that observed previously (Ritch & Chivers, 2009). In their study, weak intermolecular Te···Te contacts were observed in the compound C36H84Cu3N3O3P6Te3 ranging from 3.891 Å to 4.039 Å. However, the Te···Te separation observed here is smaller than that in NaCuTe, 4.38Å, (Seong et al., 1994). Based on these previous studies, the observed Te···Te contact is significant and contributes to the packing. Intermolecular and interatomic O—O bond distances are also observed for O6B—O4B, O5A—O8B, O5A—O4B, O8B—O8B, O5A—O3A, O1B—O5B, O4A—O8A with distances of 2.928 (9) Å, 2.975 (10) Å, 3.025 (9) Å, 3.014 (13) Å,2.951 (9) Å, 2.9710 (89) Å and 2.9387 (87) Å respectively.

For the biological importances of Re and Te compounds, see: Begum et al. (2008); Atwood et al. (1983); Zhang & Leong (2000); Lima et al. (2009); Cunha et al. (2009); Kopf-Maier & Klapotke (1992); Cerecetto et al. (1997). For a related structure, see Cecconi et al. (1998). For a structure with weak Te···Te contacts, see: Ritch & Chivers (2009). For puckering analysis, see: Cremer & Pople (1975)

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : ORTEP – 3 view of the structure of title compound, showing the atom-labeling scheme. Displacement ellipsoidsare drawn at the 50% probability level.
[Figure 2] Fig. 2. : View of the crystal packing diagram of the title compound in the unit cell.
[Figure 3] Fig. 3. : Crystal structure of title compound showing Te—Te interaction .
Bis(µ-phenyltellurido-κ2Te:Te)bis[tetracarbonylrhenium(I)] top
Crystal data top
[Re2(C6H5Te)2(CO)8]Z = 2
Mr = 2011.76F(000) = 1792
Triclinic, P1Dx = 2.743 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8062 (13) ÅCell parameters from 15161 reflections
b = 16.3418 (15) Åθ = 2.9–32.6°
c = 17.1000 (14) ŵ = 12.32 mm1
α = 106.593 (7)°T = 150 K
β = 99.932 (9)°Block, yellow
γ = 105.572 (10)°0.32 × 0.28 × 0.22 mm
V = 2435.9 (4) Å3
Data collection top
Oxford Diffraction Xcalibur-S
diffractometer
8557 independent reflections
Radiation source: fine-focus sealed tube7388 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 15.9948 pixels mm-1θmax = 25.0°, θmin = 2.9°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1919
Tmin = 0.110, Tmax = 0.173l = 2020
20451 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0473P)2]
where P = (Fo2 + 2Fc2)/3
8557 reflections(Δ/σ)max = 0.001
577 parametersΔρmax = 2.27 e Å3
0 restraintsΔρmin = 2.55 e Å3
Crystal data top
[Re2(C6H5Te)2(CO)8]γ = 105.572 (10)°
Mr = 2011.76V = 2435.9 (4) Å3
Triclinic, P1Z = 2
a = 9.8062 (13) ÅMo Kα radiation
b = 16.3418 (15) ŵ = 12.32 mm1
c = 17.1000 (14) ÅT = 150 K
α = 106.593 (7)°0.32 × 0.28 × 0.22 mm
β = 99.932 (9)°
Data collection top
Oxford Diffraction Xcalibur-S
diffractometer
8557 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
7388 reflections with I > 2σ(I)
Tmin = 0.110, Tmax = 0.173Rint = 0.038
20451 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.06Δρmax = 2.27 e Å3
8557 reflectionsΔρmin = 2.55 e Å3
577 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Te1A0.29742 (5)0.72479 (4)0.50093 (3)0.01642 (12)
Te2A0.36142 (5)0.60877 (4)0.30316 (3)0.01644 (12)
Te1B0.35375 (5)0.18505 (4)0.27409 (3)0.01525 (12)
Te2B0.20684 (5)0.33550 (4)0.18717 (3)0.01658 (12)
Re1A0.09628 (3)0.60064 (2)0.347709 (19)0.01676 (9)
Re2A0.53570 (3)0.77358 (2)0.431685 (18)0.01559 (9)
Re1B0.06866 (3)0.15893 (2)0.181187 (18)0.01653 (9)
Re2B0.49743 (3)0.33530 (2)0.233289 (18)0.01520 (9)
O1A0.1349 (9)0.4515 (6)0.4255 (5)0.058 (2)
O2A0.0895 (7)0.4533 (5)0.1750 (4)0.0373 (17)
O3A0.1911 (7)0.5972 (5)0.3997 (4)0.0400 (18)
O4A0.0784 (7)0.7629 (5)0.2859 (4)0.0307 (15)
O5A0.6778 (7)0.6705 (5)0.5350 (4)0.0287 (14)
O6A0.7801 (7)0.7870 (5)0.3370 (4)0.0345 (16)
O7A0.7103 (7)0.9560 (5)0.5780 (4)0.0401 (17)
O8A0.3865 (8)0.8824 (5)0.3393 (5)0.0428 (18)
O1B0.1637 (7)0.0630 (5)0.0225 (4)0.0319 (16)
O2B0.0790 (8)0.0329 (5)0.1846 (4)0.0408 (17)
O3B0.2190 (7)0.1679 (6)0.0799 (4)0.046 (2)
O4B0.0069 (7)0.2418 (5)0.3568 (4)0.0308 (15)
O5B0.4357 (7)0.2119 (5)0.0444 (4)0.0329 (16)
O6B0.8091 (7)0.3224 (6)0.2827 (5)0.051 (2)
O7B0.6296 (7)0.5079 (5)0.1913 (4)0.0344 (16)
O8B0.5370 (8)0.4615 (5)0.4184 (4)0.048 (2)
C1A0.1194 (10)0.5057 (7)0.3980 (6)0.033 (2)
C2A0.0188 (9)0.5080 (7)0.2378 (6)0.025 (2)
C3A0.0839 (9)0.6001 (6)0.3829 (5)0.024 (2)
C4A0.0871 (8)0.7024 (6)0.3063 (5)0.0190 (19)
C5A0.6271 (8)0.7069 (6)0.4968 (5)0.0198 (18)
C6A0.6887 (9)0.7836 (7)0.3733 (5)0.023 (2)
C7A0.6431 (9)0.8870 (7)0.5239 (5)0.028 (2)
C8A0.4374 (9)0.8407 (7)0.3710 (5)0.026 (2)
C9A0.2264 (8)0.8398 (6)0.5416 (5)0.0168 (17)
C10A0.0903 (9)0.8416 (7)0.5024 (5)0.025 (2)
H10A0.02990.79430.45130.030*
C11A0.0440 (10)0.9135 (6)0.5392 (5)0.026 (2)
H11A0.04930.91380.51280.031*
C12A0.1285 (10)0.9834 (7)0.6117 (6)0.030 (2)
H12A0.09441.03120.63640.036*
C13A0.2672 (10)0.9826 (7)0.6488 (6)0.032 (2)
H13A0.32921.03170.69820.038*
C14A0.3154 (10)0.9112 (7)0.6144 (5)0.029 (2)
H14A0.40920.91140.64060.035*
C15A0.3338 (9)0.6387 (6)0.1869 (5)0.0183 (17)
C16A0.4588 (9)0.6670 (7)0.1605 (5)0.027 (2)
H16A0.55290.67790.19560.032*
C17A0.4462 (10)0.6795 (7)0.0813 (5)0.027 (2)
H17A0.53160.69990.06350.033*
C18A0.3091 (10)0.6620 (7)0.0303 (5)0.029 (2)
H18A0.30040.66990.02300.035*
C19A0.1826 (10)0.6327 (7)0.0560 (5)0.028 (2)
H19A0.08830.61960.02000.034*
C20A0.1964 (9)0.6228 (6)0.1357 (5)0.024 (2)
H20A0.11120.60510.15450.029*
C1B0.1288 (9)0.1010 (6)0.0792 (5)0.0227 (19)
C2B0.0234 (9)0.0381 (6)0.1836 (5)0.0220 (19)
C3B0.1129 (9)0.1624 (7)0.1170 (5)0.026 (2)
C4B0.0294 (8)0.2123 (6)0.2923 (5)0.0189 (18)
C5B0.4600 (9)0.2567 (6)0.1133 (5)0.0206 (19)
C6B0.6923 (10)0.3255 (7)0.2651 (5)0.027 (2)
C7B0.5788 (9)0.4447 (7)0.2070 (5)0.023 (2)
C8B0.5214 (9)0.4138 (7)0.3521 (5)0.027 (2)
C9B0.3979 (8)0.0687 (6)0.2002 (5)0.0172 (17)
C10B0.5088 (10)0.0756 (7)0.1601 (5)0.028 (2)
H10B0.56670.13340.16210.034*
C11B0.5364 (11)0.0016 (8)0.1168 (6)0.037 (2)
H11B0.61350.00350.08970.044*
C12B0.4503 (12)0.0871 (7)0.1132 (6)0.036 (2)
H12B0.46910.14010.08400.044*
C13B0.3373 (11)0.0936 (7)0.1526 (6)0.032 (2)
H13B0.27550.15150.14810.039*
C14B0.3140 (10)0.0152 (6)0.1991 (5)0.026 (2)
H14B0.24150.01930.22950.031*
C15B0.1889 (8)0.3331 (6)0.0598 (5)0.0185 (18)
C16B0.2680 (10)0.4114 (7)0.0489 (5)0.028 (2)
H16B0.32480.46380.09690.033*
C17B0.2642 (10)0.4132 (7)0.0335 (5)0.028 (2)
H17B0.31950.46680.04050.034*
C18B0.1808 (9)0.3378 (7)0.1040 (5)0.027 (2)
H18B0.17890.33940.15930.033*
C19B0.0998 (10)0.2595 (7)0.0936 (6)0.031 (2)
H19B0.04300.20730.14190.037*
C20B0.1017 (9)0.2572 (7)0.0113 (5)0.024 (2)
H20B0.04380.20430.00440.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te1A0.0149 (2)0.0184 (3)0.0158 (2)0.0060 (2)0.00256 (19)0.0063 (2)
Te2A0.0150 (3)0.0155 (3)0.0173 (2)0.0057 (2)0.00262 (19)0.0038 (2)
Te1B0.0183 (3)0.0135 (3)0.0139 (2)0.0054 (2)0.00404 (19)0.0049 (2)
Te2B0.0156 (3)0.0146 (3)0.0191 (2)0.0052 (2)0.0038 (2)0.0056 (2)
Re1A0.01346 (16)0.0165 (2)0.01774 (15)0.00313 (14)0.00234 (12)0.00503 (13)
Re2A0.01336 (16)0.01502 (19)0.01671 (15)0.00443 (14)0.00232 (12)0.00443 (13)
Re1B0.01496 (16)0.0154 (2)0.01675 (15)0.00200 (14)0.00352 (12)0.00532 (13)
Re2B0.01394 (16)0.0144 (2)0.01666 (15)0.00354 (14)0.00324 (12)0.00625 (13)
O1A0.062 (5)0.044 (6)0.068 (5)0.011 (5)0.003 (4)0.037 (5)
O2A0.029 (4)0.039 (5)0.024 (3)0.003 (3)0.003 (3)0.004 (3)
O3A0.025 (4)0.048 (5)0.041 (4)0.004 (3)0.018 (3)0.009 (3)
O4A0.035 (4)0.025 (4)0.030 (3)0.012 (3)0.002 (3)0.010 (3)
O5A0.031 (3)0.031 (4)0.029 (3)0.019 (3)0.003 (3)0.014 (3)
O6A0.027 (3)0.043 (5)0.031 (3)0.010 (3)0.013 (3)0.007 (3)
O7A0.033 (4)0.028 (5)0.037 (4)0.003 (3)0.007 (3)0.007 (3)
O8A0.038 (4)0.040 (5)0.061 (4)0.019 (4)0.005 (3)0.032 (4)
O1B0.031 (3)0.033 (4)0.021 (3)0.004 (3)0.009 (3)0.000 (3)
O2B0.053 (4)0.020 (4)0.043 (4)0.001 (4)0.015 (3)0.014 (3)
O3B0.029 (4)0.067 (6)0.044 (4)0.010 (4)0.008 (3)0.030 (4)
O4B0.037 (4)0.035 (4)0.027 (3)0.018 (3)0.016 (3)0.011 (3)
O5B0.040 (4)0.035 (4)0.022 (3)0.011 (3)0.014 (3)0.005 (3)
O6B0.024 (4)0.067 (6)0.075 (5)0.024 (4)0.010 (4)0.039 (5)
O7B0.029 (4)0.033 (5)0.051 (4)0.009 (3)0.015 (3)0.028 (4)
O8B0.063 (5)0.031 (5)0.025 (4)0.008 (4)0.014 (3)0.003 (3)
C1A0.030 (5)0.036 (7)0.030 (5)0.010 (5)0.003 (4)0.012 (5)
C2A0.020 (4)0.026 (6)0.035 (5)0.013 (4)0.012 (4)0.014 (4)
C3A0.023 (5)0.026 (6)0.020 (4)0.005 (4)0.010 (3)0.005 (4)
C4A0.009 (4)0.027 (6)0.015 (4)0.003 (4)0.001 (3)0.002 (4)
C5A0.016 (4)0.019 (5)0.020 (4)0.005 (4)0.007 (3)0.001 (4)
C6A0.016 (4)0.031 (6)0.016 (4)0.003 (4)0.001 (3)0.005 (4)
C7A0.019 (4)0.045 (7)0.029 (5)0.014 (5)0.013 (4)0.018 (5)
C8A0.024 (5)0.023 (6)0.031 (5)0.004 (4)0.011 (4)0.010 (4)
C9A0.014 (4)0.017 (5)0.023 (4)0.006 (4)0.008 (3)0.011 (4)
C10A0.028 (5)0.029 (6)0.021 (4)0.013 (4)0.006 (4)0.010 (4)
C11A0.025 (5)0.019 (5)0.035 (5)0.007 (4)0.007 (4)0.012 (4)
C12A0.041 (5)0.024 (6)0.033 (5)0.018 (5)0.017 (4)0.010 (4)
C13A0.031 (5)0.024 (6)0.030 (5)0.006 (5)0.002 (4)0.001 (4)
C14A0.023 (5)0.029 (6)0.028 (4)0.008 (4)0.002 (4)0.004 (4)
C15A0.024 (4)0.009 (5)0.018 (4)0.007 (4)0.005 (3)0.001 (3)
C16A0.020 (4)0.033 (6)0.030 (4)0.007 (4)0.003 (4)0.018 (4)
C17A0.032 (5)0.027 (6)0.026 (4)0.008 (5)0.012 (4)0.013 (4)
C18A0.043 (6)0.032 (6)0.017 (4)0.017 (5)0.009 (4)0.010 (4)
C19A0.027 (5)0.028 (6)0.024 (4)0.008 (4)0.000 (4)0.007 (4)
C20A0.027 (5)0.028 (6)0.018 (4)0.014 (4)0.007 (3)0.004 (4)
C1B0.021 (4)0.022 (5)0.016 (4)0.002 (4)0.002 (3)0.005 (4)
C2B0.020 (4)0.014 (5)0.028 (4)0.002 (4)0.011 (4)0.003 (4)
C3B0.018 (4)0.032 (6)0.030 (4)0.004 (4)0.001 (4)0.019 (4)
C4B0.012 (4)0.016 (5)0.027 (4)0.001 (4)0.001 (3)0.013 (4)
C5B0.018 (4)0.024 (5)0.028 (5)0.011 (4)0.011 (3)0.013 (4)
C6B0.024 (5)0.029 (6)0.034 (5)0.010 (4)0.009 (4)0.018 (4)
C7B0.020 (4)0.029 (6)0.028 (4)0.014 (4)0.005 (4)0.014 (4)
C8B0.026 (5)0.026 (6)0.024 (5)0.002 (4)0.004 (4)0.008 (4)
C9B0.020 (4)0.018 (5)0.017 (4)0.009 (4)0.004 (3)0.009 (3)
C10B0.039 (5)0.025 (6)0.032 (5)0.019 (5)0.015 (4)0.015 (4)
C11B0.049 (6)0.041 (7)0.034 (5)0.025 (6)0.025 (5)0.014 (5)
C12B0.056 (7)0.028 (6)0.037 (5)0.027 (6)0.023 (5)0.011 (5)
C13B0.038 (5)0.018 (6)0.039 (5)0.008 (5)0.012 (4)0.008 (4)
C14B0.031 (5)0.021 (6)0.031 (5)0.012 (4)0.016 (4)0.011 (4)
C15B0.017 (4)0.021 (5)0.019 (4)0.009 (4)0.003 (3)0.006 (3)
C16B0.031 (5)0.024 (6)0.027 (4)0.007 (4)0.004 (4)0.012 (4)
C17B0.029 (5)0.026 (6)0.034 (5)0.006 (5)0.011 (4)0.018 (4)
C18B0.028 (5)0.038 (6)0.023 (4)0.014 (5)0.007 (4)0.016 (4)
C19B0.032 (5)0.030 (6)0.031 (5)0.014 (5)0.004 (4)0.010 (4)
C20B0.017 (4)0.025 (6)0.025 (4)0.002 (4)0.001 (3)0.011 (4)
Geometric parameters (Å, º) top
Te1A—C9A2.150 (8)C9A—C14A1.386 (12)
Te1A—Re1A2.8115 (7)C9A—C10A1.398 (11)
Te1A—Re2A2.8269 (7)C10A—C11A1.395 (12)
Te2A—C15A2.169 (8)C10A—H10A0.9500
Te2A—Re2A2.8031 (8)C11A—C12A1.363 (13)
Te2A—Re1A2.8131 (7)C11A—H11A0.9500
Te1B—C9B2.158 (8)C12A—C13A1.403 (13)
Te1B—Re2B2.8215 (7)C12A—H12A0.9500
Te1B—Re1B2.8217 (7)C13A—C14A1.390 (13)
Te2B—C15B2.143 (7)C13A—H13A0.9500
Te2B—Re1B2.8030 (7)C14A—H14A0.9500
Te2B—Re2B2.8237 (7)C15A—C20A1.387 (11)
Re1A—C2A1.955 (9)C15A—C16A1.388 (12)
Re1A—C3A1.962 (8)C16A—C17A1.416 (11)
Re1A—C4A2.001 (9)C16A—H16A0.9500
Re1A—C1A2.020 (10)C17A—C18A1.377 (13)
Re2A—C7A1.935 (10)C17A—H17A0.9500
Re2A—C6A1.937 (8)C18A—C19A1.396 (13)
Re2A—C8A2.019 (9)C18A—H18A0.9500
Re2A—C5A2.026 (9)C19A—C20A1.405 (11)
Re1B—C3B1.947 (8)C19A—H19A0.9500
Re1B—C2B1.954 (9)C20A—H20A0.9500
Re1B—C1B2.000 (8)C9B—C10B1.378 (11)
Re1B—C4B2.001 (8)C9B—C14B1.390 (12)
Re2B—C6B1.957 (9)C10B—C11B1.390 (13)
Re2B—C7B1.963 (9)C10B—H10B0.9500
Re2B—C5B1.994 (8)C11B—C12B1.402 (15)
Re2B—C8B2.004 (9)C11B—H11B0.9500
O1A—C1A1.148 (12)C12B—C13B1.390 (13)
O2A—C2A1.138 (11)C12B—H12B0.9500
O3A—C3A1.129 (10)C13B—C14B1.401 (13)
O4A—C4A1.157 (11)C13B—H13B0.9500
O5A—C5A1.138 (10)C14B—H14B0.9500
O6A—C6A1.174 (10)C15B—C16B1.389 (12)
O7A—C7A1.164 (12)C15B—C20B1.400 (12)
O8A—C8A1.146 (11)C16B—C17B1.411 (11)
O1B—C1B1.152 (10)C16B—H16B0.9500
O2B—C2B1.147 (11)C17B—C18B1.383 (13)
O3B—C3B1.162 (10)C17B—H17B0.9500
O4B—C4B1.155 (9)C18B—C19B1.390 (13)
O5B—C5B1.139 (10)C18B—H18B0.9500
O6B—C6B1.151 (10)C19B—C20B1.415 (12)
O7B—C7B1.147 (11)C19B—H19B0.9500
O8B—C8B1.134 (11)C20B—H20B0.9500
C9A—Te1A—Re1A108.5 (2)C14A—C9A—C10A119.4 (8)
C9A—Te1A—Re2A108.5 (2)C14A—C9A—Te1A117.5 (6)
Re1A—Te1A—Re2A96.25 (2)C10A—C9A—Te1A122.9 (6)
C15A—Te2A—Re2A105.6 (2)C11A—C10A—C9A119.4 (8)
C15A—Te2A—Re1A105.0 (2)C11A—C10A—H10A120.3
Re2A—Te2A—Re1A96.76 (2)C9A—C10A—H10A120.3
C9B—Te1B—Re2B107.9 (2)C12A—C11A—C10A122.1 (8)
C9B—Te1B—Re1B102.1 (2)C12A—C11A—H11A119.0
Re2B—Te1B—Re1B95.74 (2)C10A—C11A—H11A119.0
C15B—Te2B—Re1B108.3 (2)C11A—C12A—C13A118.1 (8)
C15B—Te2B—Re2B100.4 (2)C11A—C12A—H12A120.9
Re1B—Te2B—Re2B96.11 (2)C13A—C12A—H12A120.9
C2A—Re1A—C3A90.7 (3)C14A—C13A—C12A121.1 (9)
C2A—Re1A—C4A92.9 (3)C14A—C13A—H13A119.4
C3A—Re1A—C4A89.8 (3)C12A—C13A—H13A119.4
C2A—Re1A—C1A91.8 (4)C9A—C14A—C13A119.8 (8)
C3A—Re1A—C1A91.4 (4)C9A—C14A—H14A120.1
C4A—Re1A—C1A175.2 (4)C13A—C14A—H14A120.1
C2A—Re1A—Te1A171.3 (2)C20A—C15A—C16A120.0 (7)
C3A—Re1A—Te1A97.4 (2)C20A—C15A—Te2A122.3 (6)
C4A—Re1A—Te1A90.4 (2)C16A—C15A—Te2A117.4 (6)
C1A—Re1A—Te1A84.8 (3)C15A—C16A—C17A120.0 (8)
C2A—Re1A—Te2A91.8 (2)C15A—C16A—H16A120.0
C3A—Re1A—Te2A177.5 (3)C17A—C16A—H16A120.0
C4A—Re1A—Te2A89.3 (2)C18A—C17A—C16A119.5 (8)
C1A—Re1A—Te2A89.2 (3)C18A—C17A—H17A120.2
Te1A—Re1A—Te2A80.23 (2)C16A—C17A—H17A120.2
C7A—Re2A—C6A93.9 (4)C17A—C18A—C19A120.8 (8)
C7A—Re2A—C8A89.2 (4)C17A—C18A—H18A119.6
C6A—Re2A—C8A92.4 (3)C19A—C18A—H18A119.6
C7A—Re2A—C5A90.1 (4)C18A—C19A—C20A119.3 (8)
C6A—Re2A—C5A90.6 (3)C18A—C19A—H19A120.4
C8A—Re2A—C5A176.9 (3)C20A—C19A—H19A120.4
C7A—Re2A—Te2A175.6 (2)C15A—C20A—C19A120.3 (8)
C6A—Re2A—Te2A90.5 (3)C15A—C20A—H20A119.8
C8A—Re2A—Te2A90.0 (3)C19A—C20A—H20A119.8
C5A—Re2A—Te2A90.5 (2)O1B—C1B—Re1B175.4 (8)
C7A—Re2A—Te1A95.6 (2)O2B—C2B—Re1B179.2 (8)
C6A—Re2A—Te1A169.6 (3)O3B—C3B—Re1B177.5 (9)
C8A—Re2A—Te1A92.0 (2)O4B—C4B—Re1B178.7 (7)
C5A—Re2A—Te1A85.1 (2)O5B—C5B—Re2B178.6 (7)
Te2A—Re2A—Te1A80.14 (2)O6B—C6B—Re2B177.4 (8)
C3B—Re1B—C2B93.9 (4)O7B—C7B—Re2B178.1 (7)
C3B—Re1B—C1B95.1 (3)O8B—C8B—Re2B177.0 (9)
C2B—Re1B—C1B88.5 (3)C10B—C9B—C14B120.5 (8)
C3B—Re1B—C4B92.5 (3)C10B—C9B—Te1B123.1 (7)
C2B—Re1B—C4B89.0 (3)C14B—C9B—Te1B116.3 (5)
C1B—Re1B—C4B172.1 (3)C9B—C10B—C11B120.3 (9)
C3B—Re1B—Te2B88.0 (3)C9B—C10B—H10B119.8
C2B—Re1B—Te2B176.9 (2)C11B—C10B—H10B119.8
C1B—Re1B—Te2B93.7 (3)C10B—C11B—C12B120.0 (9)
C4B—Re1B—Te2B88.5 (2)C10B—C11B—H11B120.0
C3B—Re1B—Te1B169.9 (3)C12B—C11B—H11B120.0
C2B—Re1B—Te1B96.2 (2)C13B—C12B—C11B119.3 (9)
C1B—Re1B—Te1B85.5 (2)C13B—C12B—H12B120.3
C4B—Re1B—Te1B87.3 (2)C11B—C12B—H12B120.3
Te2B—Re1B—Te1B81.86 (2)C12B—C13B—C14B120.4 (9)
C6B—Re2B—C7B91.7 (4)C12B—C13B—H13B119.8
C6B—Re2B—C5B92.2 (3)C14B—C13B—H13B119.8
C7B—Re2B—C5B91.1 (4)C9B—C14B—C13B119.4 (8)
C6B—Re2B—C8B91.4 (4)C9B—C14B—H14B120.3
C7B—Re2B—C8B89.3 (4)C13B—C14B—H14B120.3
C5B—Re2B—C8B176.3 (3)C16B—C15B—C20B119.5 (7)
C6B—Re2B—Te1B94.2 (3)C16B—C15B—Te2B117.4 (6)
C7B—Re2B—Te1B173.5 (2)C20B—C15B—Te2B123.1 (6)
C5B—Re2B—Te1B91.3 (2)C15B—C16B—C17B120.1 (9)
C8B—Re2B—Te1B87.9 (3)C15B—C16B—H16B119.9
C6B—Re2B—Te2B175.5 (3)C17B—C16B—H16B119.9
C7B—Re2B—Te2B92.6 (2)C18B—C17B—C16B120.7 (9)
C5B—Re2B—Te2B86.6 (2)C18B—C17B—H17B119.7
C8B—Re2B—Te2B89.7 (3)C16B—C17B—H17B119.7
Te1B—Re2B—Te2B81.502 (19)C17B—C18B—C19B119.6 (8)
O1A—C1A—Re1A178.4 (9)C17B—C18B—H18B120.2
O2A—C2A—Re1A177.7 (8)C19B—C18B—H18B120.2
O3A—C3A—Re1A176.9 (8)C18B—C19B—C20B120.2 (9)
O4A—C4A—Re1A176.2 (7)C18B—C19B—H19B119.9
O5A—C5A—Re2A178.4 (7)C20B—C19B—H19B119.9
O6A—C6A—Re2A178.0 (9)C15B—C20B—C19B119.9 (9)
O7A—C7A—Re2A178.1 (8)C15B—C20B—H20B120.0
O8A—C8A—Re2A176.8 (9)C19B—C20B—H20B120.0
C9A—Te1A—Re1A—C2A154.5 (18)Te1A—Re2A—C5A—O5A51 (28)
Re2A—Te1A—Re1A—C2A42.6 (17)C7A—Re2A—C6A—O6A152 (20)
C9A—Te1A—Re1A—C3A48.0 (3)C8A—Re2A—C6A—O6A119 (20)
Re2A—Te1A—Re1A—C3A159.9 (3)C5A—Re2A—C6A—O6A61 (20)
C9A—Te1A—Re1A—C4A41.9 (3)Te2A—Re2A—C6A—O6A29 (20)
Re2A—Te1A—Re1A—C4A70.0 (2)Te1A—Re2A—C6A—O6A4 (21)
C9A—Te1A—Re1A—C1A138.7 (3)C6A—Re2A—C7A—O7A18 (25)
Re2A—Te1A—Re1A—C1A109.4 (3)C8A—Re2A—C7A—O7A74 (25)
C9A—Te1A—Re1A—Te2A131.2 (2)C5A—Re2A—C7A—O7A109 (25)
Re2A—Te1A—Re1A—Te2A19.292 (18)Te2A—Re2A—C7A—O7A154 (22)
C15A—Te2A—Re1A—C2A55.8 (3)Te1A—Re2A—C7A—O7A166 (25)
Re2A—Te2A—Re1A—C2A164.0 (3)C7A—Re2A—C8A—O8A13 (14)
C15A—Te2A—Re1A—C3A108 (6)C6A—Re2A—C8A—O8A81 (14)
Re2A—Te2A—Re1A—C3A0 (6)C5A—Re2A—C8A—O8A88 (15)
C15A—Te2A—Re1A—C4A37.1 (3)Te2A—Re2A—C8A—O8A171 (14)
Re2A—Te2A—Re1A—C4A71.1 (2)Te1A—Re2A—C8A—O8A108 (14)
C15A—Te2A—Re1A—C1A147.5 (4)Re1A—Te1A—C9A—C14A176.9 (6)
Re2A—Te2A—Re1A—C1A104.3 (3)Re2A—Te1A—C9A—C14A73.5 (6)
C15A—Te2A—Re1A—Te1A127.6 (2)Re1A—Te1A—C9A—C10A8.9 (7)
Re2A—Te2A—Re1A—Te1A19.483 (18)Re2A—Te1A—C9A—C10A112.3 (6)
C15A—Te2A—Re2A—C7A114 (4)C14A—C9A—C10A—C11A2.5 (13)
Re1A—Te2A—Re2A—C7A6 (4)Te1A—C9A—C10A—C11A171.6 (6)
C15A—Te2A—Re2A—C6A57.4 (3)C9A—C10A—C11A—C12A1.1 (14)
Re1A—Te2A—Re2A—C6A165.1 (3)C10A—C11A—C12A—C13A1.2 (14)
C15A—Te2A—Re2A—C8A35.0 (3)C11A—C12A—C13A—C14A2.2 (14)
Re1A—Te2A—Re2A—C8A72.6 (2)C10A—C9A—C14A—C13A1.6 (13)
C15A—Te2A—Re2A—C5A148.0 (3)Te1A—C9A—C14A—C13A172.8 (7)
Re1A—Te2A—Re2A—C5A104.3 (2)C12A—C13A—C14A—C9A0.8 (14)
C15A—Te2A—Re2A—Te1A127.1 (2)Re2A—Te2A—C15A—C20A121.9 (7)
Re1A—Te2A—Re2A—Te1A19.378 (17)Re1A—Te2A—C15A—C20A20.3 (7)
C9A—Te1A—Re2A—C7A47.8 (3)Re2A—Te2A—C15A—C16A64.0 (7)
Re1A—Te1A—Re2A—C7A159.6 (3)Re1A—Te2A—C15A—C16A165.7 (6)
C9A—Te1A—Re2A—C6A156.6 (13)C20A—C15A—C16A—C17A0.0 (14)
Re1A—Te1A—Re2A—C6A44.8 (13)Te2A—C15A—C16A—C17A174.2 (7)
C9A—Te1A—Re2A—C8A41.6 (3)C15A—C16A—C17A—C18A1.1 (14)
Re1A—Te1A—Re2A—C8A70.3 (3)C16A—C17A—C18A—C19A0.5 (15)
C9A—Te1A—Re2A—C5A137.4 (3)C17A—C18A—C19A—C20A1.2 (15)
Re1A—Te1A—Re2A—C5A110.8 (2)C16A—C15A—C20A—C19A1.8 (13)
C9A—Te1A—Re2A—Te2A131.2 (2)Te2A—C15A—C20A—C19A172.2 (7)
Re1A—Te1A—Re2A—Te2A19.370 (18)C18A—C19A—C20A—C15A2.4 (14)
C15B—Te2B—Re1B—C3B60.3 (3)C3B—Re1B—C1B—O1B123 (9)
Re2B—Te2B—Re1B—C3B163.4 (3)C2B—Re1B—C1B—O1B29 (9)
C15B—Te2B—Re1B—C2B171 (4)C4B—Re1B—C1B—O1B43 (10)
Re2B—Te2B—Re1B—C2B68 (4)Te2B—Re1B—C1B—O1B149 (9)
C15B—Te2B—Re1B—C1B34.7 (3)Te1B—Re1B—C1B—O1B67 (9)
Re2B—Te2B—Re1B—C1B68.4 (2)C3B—Re1B—C2B—O2B3 (60)
C15B—Te2B—Re1B—C4B152.9 (3)C1B—Re1B—C2B—O2B98 (60)
Re2B—Te2B—Re1B—C4B104.0 (2)C4B—Re1B—C2B—O2B89 (60)
C15B—Te2B—Re1B—Te1B119.6 (2)Te2B—Re1B—C2B—O2B125 (57)
Re2B—Te2B—Re1B—Te1B16.538 (16)Te1B—Re1B—C2B—O2B176 (100)
C9B—Te1B—Re1B—C3B125.8 (15)C2B—Re1B—C3B—O3B158 (17)
Re2B—Te1B—Re1B—C3B16.1 (15)C1B—Re1B—C3B—O3B113 (17)
C9B—Te1B—Re1B—C2B56.1 (3)C4B—Re1B—C3B—O3B69 (17)
Re2B—Te1B—Re1B—C2B165.9 (2)Te2B—Re1B—C3B—O3B20 (17)
C9B—Te1B—Re1B—C1B31.9 (3)Te1B—Re1B—C3B—O3B20 (18)
Re2B—Te1B—Re1B—C1B77.9 (3)C3B—Re1B—C4B—O4B123 (32)
C9B—Te1B—Re1B—C4B144.8 (3)C2B—Re1B—C4B—O4B29 (32)
Re2B—Te1B—Re1B—C4B105.4 (2)C1B—Re1B—C4B—O4B42 (33)
C9B—Te1B—Re1B—Te2B126.3 (2)Te2B—Re1B—C4B—O4B149 (32)
Re2B—Te1B—Re1B—Te2B16.540 (17)Te1B—Re1B—C4B—O4B67 (32)
C9B—Te1B—Re2B—C6B57.6 (3)C6B—Re2B—C5B—O5B173 (100)
Re1B—Te1B—Re2B—C6B162.3 (3)C7B—Re2B—C5B—O5B95 (32)
C9B—Te1B—Re2B—C7B147 (2)C8B—Re2B—C5B—O5B2 (36)
Re1B—Te1B—Re2B—C7B42 (2)Te1B—Re2B—C5B—O5B79 (32)
C9B—Te1B—Re2B—C5B34.7 (3)Te2B—Re2B—C5B—O5B2 (32)
Re1B—Te1B—Re2B—C5B70.0 (2)C7B—Re2B—C6B—O6B8 (20)
C9B—Te1B—Re2B—C8B148.9 (3)C5B—Re2B—C6B—O6B84 (20)
Re1B—Te1B—Re2B—C8B106.4 (3)C8B—Re2B—C6B—O6B97 (20)
C9B—Te1B—Re2B—Te2B121.1 (2)Te1B—Re2B—C6B—O6B175 (100)
Re1B—Te1B—Re2B—Te2B16.430 (17)Te2B—Re2B—C6B—O6B159 (18)
C15B—Te2B—Re2B—C6B110 (3)C6B—Re2B—C7B—O7B22 (25)
Re1B—Te2B—Re2B—C6B0 (3)C5B—Re2B—C7B—O7B71 (25)
C15B—Te2B—Re2B—C7B56.3 (4)C8B—Re2B—C7B—O7B113 (25)
Re1B—Te2B—Re2B—C7B166.2 (3)Te1B—Re2B—C7B—O7B177 (100)
C15B—Te2B—Re2B—C5B34.6 (3)Te2B—Re2B—C7B—O7B157 (25)
Re1B—Te2B—Re2B—C5B75.3 (2)C6B—Re2B—C8B—O8B95 (16)
C15B—Te2B—Re2B—C8B145.7 (4)C7B—Re2B—C8B—O8B4 (16)
Re1B—Te2B—Re2B—C8B104.4 (3)C5B—Re2B—C8B—O8B93 (16)
C15B—Te2B—Re2B—Te1B126.4 (2)Te1B—Re2B—C8B—O8B170 (16)
Re1B—Te2B—Re2B—Te1B16.555 (16)Te2B—Re2B—C8B—O8B89 (16)
C2A—Re1A—C1A—O1A74 (36)Re2B—Te1B—C9B—C10B16.1 (7)
C3A—Re1A—C1A—O1A165 (36)Re1B—Te1B—C9B—C10B116.3 (6)
C4A—Re1A—C1A—O1A90 (36)Re2B—Te1B—C9B—C14B168.0 (5)
Te1A—Re1A—C1A—O1A98 (36)Re1B—Te1B—C9B—C14B67.8 (6)
Te2A—Re1A—C1A—O1A17 (36)C14B—C9B—C10B—C11B1.1 (13)
C3A—Re1A—C2A—O2A23 (21)Te1B—C9B—C10B—C11B176.9 (7)
C4A—Re1A—C2A—O2A112 (21)C9B—C10B—C11B—C12B0.6 (14)
C1A—Re1A—C2A—O2A69 (21)C10B—C11B—C12B—C13B0.4 (14)
Te1A—Re1A—C2A—O2A135 (20)C11B—C12B—C13B—C14B3.1 (14)
Te2A—Re1A—C2A—O2A158 (21)C10B—C9B—C14B—C13B3.7 (12)
C2A—Re1A—C3A—O3A4 (17)Te1B—C9B—C14B—C13B179.7 (6)
C4A—Re1A—C3A—O3A89 (17)C12B—C13B—C14B—C9B4.7 (13)
C1A—Re1A—C3A—O3A96 (17)Re1B—Te2B—C15B—C16B171.2 (6)
Te1A—Re1A—C3A—O3A179 (100)Re2B—Te2B—C15B—C16B71.2 (6)
Te2A—Re1A—C3A—O3A160 (12)Re1B—Te2B—C15B—C20B9.0 (7)
C2A—Re1A—C4A—O4A123 (11)Re2B—Te2B—C15B—C20B109.1 (6)
C3A—Re1A—C4A—O4A33 (11)C20B—C15B—C16B—C17B2.1 (12)
C1A—Re1A—C4A—O4A72 (12)Te2B—C15B—C16B—C17B178.1 (6)
Te1A—Re1A—C4A—O4A65 (11)C15B—C16B—C17B—C18B0.7 (13)
Te2A—Re1A—C4A—O4A145 (11)C16B—C17B—C18B—C19B0.1 (13)
C7A—Re2A—C5A—O5A45 (28)C17B—C18B—C19B—C20B0.5 (13)
C6A—Re2A—C5A—O5A139 (28)C16B—C15B—C20B—C19B2.8 (12)
C8A—Re2A—C5A—O5A31 (32)Te2B—C15B—C20B—C19B177.5 (6)
Te2A—Re2A—C5A—O5A131 (28)C18B—C19B—C20B—C15B2.0 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16A—H16A···O6A0.952.743.592 (11)149
C20A—H20A···O2A0.952.873.678 (12)143
C12B—H12B···O5Bi0.952.633.433 (11)143
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Re2(C6H5Te)2(CO)8]
Mr2011.76
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)9.8062 (13), 16.3418 (15), 17.1000 (14)
α, β, γ (°)106.593 (7), 99.932 (9), 105.572 (10)
V3)2435.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)12.32
Crystal size (mm)0.32 × 0.28 × 0.22
Data collection
DiffractometerOxford Diffraction Xcalibur-S
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.110, 0.173
No. of measured, independent and
observed [I > 2σ(I)] reflections
20451, 8557, 7388
Rint0.038
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.079, 1.06
No. of reflections8557
No. of parameters577
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.27, 2.55

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16A—H16A···O6A0.952.743.592 (11)148.8
C20A—H20A···O2A0.952.873.678 (12)143.1
C12B—H12B···O5Bi0.952.633.433 (11)143.2
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors acknowledge the Centre of Excellence in Bioinformatics, Pondicherry University, for providing the computational facilities to carry out this work.

References

First citationAtwood, J. L., Bernal, J., Calderazzo, F., Canada, L. G., Poli, R., Rogers, R. D., Veracini, C. A. & Vitali, D. (1983). Inorg. Chem. 22, 1797–1804.  CSD CrossRef Web of Science Google Scholar
First citationBegum, N., Hyder, M. I., Hassan, M. R., Kabir, S. E., Bennett, D. W., Haworth, D. T., Siddiquee, T. A., Rokhsana, D., Sharmin, A. & Rosenberg, E. (2008). Organometallics, 27, 1550–1560.  Web of Science CSD CrossRef CAS Google Scholar
First citationCecconi, F., Ghilardi, C. A., Midollini, S. & Orlandini, A. (1998). Inorg. Chem. Commun. 1, 150–151.  Web of Science CSD CrossRef CAS Google Scholar
First citationCerecetto, H., Di Maio, R., Gonzalez, M. & Seoane, G. (1997). Heterocycles, 45, 2023–2031.  CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationCunha, R. L., Gouvea, I. E. & Juliano, L. (2009). Ann. Acad. Bras. Cienc. 81, 393–407.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKopf-Maier, P. & Klapötke, T. (1992). Cancer Chemother. Pharmacol. 29, 361–366.  CrossRef PubMed CAS Web of Science Google Scholar
First citationLima, C. B. C., Arrais-Silva, W. W., Cunha, R. L. O. R. & Giorgio, S. (2009). Korean J. Parasitol. 47, 213–218.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRitch, S. R. & Chivers, T. (2009). Inorg. Chem. 48, 3857–3865.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J. & Leong, W. K. (2000). J. Chem. Soc. Dalton Trans. pp. 1249–1253.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds