metal-organic compounds
Bis(μ-phenyltellurido-κ2Te:Te)bis[tetracarbonylrhenium(I)]
aCentre for Bioinformatics, Pondicherry University, Puducherry 605 014, India, and bDepartment of Chemistry, Pondicherry University, Puducherry 605 014, India
*Correspondence e-mail: krishstrucbio@gmail.com
The title compound, [Re2(C6H5Te)2(CO)8], crystallizes with two molecules in the in which two Re atoms are coordinated in a slightly distorted octahedral environment and are bridged by two Te atoms, which show a distorted trigonal-pyramidal geometry. The torsion angles for the Te—Re—Te—Re sequence of atoms are 19.29 (18) and 16.54 (16)° in the two molecules. Thus, the Re—Te four-membered rings in the two molecules deviate significantly from planarity. Two intramolecular C—H⋯O interactions occur in one of the molecules. Te—Te [4.0551 (10) Å] interactions between the two molecules and weak intermolecular C—H⋯O interactions stabilize the crystal packing.
Related literature
For the biological importances of Re and Te compounds, see: Begum et al. (2008); Atwood et al. (1983); Zhang & Leong (2000); Lima et al. (2009); Cunha et al. (2009); Kopf-Maier & Klapötke (1992); Cerecetto et al. (1997). For a related structure, see: Cecconi et al. (1998). For a structure with weak Te⋯Te contacts, see: Ritch & Chivers (2009). For puckering analysis, see: Cremer & Pople (1975)
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810014297/sj2772sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810014297/sj2772Isup2.hkl
A mixture of Re2(CO)10 (130 mg, 0.2 mmol) and diphenyl ditelluride (41 mg, 0.1 mmol), 4-phenylpyridine (93 mg, 0.6 mmol) were taken in a 50 ml two neck Schlenk flask and fitted with a reflux condenser. The system was evacuated and purged with N2. Freshly distilled mesitylene (30 ml) was added under N2 atmosphere. The reaction mixture was heated to 403 K under N2 for 6 h and allowed to cool to room temperature. The mesitylene was removed by vacuum distillation and the solid mixture was washed with hexane, chromatographed on silica gel using dichloromethane and hexane (1:9) as
to obtain the yellow color solid of without phenylpyridine substituted compound [(CO)4Re(µ-TeC6H5)2Re(CO)4]. Single crystal of the title compound was obtained by slow diffusion of hexane into a concentrated solution of the title compound in dichloromethane at 278 K.The hydrogen atoms were placed in calculated positions (C—H = 0.95 Å) and included in the
in riding-model approximation with Uĩso(H) = 1.2Ueq(C).The biological activities of rhenium and tellurium compounds have been studied and revealed interesting and promising applications (Begum et al., 2008; Atwood et al., 1983; Zhang & Leong, 2000). Rhenium derivatives have a wide range of biological applications such as antitumor, cytostatic (Kopf-Maier & Klapotke, 1992) and antitrypanosomal activity (Cerecetto et al., 1997). Organo tellurium compounds are the inhibitors of human cathepsin B, which is a highly predictive indicator for prognosis and diagnosis of cancer. Some of the tellurium derivatives exhibit antioxidant and immunomodulatory effects (Cunha et al., 2009). Recently, a novel organotellurium compound-RT01 was proved to act as antileishmanial agent (Lima et al., 2009). In view of these important features we have chosen the title compound for
analysis.The title compound was crystallized with two independent molecules (A & B) in the
(Fig. 1), which adopted dinuclear metallacyclic structure, where each rhenium Re(CO)4 core is bonded by two phenyl tellurolate groups and hence Re centers attained a distorted octahedral geometry. The r.m.s deviation for four-membered ring with carbonyl atoms of two molecules is 0.016 Å, calculated by Platon - automolfit program (Spek, 2009) and the maximum deviation was observed in phenyl tellurolate groups. The Re—Te bond distances are nearly equal in both the molecules and are similar to those in a related structure (Cecconi et al., 1998). The six atoms (C9A—Te1A—Re2A—Te2A—C15A—Re1A & C15B—Te2B—Re2B—Te1B—C9B—Re1B) generate six-membered rings each with a boat conformation; puckering parameters (Cremer & Pople, 1975) A: q2 = 0.3707(0.0000) Å, q3 = -1.8679 (0.0001) Å, phi2 = 113.59 (0.01)°, QT =1.9043 (0.0001), theta2 = 168.78 (0.00)° and B: q2 = 0.5108(0.0002) Å, q3 = -1.9993(0.0002)Å , phi2 =125.79(0.02)°, QT = 2.0635(0.0003), theta2 = 165.67(0.01)° . The crystal packing (Fig. 2) of the molecule in the is influenced by C—H···O and Te—Te interactions. The two molecules in the are interconnected with each other through Te—Te interaction [4.0551 (10) Å] and illustrated in Fig. 3. This Te···Te separation is similar to that observed previously (Ritch & Chivers, 2009). In their study, weak intermolecular Te···Te contacts were observed in the compound C36H84Cu3N3O3P6Te3 ranging from 3.891 Å to 4.039 Å. However, the Te···Te separation observed here is smaller than that in NaCuTe, 4.38Å, (Seong et al., 1994). Based on these previous studies, the observed Te···Te contact is significant and contributes to the packing. Intermolecular and interatomic O—O bond distances are also observed for O6B—O4B, O5A—O8B, O5A—O4B, O8B—O8B, O5A—O3A, O1B—O5B, O4A—O8A with distances of 2.928 (9) Å, 2.975 (10) Å, 3.025 (9) Å, 3.014 (13) Å,2.951 (9) Å, 2.9710 (89) Å and 2.9387 (87) Å respectively.For the biological importances of Re and Te compounds, see: Begum et al. (2008); Atwood et al. (1983); Zhang & Leong (2000); Lima et al. (2009); Cunha et al. (2009); Kopf-Maier & Klapotke (1992); Cerecetto et al. (1997). For a related structure, see Cecconi et al. (1998). For a structure with weak Te···Te contacts, see: Ritch & Chivers (2009). For puckering analysis, see: Cremer & Pople (1975)
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).[Re2(C6H5Te)2(CO)8] | Z = 2 |
Mr = 2011.76 | F(000) = 1792 |
Triclinic, P1 | Dx = 2.743 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.8062 (13) Å | Cell parameters from 15161 reflections |
b = 16.3418 (15) Å | θ = 2.9–32.6° |
c = 17.1000 (14) Å | µ = 12.32 mm−1 |
α = 106.593 (7)° | T = 150 K |
β = 99.932 (9)° | Block, yellow |
γ = 105.572 (10)° | 0.32 × 0.28 × 0.22 mm |
V = 2435.9 (4) Å3 |
Oxford Diffraction Xcalibur-S diffractometer | 8557 independent reflections |
Radiation source: fine-focus sealed tube | 7388 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
Detector resolution: 15.9948 pixels mm-1 | θmax = 25.0°, θmin = 2.9° |
ω scans | h = −11→11 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | k = −19→19 |
Tmin = 0.110, Tmax = 0.173 | l = −20→20 |
20451 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.079 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0473P)2] where P = (Fo2 + 2Fc2)/3 |
8557 reflections | (Δ/σ)max = 0.001 |
577 parameters | Δρmax = 2.27 e Å−3 |
0 restraints | Δρmin = −2.55 e Å−3 |
[Re2(C6H5Te)2(CO)8] | γ = 105.572 (10)° |
Mr = 2011.76 | V = 2435.9 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.8062 (13) Å | Mo Kα radiation |
b = 16.3418 (15) Å | µ = 12.32 mm−1 |
c = 17.1000 (14) Å | T = 150 K |
α = 106.593 (7)° | 0.32 × 0.28 × 0.22 mm |
β = 99.932 (9)° |
Oxford Diffraction Xcalibur-S diffractometer | 8557 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | 7388 reflections with I > 2σ(I) |
Tmin = 0.110, Tmax = 0.173 | Rint = 0.038 |
20451 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.079 | H-atom parameters constrained |
S = 1.06 | Δρmax = 2.27 e Å−3 |
8557 reflections | Δρmin = −2.55 e Å−3 |
577 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Te1A | 0.29742 (5) | 0.72479 (4) | 0.50093 (3) | 0.01642 (12) | |
Te2A | 0.36142 (5) | 0.60877 (4) | 0.30316 (3) | 0.01644 (12) | |
Te1B | 0.35375 (5) | 0.18505 (4) | 0.27409 (3) | 0.01525 (12) | |
Te2B | 0.20684 (5) | 0.33550 (4) | 0.18717 (3) | 0.01658 (12) | |
Re1A | 0.09628 (3) | 0.60064 (2) | 0.347709 (19) | 0.01676 (9) | |
Re2A | 0.53570 (3) | 0.77358 (2) | 0.431685 (18) | 0.01559 (9) | |
Re1B | 0.06866 (3) | 0.15893 (2) | 0.181187 (18) | 0.01653 (9) | |
Re2B | 0.49743 (3) | 0.33530 (2) | 0.233289 (18) | 0.01520 (9) | |
O1A | 0.1349 (9) | 0.4515 (6) | 0.4255 (5) | 0.058 (2) | |
O2A | −0.0895 (7) | 0.4533 (5) | 0.1750 (4) | 0.0373 (17) | |
O3A | −0.1911 (7) | 0.5972 (5) | 0.3997 (4) | 0.0400 (18) | |
O4A | 0.0784 (7) | 0.7629 (5) | 0.2859 (4) | 0.0307 (15) | |
O5A | 0.6778 (7) | 0.6705 (5) | 0.5350 (4) | 0.0287 (14) | |
O6A | 0.7801 (7) | 0.7870 (5) | 0.3370 (4) | 0.0345 (16) | |
O7A | 0.7103 (7) | 0.9560 (5) | 0.5780 (4) | 0.0401 (17) | |
O8A | 0.3865 (8) | 0.8824 (5) | 0.3393 (5) | 0.0428 (18) | |
O1B | 0.1637 (7) | 0.0630 (5) | 0.0225 (4) | 0.0319 (16) | |
O2B | −0.0790 (8) | −0.0329 (5) | 0.1846 (4) | 0.0408 (17) | |
O3B | −0.2190 (7) | 0.1679 (6) | 0.0799 (4) | 0.046 (2) | |
O4B | 0.0069 (7) | 0.2418 (5) | 0.3568 (4) | 0.0308 (15) | |
O5B | 0.4357 (7) | 0.2119 (5) | 0.0444 (4) | 0.0329 (16) | |
O6B | 0.8091 (7) | 0.3224 (6) | 0.2827 (5) | 0.051 (2) | |
O7B | 0.6296 (7) | 0.5079 (5) | 0.1913 (4) | 0.0344 (16) | |
O8B | 0.5370 (8) | 0.4615 (5) | 0.4184 (4) | 0.048 (2) | |
C1A | 0.1194 (10) | 0.5057 (7) | 0.3980 (6) | 0.033 (2) | |
C2A | −0.0188 (9) | 0.5080 (7) | 0.2378 (6) | 0.025 (2) | |
C3A | −0.0839 (9) | 0.6001 (6) | 0.3829 (5) | 0.024 (2) | |
C4A | 0.0871 (8) | 0.7024 (6) | 0.3063 (5) | 0.0190 (19) | |
C5A | 0.6271 (8) | 0.7069 (6) | 0.4968 (5) | 0.0198 (18) | |
C6A | 0.6887 (9) | 0.7836 (7) | 0.3733 (5) | 0.023 (2) | |
C7A | 0.6431 (9) | 0.8870 (7) | 0.5239 (5) | 0.028 (2) | |
C8A | 0.4374 (9) | 0.8407 (7) | 0.3710 (5) | 0.026 (2) | |
C9A | 0.2264 (8) | 0.8398 (6) | 0.5416 (5) | 0.0168 (17) | |
C10A | 0.0903 (9) | 0.8416 (7) | 0.5024 (5) | 0.025 (2) | |
H10A | 0.0299 | 0.7943 | 0.4513 | 0.030* | |
C11A | 0.0440 (10) | 0.9135 (6) | 0.5392 (5) | 0.026 (2) | |
H11A | −0.0493 | 0.9138 | 0.5128 | 0.031* | |
C12A | 0.1285 (10) | 0.9834 (7) | 0.6117 (6) | 0.030 (2) | |
H12A | 0.0944 | 1.0312 | 0.6364 | 0.036* | |
C13A | 0.2672 (10) | 0.9826 (7) | 0.6488 (6) | 0.032 (2) | |
H13A | 0.3292 | 1.0317 | 0.6982 | 0.038* | |
C14A | 0.3154 (10) | 0.9112 (7) | 0.6144 (5) | 0.029 (2) | |
H14A | 0.4092 | 0.9114 | 0.6406 | 0.035* | |
C15A | 0.3338 (9) | 0.6387 (6) | 0.1869 (5) | 0.0183 (17) | |
C16A | 0.4588 (9) | 0.6670 (7) | 0.1605 (5) | 0.027 (2) | |
H16A | 0.5529 | 0.6779 | 0.1956 | 0.032* | |
C17A | 0.4462 (10) | 0.6795 (7) | 0.0813 (5) | 0.027 (2) | |
H17A | 0.5316 | 0.6999 | 0.0635 | 0.033* | |
C18A | 0.3091 (10) | 0.6620 (7) | 0.0303 (5) | 0.029 (2) | |
H18A | 0.3004 | 0.6699 | −0.0230 | 0.035* | |
C19A | 0.1826 (10) | 0.6327 (7) | 0.0560 (5) | 0.028 (2) | |
H19A | 0.0883 | 0.6196 | 0.0200 | 0.034* | |
C20A | 0.1964 (9) | 0.6228 (6) | 0.1357 (5) | 0.024 (2) | |
H20A | 0.1112 | 0.6051 | 0.1545 | 0.029* | |
C1B | 0.1288 (9) | 0.1010 (6) | 0.0792 (5) | 0.0227 (19) | |
C2B | −0.0234 (9) | 0.0381 (6) | 0.1836 (5) | 0.0220 (19) | |
C3B | −0.1129 (9) | 0.1624 (7) | 0.1170 (5) | 0.026 (2) | |
C4B | 0.0294 (8) | 0.2123 (6) | 0.2923 (5) | 0.0189 (18) | |
C5B | 0.4600 (9) | 0.2567 (6) | 0.1133 (5) | 0.0206 (19) | |
C6B | 0.6923 (10) | 0.3255 (7) | 0.2651 (5) | 0.027 (2) | |
C7B | 0.5788 (9) | 0.4447 (7) | 0.2070 (5) | 0.023 (2) | |
C8B | 0.5214 (9) | 0.4138 (7) | 0.3521 (5) | 0.027 (2) | |
C9B | 0.3979 (8) | 0.0687 (6) | 0.2002 (5) | 0.0172 (17) | |
C10B | 0.5088 (10) | 0.0756 (7) | 0.1601 (5) | 0.028 (2) | |
H10B | 0.5667 | 0.1334 | 0.1621 | 0.034* | |
C11B | 0.5364 (11) | −0.0016 (8) | 0.1168 (6) | 0.037 (2) | |
H11B | 0.6135 | 0.0035 | 0.0897 | 0.044* | |
C12B | 0.4503 (12) | −0.0871 (7) | 0.1132 (6) | 0.036 (2) | |
H12B | 0.4691 | −0.1401 | 0.0840 | 0.044* | |
C13B | 0.3373 (11) | −0.0936 (7) | 0.1526 (6) | 0.032 (2) | |
H13B | 0.2755 | −0.1515 | 0.1481 | 0.039* | |
C14B | 0.3140 (10) | −0.0152 (6) | 0.1991 (5) | 0.026 (2) | |
H14B | 0.2415 | −0.0193 | 0.2295 | 0.031* | |
C15B | 0.1889 (8) | 0.3331 (6) | 0.0598 (5) | 0.0185 (18) | |
C16B | 0.2680 (10) | 0.4114 (7) | 0.0489 (5) | 0.028 (2) | |
H16B | 0.3248 | 0.4638 | 0.0969 | 0.033* | |
C17B | 0.2642 (10) | 0.4132 (7) | −0.0335 (5) | 0.028 (2) | |
H17B | 0.3195 | 0.4668 | −0.0405 | 0.034* | |
C18B | 0.1808 (9) | 0.3378 (7) | −0.1040 (5) | 0.027 (2) | |
H18B | 0.1789 | 0.3394 | −0.1593 | 0.033* | |
C19B | 0.0998 (10) | 0.2595 (7) | −0.0936 (6) | 0.031 (2) | |
H19B | 0.0430 | 0.2073 | −0.1419 | 0.037* | |
C20B | 0.1017 (9) | 0.2572 (7) | −0.0113 (5) | 0.024 (2) | |
H20B | 0.0438 | 0.2043 | −0.0044 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Te1A | 0.0149 (2) | 0.0184 (3) | 0.0158 (2) | 0.0060 (2) | 0.00256 (19) | 0.0063 (2) |
Te2A | 0.0150 (3) | 0.0155 (3) | 0.0173 (2) | 0.0057 (2) | 0.00262 (19) | 0.0038 (2) |
Te1B | 0.0183 (3) | 0.0135 (3) | 0.0139 (2) | 0.0054 (2) | 0.00404 (19) | 0.0049 (2) |
Te2B | 0.0156 (3) | 0.0146 (3) | 0.0191 (2) | 0.0052 (2) | 0.0038 (2) | 0.0056 (2) |
Re1A | 0.01346 (16) | 0.0165 (2) | 0.01774 (15) | 0.00313 (14) | 0.00234 (12) | 0.00503 (13) |
Re2A | 0.01336 (16) | 0.01502 (19) | 0.01671 (15) | 0.00443 (14) | 0.00232 (12) | 0.00443 (13) |
Re1B | 0.01496 (16) | 0.0154 (2) | 0.01675 (15) | 0.00200 (14) | 0.00352 (12) | 0.00532 (13) |
Re2B | 0.01394 (16) | 0.0144 (2) | 0.01666 (15) | 0.00354 (14) | 0.00324 (12) | 0.00625 (13) |
O1A | 0.062 (5) | 0.044 (6) | 0.068 (5) | 0.011 (5) | −0.003 (4) | 0.037 (5) |
O2A | 0.029 (4) | 0.039 (5) | 0.024 (3) | 0.003 (3) | −0.003 (3) | −0.004 (3) |
O3A | 0.025 (4) | 0.048 (5) | 0.041 (4) | 0.004 (3) | 0.018 (3) | 0.009 (3) |
O4A | 0.035 (4) | 0.025 (4) | 0.030 (3) | 0.012 (3) | 0.002 (3) | 0.010 (3) |
O5A | 0.031 (3) | 0.031 (4) | 0.029 (3) | 0.019 (3) | 0.003 (3) | 0.014 (3) |
O6A | 0.027 (3) | 0.043 (5) | 0.031 (3) | 0.010 (3) | 0.013 (3) | 0.007 (3) |
O7A | 0.033 (4) | 0.028 (5) | 0.037 (4) | −0.003 (3) | 0.007 (3) | −0.007 (3) |
O8A | 0.038 (4) | 0.040 (5) | 0.061 (4) | 0.019 (4) | 0.005 (3) | 0.032 (4) |
O1B | 0.031 (3) | 0.033 (4) | 0.021 (3) | 0.004 (3) | 0.009 (3) | 0.000 (3) |
O2B | 0.053 (4) | 0.020 (4) | 0.043 (4) | −0.001 (4) | 0.015 (3) | 0.014 (3) |
O3B | 0.029 (4) | 0.067 (6) | 0.044 (4) | 0.010 (4) | 0.008 (3) | 0.030 (4) |
O4B | 0.037 (4) | 0.035 (4) | 0.027 (3) | 0.018 (3) | 0.016 (3) | 0.011 (3) |
O5B | 0.040 (4) | 0.035 (4) | 0.022 (3) | 0.011 (3) | 0.014 (3) | 0.005 (3) |
O6B | 0.024 (4) | 0.067 (6) | 0.075 (5) | 0.024 (4) | 0.010 (4) | 0.039 (5) |
O7B | 0.029 (4) | 0.033 (5) | 0.051 (4) | 0.009 (3) | 0.015 (3) | 0.028 (4) |
O8B | 0.063 (5) | 0.031 (5) | 0.025 (4) | −0.008 (4) | 0.014 (3) | −0.003 (3) |
C1A | 0.030 (5) | 0.036 (7) | 0.030 (5) | 0.010 (5) | 0.003 (4) | 0.012 (5) |
C2A | 0.020 (4) | 0.026 (6) | 0.035 (5) | 0.013 (4) | 0.012 (4) | 0.014 (4) |
C3A | 0.023 (5) | 0.026 (6) | 0.020 (4) | 0.005 (4) | 0.010 (3) | 0.005 (4) |
C4A | 0.009 (4) | 0.027 (6) | 0.015 (4) | 0.003 (4) | 0.001 (3) | 0.002 (4) |
C5A | 0.016 (4) | 0.019 (5) | 0.020 (4) | 0.005 (4) | 0.007 (3) | −0.001 (4) |
C6A | 0.016 (4) | 0.031 (6) | 0.016 (4) | 0.003 (4) | −0.001 (3) | 0.005 (4) |
C7A | 0.019 (4) | 0.045 (7) | 0.029 (5) | 0.014 (5) | 0.013 (4) | 0.018 (5) |
C8A | 0.024 (5) | 0.023 (6) | 0.031 (5) | 0.004 (4) | 0.011 (4) | 0.010 (4) |
C9A | 0.014 (4) | 0.017 (5) | 0.023 (4) | 0.006 (4) | 0.008 (3) | 0.011 (4) |
C10A | 0.028 (5) | 0.029 (6) | 0.021 (4) | 0.013 (4) | 0.006 (4) | 0.010 (4) |
C11A | 0.025 (5) | 0.019 (5) | 0.035 (5) | 0.007 (4) | 0.007 (4) | 0.012 (4) |
C12A | 0.041 (5) | 0.024 (6) | 0.033 (5) | 0.018 (5) | 0.017 (4) | 0.010 (4) |
C13A | 0.031 (5) | 0.024 (6) | 0.030 (5) | 0.006 (5) | 0.002 (4) | −0.001 (4) |
C14A | 0.023 (5) | 0.029 (6) | 0.028 (4) | 0.008 (4) | 0.002 (4) | 0.004 (4) |
C15A | 0.024 (4) | 0.009 (5) | 0.018 (4) | 0.007 (4) | 0.005 (3) | −0.001 (3) |
C16A | 0.020 (4) | 0.033 (6) | 0.030 (4) | 0.007 (4) | 0.003 (4) | 0.018 (4) |
C17A | 0.032 (5) | 0.027 (6) | 0.026 (4) | 0.008 (5) | 0.012 (4) | 0.013 (4) |
C18A | 0.043 (6) | 0.032 (6) | 0.017 (4) | 0.017 (5) | 0.009 (4) | 0.010 (4) |
C19A | 0.027 (5) | 0.028 (6) | 0.024 (4) | 0.008 (4) | 0.000 (4) | 0.007 (4) |
C20A | 0.027 (5) | 0.028 (6) | 0.018 (4) | 0.014 (4) | 0.007 (3) | 0.004 (4) |
C1B | 0.021 (4) | 0.022 (5) | 0.016 (4) | 0.002 (4) | −0.002 (3) | 0.005 (4) |
C2B | 0.020 (4) | 0.014 (5) | 0.028 (4) | 0.002 (4) | 0.011 (4) | 0.003 (4) |
C3B | 0.018 (4) | 0.032 (6) | 0.030 (4) | 0.004 (4) | 0.001 (4) | 0.019 (4) |
C4B | 0.012 (4) | 0.016 (5) | 0.027 (4) | 0.001 (4) | 0.001 (3) | 0.013 (4) |
C5B | 0.018 (4) | 0.024 (5) | 0.028 (5) | 0.011 (4) | 0.011 (3) | 0.013 (4) |
C6B | 0.024 (5) | 0.029 (6) | 0.034 (5) | 0.010 (4) | 0.009 (4) | 0.018 (4) |
C7B | 0.020 (4) | 0.029 (6) | 0.028 (4) | 0.014 (4) | 0.005 (4) | 0.014 (4) |
C8B | 0.026 (5) | 0.026 (6) | 0.024 (5) | 0.002 (4) | 0.004 (4) | 0.008 (4) |
C9B | 0.020 (4) | 0.018 (5) | 0.017 (4) | 0.009 (4) | 0.004 (3) | 0.009 (3) |
C10B | 0.039 (5) | 0.025 (6) | 0.032 (5) | 0.019 (5) | 0.015 (4) | 0.015 (4) |
C11B | 0.049 (6) | 0.041 (7) | 0.034 (5) | 0.025 (6) | 0.025 (5) | 0.014 (5) |
C12B | 0.056 (7) | 0.028 (6) | 0.037 (5) | 0.027 (6) | 0.023 (5) | 0.011 (5) |
C13B | 0.038 (5) | 0.018 (6) | 0.039 (5) | 0.008 (5) | 0.012 (4) | 0.008 (4) |
C14B | 0.031 (5) | 0.021 (6) | 0.031 (5) | 0.012 (4) | 0.016 (4) | 0.011 (4) |
C15B | 0.017 (4) | 0.021 (5) | 0.019 (4) | 0.009 (4) | 0.003 (3) | 0.006 (3) |
C16B | 0.031 (5) | 0.024 (6) | 0.027 (4) | 0.007 (4) | 0.004 (4) | 0.012 (4) |
C17B | 0.029 (5) | 0.026 (6) | 0.034 (5) | 0.006 (5) | 0.011 (4) | 0.018 (4) |
C18B | 0.028 (5) | 0.038 (6) | 0.023 (4) | 0.014 (5) | 0.007 (4) | 0.016 (4) |
C19B | 0.032 (5) | 0.030 (6) | 0.031 (5) | 0.014 (5) | 0.004 (4) | 0.010 (4) |
C20B | 0.017 (4) | 0.025 (6) | 0.025 (4) | 0.002 (4) | −0.001 (3) | 0.011 (4) |
Te1A—C9A | 2.150 (8) | C9A—C14A | 1.386 (12) |
Te1A—Re1A | 2.8115 (7) | C9A—C10A | 1.398 (11) |
Te1A—Re2A | 2.8269 (7) | C10A—C11A | 1.395 (12) |
Te2A—C15A | 2.169 (8) | C10A—H10A | 0.9500 |
Te2A—Re2A | 2.8031 (8) | C11A—C12A | 1.363 (13) |
Te2A—Re1A | 2.8131 (7) | C11A—H11A | 0.9500 |
Te1B—C9B | 2.158 (8) | C12A—C13A | 1.403 (13) |
Te1B—Re2B | 2.8215 (7) | C12A—H12A | 0.9500 |
Te1B—Re1B | 2.8217 (7) | C13A—C14A | 1.390 (13) |
Te2B—C15B | 2.143 (7) | C13A—H13A | 0.9500 |
Te2B—Re1B | 2.8030 (7) | C14A—H14A | 0.9500 |
Te2B—Re2B | 2.8237 (7) | C15A—C20A | 1.387 (11) |
Re1A—C2A | 1.955 (9) | C15A—C16A | 1.388 (12) |
Re1A—C3A | 1.962 (8) | C16A—C17A | 1.416 (11) |
Re1A—C4A | 2.001 (9) | C16A—H16A | 0.9500 |
Re1A—C1A | 2.020 (10) | C17A—C18A | 1.377 (13) |
Re2A—C7A | 1.935 (10) | C17A—H17A | 0.9500 |
Re2A—C6A | 1.937 (8) | C18A—C19A | 1.396 (13) |
Re2A—C8A | 2.019 (9) | C18A—H18A | 0.9500 |
Re2A—C5A | 2.026 (9) | C19A—C20A | 1.405 (11) |
Re1B—C3B | 1.947 (8) | C19A—H19A | 0.9500 |
Re1B—C2B | 1.954 (9) | C20A—H20A | 0.9500 |
Re1B—C1B | 2.000 (8) | C9B—C10B | 1.378 (11) |
Re1B—C4B | 2.001 (8) | C9B—C14B | 1.390 (12) |
Re2B—C6B | 1.957 (9) | C10B—C11B | 1.390 (13) |
Re2B—C7B | 1.963 (9) | C10B—H10B | 0.9500 |
Re2B—C5B | 1.994 (8) | C11B—C12B | 1.402 (15) |
Re2B—C8B | 2.004 (9) | C11B—H11B | 0.9500 |
O1A—C1A | 1.148 (12) | C12B—C13B | 1.390 (13) |
O2A—C2A | 1.138 (11) | C12B—H12B | 0.9500 |
O3A—C3A | 1.129 (10) | C13B—C14B | 1.401 (13) |
O4A—C4A | 1.157 (11) | C13B—H13B | 0.9500 |
O5A—C5A | 1.138 (10) | C14B—H14B | 0.9500 |
O6A—C6A | 1.174 (10) | C15B—C16B | 1.389 (12) |
O7A—C7A | 1.164 (12) | C15B—C20B | 1.400 (12) |
O8A—C8A | 1.146 (11) | C16B—C17B | 1.411 (11) |
O1B—C1B | 1.152 (10) | C16B—H16B | 0.9500 |
O2B—C2B | 1.147 (11) | C17B—C18B | 1.383 (13) |
O3B—C3B | 1.162 (10) | C17B—H17B | 0.9500 |
O4B—C4B | 1.155 (9) | C18B—C19B | 1.390 (13) |
O5B—C5B | 1.139 (10) | C18B—H18B | 0.9500 |
O6B—C6B | 1.151 (10) | C19B—C20B | 1.415 (12) |
O7B—C7B | 1.147 (11) | C19B—H19B | 0.9500 |
O8B—C8B | 1.134 (11) | C20B—H20B | 0.9500 |
C9A—Te1A—Re1A | 108.5 (2) | C14A—C9A—C10A | 119.4 (8) |
C9A—Te1A—Re2A | 108.5 (2) | C14A—C9A—Te1A | 117.5 (6) |
Re1A—Te1A—Re2A | 96.25 (2) | C10A—C9A—Te1A | 122.9 (6) |
C15A—Te2A—Re2A | 105.6 (2) | C11A—C10A—C9A | 119.4 (8) |
C15A—Te2A—Re1A | 105.0 (2) | C11A—C10A—H10A | 120.3 |
Re2A—Te2A—Re1A | 96.76 (2) | C9A—C10A—H10A | 120.3 |
C9B—Te1B—Re2B | 107.9 (2) | C12A—C11A—C10A | 122.1 (8) |
C9B—Te1B—Re1B | 102.1 (2) | C12A—C11A—H11A | 119.0 |
Re2B—Te1B—Re1B | 95.74 (2) | C10A—C11A—H11A | 119.0 |
C15B—Te2B—Re1B | 108.3 (2) | C11A—C12A—C13A | 118.1 (8) |
C15B—Te2B—Re2B | 100.4 (2) | C11A—C12A—H12A | 120.9 |
Re1B—Te2B—Re2B | 96.11 (2) | C13A—C12A—H12A | 120.9 |
C2A—Re1A—C3A | 90.7 (3) | C14A—C13A—C12A | 121.1 (9) |
C2A—Re1A—C4A | 92.9 (3) | C14A—C13A—H13A | 119.4 |
C3A—Re1A—C4A | 89.8 (3) | C12A—C13A—H13A | 119.4 |
C2A—Re1A—C1A | 91.8 (4) | C9A—C14A—C13A | 119.8 (8) |
C3A—Re1A—C1A | 91.4 (4) | C9A—C14A—H14A | 120.1 |
C4A—Re1A—C1A | 175.2 (4) | C13A—C14A—H14A | 120.1 |
C2A—Re1A—Te1A | 171.3 (2) | C20A—C15A—C16A | 120.0 (7) |
C3A—Re1A—Te1A | 97.4 (2) | C20A—C15A—Te2A | 122.3 (6) |
C4A—Re1A—Te1A | 90.4 (2) | C16A—C15A—Te2A | 117.4 (6) |
C1A—Re1A—Te1A | 84.8 (3) | C15A—C16A—C17A | 120.0 (8) |
C2A—Re1A—Te2A | 91.8 (2) | C15A—C16A—H16A | 120.0 |
C3A—Re1A—Te2A | 177.5 (3) | C17A—C16A—H16A | 120.0 |
C4A—Re1A—Te2A | 89.3 (2) | C18A—C17A—C16A | 119.5 (8) |
C1A—Re1A—Te2A | 89.2 (3) | C18A—C17A—H17A | 120.2 |
Te1A—Re1A—Te2A | 80.23 (2) | C16A—C17A—H17A | 120.2 |
C7A—Re2A—C6A | 93.9 (4) | C17A—C18A—C19A | 120.8 (8) |
C7A—Re2A—C8A | 89.2 (4) | C17A—C18A—H18A | 119.6 |
C6A—Re2A—C8A | 92.4 (3) | C19A—C18A—H18A | 119.6 |
C7A—Re2A—C5A | 90.1 (4) | C18A—C19A—C20A | 119.3 (8) |
C6A—Re2A—C5A | 90.6 (3) | C18A—C19A—H19A | 120.4 |
C8A—Re2A—C5A | 176.9 (3) | C20A—C19A—H19A | 120.4 |
C7A—Re2A—Te2A | 175.6 (2) | C15A—C20A—C19A | 120.3 (8) |
C6A—Re2A—Te2A | 90.5 (3) | C15A—C20A—H20A | 119.8 |
C8A—Re2A—Te2A | 90.0 (3) | C19A—C20A—H20A | 119.8 |
C5A—Re2A—Te2A | 90.5 (2) | O1B—C1B—Re1B | 175.4 (8) |
C7A—Re2A—Te1A | 95.6 (2) | O2B—C2B—Re1B | 179.2 (8) |
C6A—Re2A—Te1A | 169.6 (3) | O3B—C3B—Re1B | 177.5 (9) |
C8A—Re2A—Te1A | 92.0 (2) | O4B—C4B—Re1B | 178.7 (7) |
C5A—Re2A—Te1A | 85.1 (2) | O5B—C5B—Re2B | 178.6 (7) |
Te2A—Re2A—Te1A | 80.14 (2) | O6B—C6B—Re2B | 177.4 (8) |
C3B—Re1B—C2B | 93.9 (4) | O7B—C7B—Re2B | 178.1 (7) |
C3B—Re1B—C1B | 95.1 (3) | O8B—C8B—Re2B | 177.0 (9) |
C2B—Re1B—C1B | 88.5 (3) | C10B—C9B—C14B | 120.5 (8) |
C3B—Re1B—C4B | 92.5 (3) | C10B—C9B—Te1B | 123.1 (7) |
C2B—Re1B—C4B | 89.0 (3) | C14B—C9B—Te1B | 116.3 (5) |
C1B—Re1B—C4B | 172.1 (3) | C9B—C10B—C11B | 120.3 (9) |
C3B—Re1B—Te2B | 88.0 (3) | C9B—C10B—H10B | 119.8 |
C2B—Re1B—Te2B | 176.9 (2) | C11B—C10B—H10B | 119.8 |
C1B—Re1B—Te2B | 93.7 (3) | C10B—C11B—C12B | 120.0 (9) |
C4B—Re1B—Te2B | 88.5 (2) | C10B—C11B—H11B | 120.0 |
C3B—Re1B—Te1B | 169.9 (3) | C12B—C11B—H11B | 120.0 |
C2B—Re1B—Te1B | 96.2 (2) | C13B—C12B—C11B | 119.3 (9) |
C1B—Re1B—Te1B | 85.5 (2) | C13B—C12B—H12B | 120.3 |
C4B—Re1B—Te1B | 87.3 (2) | C11B—C12B—H12B | 120.3 |
Te2B—Re1B—Te1B | 81.86 (2) | C12B—C13B—C14B | 120.4 (9) |
C6B—Re2B—C7B | 91.7 (4) | C12B—C13B—H13B | 119.8 |
C6B—Re2B—C5B | 92.2 (3) | C14B—C13B—H13B | 119.8 |
C7B—Re2B—C5B | 91.1 (4) | C9B—C14B—C13B | 119.4 (8) |
C6B—Re2B—C8B | 91.4 (4) | C9B—C14B—H14B | 120.3 |
C7B—Re2B—C8B | 89.3 (4) | C13B—C14B—H14B | 120.3 |
C5B—Re2B—C8B | 176.3 (3) | C16B—C15B—C20B | 119.5 (7) |
C6B—Re2B—Te1B | 94.2 (3) | C16B—C15B—Te2B | 117.4 (6) |
C7B—Re2B—Te1B | 173.5 (2) | C20B—C15B—Te2B | 123.1 (6) |
C5B—Re2B—Te1B | 91.3 (2) | C15B—C16B—C17B | 120.1 (9) |
C8B—Re2B—Te1B | 87.9 (3) | C15B—C16B—H16B | 119.9 |
C6B—Re2B—Te2B | 175.5 (3) | C17B—C16B—H16B | 119.9 |
C7B—Re2B—Te2B | 92.6 (2) | C18B—C17B—C16B | 120.7 (9) |
C5B—Re2B—Te2B | 86.6 (2) | C18B—C17B—H17B | 119.7 |
C8B—Re2B—Te2B | 89.7 (3) | C16B—C17B—H17B | 119.7 |
Te1B—Re2B—Te2B | 81.502 (19) | C17B—C18B—C19B | 119.6 (8) |
O1A—C1A—Re1A | 178.4 (9) | C17B—C18B—H18B | 120.2 |
O2A—C2A—Re1A | 177.7 (8) | C19B—C18B—H18B | 120.2 |
O3A—C3A—Re1A | 176.9 (8) | C18B—C19B—C20B | 120.2 (9) |
O4A—C4A—Re1A | 176.2 (7) | C18B—C19B—H19B | 119.9 |
O5A—C5A—Re2A | 178.4 (7) | C20B—C19B—H19B | 119.9 |
O6A—C6A—Re2A | 178.0 (9) | C15B—C20B—C19B | 119.9 (9) |
O7A—C7A—Re2A | 178.1 (8) | C15B—C20B—H20B | 120.0 |
O8A—C8A—Re2A | 176.8 (9) | C19B—C20B—H20B | 120.0 |
C9A—Te1A—Re1A—C2A | 154.5 (18) | Te1A—Re2A—C5A—O5A | −51 (28) |
Re2A—Te1A—Re1A—C2A | 42.6 (17) | C7A—Re2A—C6A—O6A | 152 (20) |
C9A—Te1A—Re1A—C3A | −48.0 (3) | C8A—Re2A—C6A—O6A | −119 (20) |
Re2A—Te1A—Re1A—C3A | −159.9 (3) | C5A—Re2A—C6A—O6A | 61 (20) |
C9A—Te1A—Re1A—C4A | 41.9 (3) | Te2A—Re2A—C6A—O6A | −29 (20) |
Re2A—Te1A—Re1A—C4A | −70.0 (2) | Te1A—Re2A—C6A—O6A | −4 (21) |
C9A—Te1A—Re1A—C1A | −138.7 (3) | C6A—Re2A—C7A—O7A | 18 (25) |
Re2A—Te1A—Re1A—C1A | 109.4 (3) | C8A—Re2A—C7A—O7A | −74 (25) |
C9A—Te1A—Re1A—Te2A | 131.2 (2) | C5A—Re2A—C7A—O7A | 109 (25) |
Re2A—Te1A—Re1A—Te2A | 19.292 (18) | Te2A—Re2A—C7A—O7A | −154 (22) |
C15A—Te2A—Re1A—C2A | 55.8 (3) | Te1A—Re2A—C7A—O7A | −166 (25) |
Re2A—Te2A—Re1A—C2A | 164.0 (3) | C7A—Re2A—C8A—O8A | 13 (14) |
C15A—Te2A—Re1A—C3A | −108 (6) | C6A—Re2A—C8A—O8A | −81 (14) |
Re2A—Te2A—Re1A—C3A | 0 (6) | C5A—Re2A—C8A—O8A | 88 (15) |
C15A—Te2A—Re1A—C4A | −37.1 (3) | Te2A—Re2A—C8A—O8A | −171 (14) |
Re2A—Te2A—Re1A—C4A | 71.1 (2) | Te1A—Re2A—C8A—O8A | 108 (14) |
C15A—Te2A—Re1A—C1A | 147.5 (4) | Re1A—Te1A—C9A—C14A | −176.9 (6) |
Re2A—Te2A—Re1A—C1A | −104.3 (3) | Re2A—Te1A—C9A—C14A | −73.5 (6) |
C15A—Te2A—Re1A—Te1A | −127.6 (2) | Re1A—Te1A—C9A—C10A | 8.9 (7) |
Re2A—Te2A—Re1A—Te1A | −19.483 (18) | Re2A—Te1A—C9A—C10A | 112.3 (6) |
C15A—Te2A—Re2A—C7A | 114 (4) | C14A—C9A—C10A—C11A | −2.5 (13) |
Re1A—Te2A—Re2A—C7A | 6 (4) | Te1A—C9A—C10A—C11A | 171.6 (6) |
C15A—Te2A—Re2A—C6A | −57.4 (3) | C9A—C10A—C11A—C12A | 1.1 (14) |
Re1A—Te2A—Re2A—C6A | −165.1 (3) | C10A—C11A—C12A—C13A | 1.2 (14) |
C15A—Te2A—Re2A—C8A | 35.0 (3) | C11A—C12A—C13A—C14A | −2.2 (14) |
Re1A—Te2A—Re2A—C8A | −72.6 (2) | C10A—C9A—C14A—C13A | 1.6 (13) |
C15A—Te2A—Re2A—C5A | −148.0 (3) | Te1A—C9A—C14A—C13A | −172.8 (7) |
Re1A—Te2A—Re2A—C5A | 104.3 (2) | C12A—C13A—C14A—C9A | 0.8 (14) |
C15A—Te2A—Re2A—Te1A | 127.1 (2) | Re2A—Te2A—C15A—C20A | −121.9 (7) |
Re1A—Te2A—Re2A—Te1A | 19.378 (17) | Re1A—Te2A—C15A—C20A | −20.3 (7) |
C9A—Te1A—Re2A—C7A | 47.8 (3) | Re2A—Te2A—C15A—C16A | 64.0 (7) |
Re1A—Te1A—Re2A—C7A | 159.6 (3) | Re1A—Te2A—C15A—C16A | 165.7 (6) |
C9A—Te1A—Re2A—C6A | −156.6 (13) | C20A—C15A—C16A—C17A | 0.0 (14) |
Re1A—Te1A—Re2A—C6A | −44.8 (13) | Te2A—C15A—C16A—C17A | 174.2 (7) |
C9A—Te1A—Re2A—C8A | −41.6 (3) | C15A—C16A—C17A—C18A | −1.1 (14) |
Re1A—Te1A—Re2A—C8A | 70.3 (3) | C16A—C17A—C18A—C19A | 0.5 (15) |
C9A—Te1A—Re2A—C5A | 137.4 (3) | C17A—C18A—C19A—C20A | 1.2 (15) |
Re1A—Te1A—Re2A—C5A | −110.8 (2) | C16A—C15A—C20A—C19A | 1.8 (13) |
C9A—Te1A—Re2A—Te2A | −131.2 (2) | Te2A—C15A—C20A—C19A | −172.2 (7) |
Re1A—Te1A—Re2A—Te2A | −19.370 (18) | C18A—C19A—C20A—C15A | −2.4 (14) |
C15B—Te2B—Re1B—C3B | −60.3 (3) | C3B—Re1B—C1B—O1B | −123 (9) |
Re2B—Te2B—Re1B—C3B | −163.4 (3) | C2B—Re1B—C1B—O1B | −29 (9) |
C15B—Te2B—Re1B—C2B | 171 (4) | C4B—Re1B—C1B—O1B | 43 (10) |
Re2B—Te2B—Re1B—C2B | 68 (4) | Te2B—Re1B—C1B—O1B | 149 (9) |
C15B—Te2B—Re1B—C1B | 34.7 (3) | Te1B—Re1B—C1B—O1B | 67 (9) |
Re2B—Te2B—Re1B—C1B | −68.4 (2) | C3B—Re1B—C2B—O2B | −3 (60) |
C15B—Te2B—Re1B—C4B | −152.9 (3) | C1B—Re1B—C2B—O2B | −98 (60) |
Re2B—Te2B—Re1B—C4B | 104.0 (2) | C4B—Re1B—C2B—O2B | 89 (60) |
C15B—Te2B—Re1B—Te1B | 119.6 (2) | Te2B—Re1B—C2B—O2B | 125 (57) |
Re2B—Te2B—Re1B—Te1B | 16.538 (16) | Te1B—Re1B—C2B—O2B | 176 (100) |
C9B—Te1B—Re1B—C3B | −125.8 (15) | C2B—Re1B—C3B—O3B | 158 (17) |
Re2B—Te1B—Re1B—C3B | −16.1 (15) | C1B—Re1B—C3B—O3B | −113 (17) |
C9B—Te1B—Re1B—C2B | 56.1 (3) | C4B—Re1B—C3B—O3B | 69 (17) |
Re2B—Te1B—Re1B—C2B | 165.9 (2) | Te2B—Re1B—C3B—O3B | −20 (17) |
C9B—Te1B—Re1B—C1B | −31.9 (3) | Te1B—Re1B—C3B—O3B | −20 (18) |
Re2B—Te1B—Re1B—C1B | 77.9 (3) | C3B—Re1B—C4B—O4B | 123 (32) |
C9B—Te1B—Re1B—C4B | 144.8 (3) | C2B—Re1B—C4B—O4B | 29 (32) |
Re2B—Te1B—Re1B—C4B | −105.4 (2) | C1B—Re1B—C4B—O4B | −42 (33) |
C9B—Te1B—Re1B—Te2B | −126.3 (2) | Te2B—Re1B—C4B—O4B | −149 (32) |
Re2B—Te1B—Re1B—Te2B | −16.540 (17) | Te1B—Re1B—C4B—O4B | −67 (32) |
C9B—Te1B—Re2B—C6B | −57.6 (3) | C6B—Re2B—C5B—O5B | 173 (100) |
Re1B—Te1B—Re2B—C6B | −162.3 (3) | C7B—Re2B—C5B—O5B | −95 (32) |
C9B—Te1B—Re2B—C7B | 147 (2) | C8B—Re2B—C5B—O5B | 2 (36) |
Re1B—Te1B—Re2B—C7B | 42 (2) | Te1B—Re2B—C5B—O5B | 79 (32) |
C9B—Te1B—Re2B—C5B | 34.7 (3) | Te2B—Re2B—C5B—O5B | −2 (32) |
Re1B—Te1B—Re2B—C5B | −70.0 (2) | C7B—Re2B—C6B—O6B | −8 (20) |
C9B—Te1B—Re2B—C8B | −148.9 (3) | C5B—Re2B—C6B—O6B | 84 (20) |
Re1B—Te1B—Re2B—C8B | 106.4 (3) | C8B—Re2B—C6B—O6B | −97 (20) |
C9B—Te1B—Re2B—Te2B | 121.1 (2) | Te1B—Re2B—C6B—O6B | 175 (100) |
Re1B—Te1B—Re2B—Te2B | 16.430 (17) | Te2B—Re2B—C6B—O6B | 159 (18) |
C15B—Te2B—Re2B—C6B | −110 (3) | C6B—Re2B—C7B—O7B | 22 (25) |
Re1B—Te2B—Re2B—C6B | 0 (3) | C5B—Re2B—C7B—O7B | −71 (25) |
C15B—Te2B—Re2B—C7B | 56.3 (4) | C8B—Re2B—C7B—O7B | 113 (25) |
Re1B—Te2B—Re2B—C7B | 166.2 (3) | Te1B—Re2B—C7B—O7B | 177 (100) |
C15B—Te2B—Re2B—C5B | −34.6 (3) | Te2B—Re2B—C7B—O7B | −157 (25) |
Re1B—Te2B—Re2B—C5B | 75.3 (2) | C6B—Re2B—C8B—O8B | 95 (16) |
C15B—Te2B—Re2B—C8B | 145.7 (4) | C7B—Re2B—C8B—O8B | 4 (16) |
Re1B—Te2B—Re2B—C8B | −104.4 (3) | C5B—Re2B—C8B—O8B | −93 (16) |
C15B—Te2B—Re2B—Te1B | −126.4 (2) | Te1B—Re2B—C8B—O8B | −170 (16) |
Re1B—Te2B—Re2B—Te1B | −16.555 (16) | Te2B—Re2B—C8B—O8B | −89 (16) |
C2A—Re1A—C1A—O1A | 74 (36) | Re2B—Te1B—C9B—C10B | 16.1 (7) |
C3A—Re1A—C1A—O1A | 165 (36) | Re1B—Te1B—C9B—C10B | 116.3 (6) |
C4A—Re1A—C1A—O1A | −90 (36) | Re2B—Te1B—C9B—C14B | −168.0 (5) |
Te1A—Re1A—C1A—O1A | −98 (36) | Re1B—Te1B—C9B—C14B | −67.8 (6) |
Te2A—Re1A—C1A—O1A | −17 (36) | C14B—C9B—C10B—C11B | 1.1 (13) |
C3A—Re1A—C2A—O2A | −23 (21) | Te1B—C9B—C10B—C11B | 176.9 (7) |
C4A—Re1A—C2A—O2A | −112 (21) | C9B—C10B—C11B—C12B | 0.6 (14) |
C1A—Re1A—C2A—O2A | 69 (21) | C10B—C11B—C12B—C13B | 0.4 (14) |
Te1A—Re1A—C2A—O2A | 135 (20) | C11B—C12B—C13B—C14B | −3.1 (14) |
Te2A—Re1A—C2A—O2A | 158 (21) | C10B—C9B—C14B—C13B | −3.7 (12) |
C2A—Re1A—C3A—O3A | −4 (17) | Te1B—C9B—C14B—C13B | −179.7 (6) |
C4A—Re1A—C3A—O3A | 89 (17) | C12B—C13B—C14B—C9B | 4.7 (13) |
C1A—Re1A—C3A—O3A | −96 (17) | Re1B—Te2B—C15B—C16B | −171.2 (6) |
Te1A—Re1A—C3A—O3A | 179 (100) | Re2B—Te2B—C15B—C16B | −71.2 (6) |
Te2A—Re1A—C3A—O3A | 160 (12) | Re1B—Te2B—C15B—C20B | 9.0 (7) |
C2A—Re1A—C4A—O4A | 123 (11) | Re2B—Te2B—C15B—C20B | 109.1 (6) |
C3A—Re1A—C4A—O4A | 33 (11) | C20B—C15B—C16B—C17B | −2.1 (12) |
C1A—Re1A—C4A—O4A | −72 (12) | Te2B—C15B—C16B—C17B | 178.1 (6) |
Te1A—Re1A—C4A—O4A | −65 (11) | C15B—C16B—C17B—C18B | 0.7 (13) |
Te2A—Re1A—C4A—O4A | −145 (11) | C16B—C17B—C18B—C19B | 0.1 (13) |
C7A—Re2A—C5A—O5A | 45 (28) | C17B—C18B—C19B—C20B | 0.5 (13) |
C6A—Re2A—C5A—O5A | 139 (28) | C16B—C15B—C20B—C19B | 2.8 (12) |
C8A—Re2A—C5A—O5A | −31 (32) | Te2B—C15B—C20B—C19B | −177.5 (6) |
Te2A—Re2A—C5A—O5A | −131 (28) | C18B—C19B—C20B—C15B | −2.0 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
C16A—H16A···O6A | 0.95 | 2.74 | 3.592 (11) | 149 |
C20A—H20A···O2A | 0.95 | 2.87 | 3.678 (12) | 143 |
C12B—H12B···O5Bi | 0.95 | 2.63 | 3.433 (11) | 143 |
Symmetry code: (i) −x+1, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | [Re2(C6H5Te)2(CO)8] |
Mr | 2011.76 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 150 |
a, b, c (Å) | 9.8062 (13), 16.3418 (15), 17.1000 (14) |
α, β, γ (°) | 106.593 (7), 99.932 (9), 105.572 (10) |
V (Å3) | 2435.9 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 12.32 |
Crystal size (mm) | 0.32 × 0.28 × 0.22 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur-S |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.110, 0.173 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20451, 8557, 7388 |
Rint | 0.038 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.079, 1.06 |
No. of reflections | 8557 |
No. of parameters | 577 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 2.27, −2.55 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C16A—H16A···O6A | 0.95 | 2.74 | 3.592 (11) | 148.8 |
C20A—H20A···O2A | 0.95 | 2.87 | 3.678 (12) | 143.1 |
C12B—H12B···O5Bi | 0.95 | 2.63 | 3.433 (11) | 143.2 |
Symmetry code: (i) −x+1, −y, −z. |
Acknowledgements
The authors acknowledge the Centre of Excellence in Bioinformatics, Pondicherry University, for providing the computational facilities to carry out this work.
References
Atwood, J. L., Bernal, J., Calderazzo, F., Canada, L. G., Poli, R., Rogers, R. D., Veracini, C. A. & Vitali, D. (1983). Inorg. Chem. 22, 1797–1804. CSD CrossRef Web of Science Google Scholar
Begum, N., Hyder, M. I., Hassan, M. R., Kabir, S. E., Bennett, D. W., Haworth, D. T., Siddiquee, T. A., Rokhsana, D., Sharmin, A. & Rosenberg, E. (2008). Organometallics, 27, 1550–1560. Web of Science CSD CrossRef CAS Google Scholar
Cecconi, F., Ghilardi, C. A., Midollini, S. & Orlandini, A. (1998). Inorg. Chem. Commun. 1, 150–151. Web of Science CSD CrossRef CAS Google Scholar
Cerecetto, H., Di Maio, R., Gonzalez, M. & Seoane, G. (1997). Heterocycles, 45, 2023–2031. CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Cunha, R. L., Gouvea, I. E. & Juliano, L. (2009). Ann. Acad. Bras. Cienc. 81, 393–407. CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Kopf-Maier, P. & Klapötke, T. (1992). Cancer Chemother. Pharmacol. 29, 361–366. CrossRef PubMed CAS Web of Science Google Scholar
Lima, C. B. C., Arrais-Silva, W. W., Cunha, R. L. O. R. & Giorgio, S. (2009). Korean J. Parasitol. 47, 213–218. Web of Science CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Ritch, S. R. & Chivers, T. (2009). Inorg. Chem. 48, 3857–3865. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, J. & Leong, W. K. (2000). J. Chem. Soc. Dalton Trans. pp. 1249–1253. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The biological activities of rhenium and tellurium compounds have been studied and revealed interesting and promising applications (Begum et al., 2008; Atwood et al., 1983; Zhang & Leong, 2000). Rhenium derivatives have a wide range of biological applications such as antitumor, cytostatic (Kopf-Maier & Klapotke, 1992) and antitrypanosomal activity (Cerecetto et al., 1997). Organo tellurium compounds are the inhibitors of human cathepsin B, which is a highly predictive indicator for prognosis and diagnosis of cancer. Some of the tellurium derivatives exhibit antioxidant and immunomodulatory effects (Cunha et al., 2009). Recently, a novel organotellurium compound-RT01 was proved to act as antileishmanial agent (Lima et al., 2009). In view of these important features we have chosen the title compound for crystal structure analysis.
The title compound was crystallized with two independent molecules (A & B) in the asymmetric unit (Fig. 1), which adopted dinuclear metallacyclic structure, where each rhenium Re(CO)4 core is bonded by two phenyl tellurolate groups and hence Re centers attained a distorted octahedral geometry. The r.m.s deviation for four-membered ring with carbonyl atoms of two molecules is 0.016 Å, calculated by Platon - automolfit program (Spek, 2009) and the maximum deviation was observed in phenyl tellurolate groups. The Re—Te bond distances are nearly equal in both the molecules and are similar to those in a related structure (Cecconi et al., 1998). The six atoms (C9A—Te1A—Re2A—Te2A—C15A—Re1A & C15B—Te2B—Re2B—Te1B—C9B—Re1B) generate six-membered rings each with a boat conformation; puckering parameters (Cremer & Pople, 1975) A: q2 = 0.3707(0.0000) Å, q3 = -1.8679 (0.0001) Å, phi2 = 113.59 (0.01)°, QT =1.9043 (0.0001), theta2 = 168.78 (0.00)° and B: q2 = 0.5108(0.0002) Å, q3 = -1.9993(0.0002)Å , phi2 =125.79(0.02)°, QT = 2.0635(0.0003), theta2 = 165.67(0.01)° . The crystal packing (Fig. 2) of the molecule in the unit cell is influenced by C—H···O and Te—Te interactions. The two molecules in the unit cell are interconnected with each other through Te—Te interaction [4.0551 (10) Å] and illustrated in Fig. 3. This Te···Te separation is similar to that observed previously (Ritch & Chivers, 2009). In their study, weak intermolecular Te···Te contacts were observed in the compound C36H84Cu3N3O3P6Te3 ranging from 3.891 Å to 4.039 Å. However, the Te···Te separation observed here is smaller than that in NaCuTe, 4.38Å, (Seong et al., 1994). Based on these previous studies, the observed Te···Te contact is significant and contributes to the packing. Intermolecular and interatomic O—O bond distances are also observed for O6B—O4B, O5A—O8B, O5A—O4B, O8B—O8B, O5A—O3A, O1B—O5B, O4A—O8A with distances of 2.928 (9) Å, 2.975 (10) Å, 3.025 (9) Å, 3.014 (13) Å,2.951 (9) Å, 2.9710 (89) Å and 2.9387 (87) Å respectively.