organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl N-[6-(N,N-di­propyl­carbamo­yl)-1,3-benzo­thia­zol-2-yl]carbamate

aCollege of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China, and bFujian Institute of Research on the Structure of Matter, State Key Laboratory of Structural Chemistry, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China.
*Correspondence e-mail: wangjd@fzu.edu.cn

(Received 16 April 2010; accepted 26 April 2010; online 30 April 2010)

The title compound C19H27N3O3S, crystallizes with two unique mol­ecules in the asymmetric unit. The benzene ring of each benzothia­zole unit carries a dipropyl­carbamoyl substituent in the 6-position and a tert-butyl carbamate unit on each thia­zole ring. In the crystal structure, inter­molecular N—H⋯N and weak C—H⋯O hydrogen bonds form centrosymmetric dimers. Additional C—H⋯O contacts construct a three-dimensional network. A very weak C—H⋯π contact is also present.

Related literature

For benzothia­zole derivatives with anti-tumor activity, see: Brantley et al. (2004[Brantley, E., Trapani, V., Alley, M. C., Hose, C. D., Bradshaw, T. D., Stevens, M. F. G., Sausville, E. A. & Stinson, S. F. (2004). Drug Metab. Disp. 32, 1392-1401.]); Ćaleta et al. (2009[Ćaleta, I., Kralj, M., Marjanović, M., Bertoša, B., Tomić, S., Pavlović, G., Pavelić, K. & Karminski-Zamola, G. (2009). J. Med. Chem. 52, 1744-1756.]); Mortimer et al. (2006[Mortimer, C. G., Wells, G., Crochard, J., Stone, E. L., Bradshaw, T. D., Stevens, M. F. G. & Westwell, A. D. (2006). J. Med. Chem. 49, 179-185.]) and for benzothia­zolines with anti-tuberculous properties, see: Palmer et al. (1971[Palmer, P. J., Trigg, R. B. & Warrington, J. V. (1971). J. Med. Chem. 14, 248-251.]). For related benzothia­zole structures, see: Lynch (2002[Lynch, D. E. (2002). Acta Cryst. E58, o1139-o1141.]); Matković-Čalogović et al. (2003[Matković-Čalogović, D., Popović, Z., Tralić-Kulenović, V., Racanè, L. & Karminski-Zamola, G. (2003). Acta Cryst. C59, o190-o191.]); Lei et al. (2010[Lei, C., Fang, X., Yu, H.-Y., Huang, M.-D. & Wang, J.-D. (2010). Acta Cryst. E66, o914.]).

[Scheme 1]

Experimental

Crystal data
  • C19H27N3O3S

  • Mr = 377.50

  • Orthorhombic, P b c a

  • a = 14.068 (3) Å

  • b = 20.942 (4) Å

  • c = 26.515 (5) Å

  • V = 7812 (3) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 113 K

  • 0.45 × 0.35 × 0.23 mm

Data collection
  • Rigaku Saturn 724 CCD area-detector diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 2000[Higashi, T. (2000). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.993, Tmax = 0.995

  • 62834 measured reflections

  • 8937 independent reflections

  • 8783 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.114

  • S = 1.27

  • 8937 reflections

  • 469 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C26–C31 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N5 0.86 2.12 2.963 (2) 168
N4—H4⋯N2 0.86 2.16 3.006 (2) 167
C8—H8⋯O4 0.93 2.59 3.461 (2) 157
C27—H27⋯O1 0.93 2.61 3.321 (2) 134
C11—H11⋯O6i 0.93 2.38 3.161 (2) 141
C28—H28⋯O3ii 0.93 2.61 3.292 (2) 131
C37—H37A⋯O6iii 0.97 2.56 3.375 (3) 142
C16—H16B⋯O3iv 0.96 2.44 3.397 (3) 177
C20—H20C⋯O2v 0.96 2.61 3.460 (3) 147
C22—H22ACgvi 0.96 2.98 3.942 (3) 176
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (v) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (vi) -x+2, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEX (McArdle, 1995[McArdle, P. (1995). J. Appl. Cryst. 28, 65.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

A number of benzothiazole derivatives have anti-tuberculous (Brantley et al., 2004; Mortimer et al., 2006; Ćaleta et al., 2009) or anti-microbial activities (Palmer et al., 1971). During our development of 2-aminobenzothiazole-based Urokinase-Type Plasminogen Activator (uPA) inhibitors, the title compound was synthesized as an intermediate while its activity was not tested because it is only a fragment of our target molecule.

There are two benzothiazole molecules in one crystallographically independent unit. The benzothiazole units are similar to previously reported benzothiazole compounds (Lynch, 2002; Matković-Čalogović et al., 2003), except that the two molecules are slightly distorted from a planar conformation with the angles between thiazole and benzene rings of 1.19 (7) ° for molecule 1 (C1 >> C19) and 4.01 (6) ° for molecule 2 (C20 >> C38), respectively. The dihedral angles between the carbonylamino group and the thiazole ring are 5.43 (15) ° for 1 and 18.19 (11) ° for 2, respectively. The dihedral angles between the dipropylcarbamoyl group and the benzene ring are 56.75 (16) ° for 1 and 54.0914 (1) \5 for 2, respectively.

In the crystal, molecules form pairs via N—H···N and C—H···O hydrogen bonds, Table 1. The dimers form a network through weak C—H···O hydrogen bonds. There is also a very weak C22—H22A···Cg contact (Cg is the centroid of the C26···C31 benzene ring). No π - π interactions are found in this structure, seemingly due to the steric hindrance of the dipropylcarbamoyl group. This is in contrast to what was found in the structure of ethyl 2-(tert-butoxycarbonylamino)-1,3-benzothiazole-6-carboxylate (Lei et al., 2010).

Related literature top

For benzothiazole derivatives with anti-tumor activity, see: Brantley et al. (2004); Ćaleta et al. (2009); Mortimer et al. (2006) and for benzothiazolines with anti-tuberculous properties, see: Palmer et al. (1971). For related benzothiazole structures, see: Lynch et al. (2002); Matković-Čalogović et al. (2003); Lei et al. (2010).

Experimental top

A solution of ethyl 2-(tert-butoxycarbonylamino)benzo[d]thiazole-6-carboxylate (2.5 g, 7.76 mmol) was refluxed in a solution of EtOH (80 ml) and 2 N aq NaOH (50 ml) for 5 hours. Then the solution was cooled to 0oC and acidified with 1 N aq HCl solution. When pH < 2, white precipitate was collected, washed by water, and dried, afforded white solid of 2-(tert-butoxycarbonylamino)benzo[d]thiazole-6-carboxylic acid, N-Boc acid, (1.96 g, yield: 86%). 2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate, HBTU (1138 mg, 3 mmol) and N,N-Diisopropylethylamine, DIEA, (310 mg, 2.4 mmol) were added to the solution of N-Boc acid (588 mg, 2 mmol) in dry DMF (20 ml) and stired for 8 hours at room temperature, then dipropylamine (303 mg, 3 mmol) was added dropwise and the reaction continued further for 12 hours. The reaction solution was treated with water (150 ml) and then the precipitate was collected and washed with water. The filter cake was dried to yield a yellow solid and purification was achieved by column chromatography (ethyl acetate/petroleum ether 1 : 2) to yield the final product as a white solid (600 mg, yield: 79.58%). The solid was dissolved again in DMF, and filtered. After the solvent evaporated slowly at room temperature for a week, colourless rhombic crystals suitable for X-ray structure analysis were separated from the solution.

Refinement top

All H atoms bound to C and N atoms were refined as riding, with C—H distances in the range of 0.93 to 0.97 Å and N—H distances of 0.86 Å, with Uiso(H) = 1.2Ueq(C, N); 1.5Ueq(Cmethyl).

Structure description top

A number of benzothiazole derivatives have anti-tuberculous (Brantley et al., 2004; Mortimer et al., 2006; Ćaleta et al., 2009) or anti-microbial activities (Palmer et al., 1971). During our development of 2-aminobenzothiazole-based Urokinase-Type Plasminogen Activator (uPA) inhibitors, the title compound was synthesized as an intermediate while its activity was not tested because it is only a fragment of our target molecule.

There are two benzothiazole molecules in one crystallographically independent unit. The benzothiazole units are similar to previously reported benzothiazole compounds (Lynch, 2002; Matković-Čalogović et al., 2003), except that the two molecules are slightly distorted from a planar conformation with the angles between thiazole and benzene rings of 1.19 (7) ° for molecule 1 (C1 >> C19) and 4.01 (6) ° for molecule 2 (C20 >> C38), respectively. The dihedral angles between the carbonylamino group and the thiazole ring are 5.43 (15) ° for 1 and 18.19 (11) ° for 2, respectively. The dihedral angles between the dipropylcarbamoyl group and the benzene ring are 56.75 (16) ° for 1 and 54.0914 (1) \5 for 2, respectively.

In the crystal, molecules form pairs via N—H···N and C—H···O hydrogen bonds, Table 1. The dimers form a network through weak C—H···O hydrogen bonds. There is also a very weak C22—H22A···Cg contact (Cg is the centroid of the C26···C31 benzene ring). No π - π interactions are found in this structure, seemingly due to the steric hindrance of the dipropylcarbamoyl group. This is in contrast to what was found in the structure of ethyl 2-(tert-butoxycarbonylamino)-1,3-benzothiazole-6-carboxylate (Lei et al., 2010).

For benzothiazole derivatives with anti-tumor activity, see: Brantley et al. (2004); Ćaleta et al. (2009); Mortimer et al. (2006) and for benzothiazolines with anti-tuberculous properties, see: Palmer et al. (1971). For related benzothiazole structures, see: Lynch et al. (2002); Matković-Čalogović et al. (2003); Lei et al. (2010).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.
tert-Butyl N-[6-(N,N-dipropylcarbamoyl)- 1,3-benzothiazol-2-yl]carbamate top
Crystal data top
C19H27N3O3SF(000) = 3232
Mr = 377.50Dx = 1.284 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 28185 reflections
a = 14.068 (3) Åθ = 3.0–27.5°
b = 20.942 (4) ŵ = 0.19 mm1
c = 26.515 (5) ÅT = 113 K
V = 7812 (3) Å3Rhombic, colourless
Z = 160.45 × 0.35 × 0.23 mm
Data collection top
Rigaku Saturn 724 CCD area-detector
diffractometer
8937 independent reflections
Radiation source: fine-focus sealed tube8783 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.0°
dtprofit.ref scansh = 1518
Absorption correction: numerical
(NUMABS; Higashi, 2000)
k = 2727
Tmin = 0.993, Tmax = 0.995l = 3034
62834 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.27 w = 1/[σ2(Fo2) + (0.0264P)2 + 6.2394P]
where P = (Fo2 + 2Fc2)/3
8937 reflections(Δ/σ)max = 0.001
469 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C19H27N3O3SV = 7812 (3) Å3
Mr = 377.50Z = 16
Orthorhombic, PbcaMo Kα radiation
a = 14.068 (3) ŵ = 0.19 mm1
b = 20.942 (4) ÅT = 113 K
c = 26.515 (5) Å0.45 × 0.35 × 0.23 mm
Data collection top
Rigaku Saturn 724 CCD area-detector
diffractometer
8937 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 2000)
8783 reflections with I > 2σ(I)
Tmin = 0.993, Tmax = 0.995Rint = 0.049
62834 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.27Δρmax = 0.33 e Å3
8937 reflectionsΔρmin = 0.23 e Å3
469 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.96277 (3)0.24066 (2)0.608747 (17)0.02135 (10)
S20.93248 (3)0.50052 (2)0.403321 (17)0.02120 (10)
O11.05224 (10)0.22536 (6)0.45079 (5)0.0225 (3)
O21.03002 (10)0.17996 (6)0.52814 (5)0.0257 (3)
O60.95635 (10)0.35162 (7)0.20407 (5)0.0278 (3)
O30.91447 (10)0.32656 (7)0.80962 (5)0.0270 (3)
O50.84796 (11)0.56490 (7)0.47992 (5)0.0300 (3)
O40.81103 (10)0.52117 (6)0.55639 (5)0.0242 (3)
N20.92428 (11)0.35382 (7)0.57104 (6)0.0193 (3)
N30.76025 (11)0.35404 (8)0.79978 (6)0.0229 (3)
N50.92687 (11)0.38443 (7)0.43988 (6)0.0200 (3)
N10.98199 (12)0.28194 (7)0.51118 (6)0.0216 (3)
H10.97290.30960.48770.026*
N40.88637 (11)0.46199 (7)0.49931 (6)0.0210 (3)
H40.89360.43520.52360.025*
N61.08841 (11)0.41277 (8)0.21075 (6)0.0218 (3)
C11.18925 (15)0.15247 (12)0.45972 (8)0.0332 (5)
H1A1.23080.18880.46040.050*
H1B1.22160.11690.44460.050*
H1C1.17110.14160.49350.050*
C21.12919 (15)0.19117 (10)0.37669 (7)0.0279 (4)
H2A1.17340.22590.37960.042*
H2B1.07350.20530.35900.042*
H2C1.15830.15670.35850.042*
C31.03136 (16)0.11326 (10)0.42613 (8)0.0322 (5)
H3A0.97730.12590.40640.048*
H3B1.01100.10190.45950.048*
H3C1.06160.07720.41060.048*
C41.10119 (13)0.16828 (9)0.42915 (7)0.0217 (4)
C51.02273 (13)0.22401 (9)0.49879 (7)0.0207 (4)
C60.95554 (13)0.29683 (9)0.55966 (7)0.0190 (3)
C70.90343 (13)0.35638 (9)0.62241 (7)0.0184 (3)
C80.86796 (13)0.40970 (9)0.64792 (7)0.0215 (4)
H80.85800.44800.63100.026*
C90.84795 (14)0.40442 (9)0.69893 (7)0.0224 (4)
H90.82250.43930.71590.027*
C100.86521 (13)0.34754 (9)0.72555 (7)0.0202 (4)
C110.90282 (13)0.29492 (9)0.70073 (7)0.0206 (4)
H110.91610.25740.71810.025*
C120.92015 (13)0.29959 (8)0.64920 (7)0.0191 (3)
C130.84813 (13)0.34180 (9)0.78161 (7)0.0209 (4)
C140.67510 (14)0.35806 (10)0.76828 (7)0.0251 (4)
H14A0.62960.32640.77960.030*
H14B0.69220.34780.73380.030*
C150.62774 (16)0.42374 (10)0.76926 (8)0.0308 (5)
H15A0.58100.42490.79610.037*
H15B0.67530.45600.77630.037*
C160.57946 (17)0.43906 (11)0.71957 (8)0.0336 (5)
H16A0.55060.48050.72160.050*
H16B0.53150.40760.71270.050*
H16C0.62570.43880.69300.050*
C170.74676 (15)0.35034 (10)0.85472 (7)0.0273 (4)
H17A0.69200.37590.86400.033*
H17B0.80200.36840.87130.033*
C180.73213 (17)0.28227 (11)0.87350 (8)0.0346 (5)
H18A0.78270.25530.86070.041*
H18B0.67230.26600.86070.041*
C190.7314 (2)0.27955 (14)0.93096 (9)0.0501 (7)
H19A0.72200.23620.94170.075*
H19B0.68080.30570.94360.075*
H19C0.79110.29500.94370.075*
C200.66237 (15)0.57762 (11)0.53708 (8)0.0319 (5)
H20A0.63060.53710.53680.048*
H20B0.68380.58770.50360.048*
H20C0.61910.61000.54850.048*
C210.71580 (18)0.55301 (12)0.62447 (8)0.0382 (5)
H21A0.68200.51330.62180.057*
H21B0.67510.58480.63910.057*
H21C0.77080.54730.64540.057*
C220.80034 (16)0.63702 (11)0.57473 (10)0.0381 (5)
H22A0.85310.63290.59750.057*
H22B0.75860.67010.58650.057*
H22C0.82340.64780.54170.057*
C230.74685 (14)0.57458 (9)0.57230 (7)0.0238 (4)
C240.84771 (13)0.52107 (9)0.50973 (7)0.0217 (4)
C250.91377 (13)0.44426 (9)0.45142 (7)0.0194 (3)
C260.95101 (13)0.37896 (9)0.38902 (7)0.0187 (3)
C270.96320 (13)0.32156 (9)0.36315 (7)0.0211 (4)
H270.95650.28270.37980.025*
C280.98538 (13)0.32322 (9)0.31227 (7)0.0206 (4)
H280.99140.28510.29450.025*
C290.99895 (12)0.38148 (9)0.28707 (7)0.0191 (3)
C300.98720 (13)0.43903 (9)0.31258 (7)0.0200 (4)
H300.99670.47780.29620.024*
C310.96087 (13)0.43706 (9)0.36330 (7)0.0196 (4)
C321.01427 (13)0.38019 (8)0.23074 (7)0.0196 (4)
C331.09844 (15)0.41331 (10)0.15547 (7)0.0270 (4)
H33A1.03630.40720.14040.032*
H33B1.13820.37770.14540.032*
C341.14122 (19)0.47439 (11)0.13533 (9)0.0399 (5)
H34A1.20480.47980.14890.048*
H34B1.10310.51050.14610.048*
C351.1456 (2)0.47286 (14)0.07794 (9)0.0505 (7)
H35A1.17300.51190.06580.076*
H35B1.08260.46820.06460.076*
H35C1.18410.43750.06730.076*
C361.17332 (14)0.42832 (10)0.24024 (8)0.0268 (4)
H36A1.15670.42920.27570.032*
H36B1.19520.47060.23090.032*
C371.25318 (16)0.38125 (12)0.23238 (9)0.0386 (5)
H37A1.30780.39470.25210.046*
H37B1.27150.38160.19710.046*
C381.2265 (2)0.31399 (13)0.24729 (12)0.0516 (7)
H38A1.27950.28610.24150.077*
H38B1.17330.30010.22740.077*
H38C1.20960.31310.28240.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0280 (2)0.0193 (2)0.0168 (2)0.00554 (18)0.00337 (17)0.00088 (16)
S20.0278 (2)0.0174 (2)0.0184 (2)0.00189 (17)0.00406 (17)0.00045 (16)
O10.0295 (7)0.0212 (6)0.0169 (6)0.0050 (5)0.0044 (5)0.0015 (5)
O20.0333 (8)0.0220 (7)0.0217 (7)0.0055 (6)0.0063 (6)0.0019 (5)
O60.0283 (7)0.0346 (8)0.0204 (7)0.0086 (6)0.0001 (6)0.0030 (6)
O30.0263 (7)0.0340 (8)0.0207 (7)0.0040 (6)0.0011 (5)0.0021 (6)
O50.0414 (9)0.0227 (7)0.0259 (7)0.0060 (6)0.0078 (6)0.0032 (6)
O40.0314 (7)0.0238 (7)0.0174 (6)0.0085 (6)0.0028 (5)0.0022 (5)
N20.0209 (7)0.0198 (7)0.0171 (7)0.0013 (6)0.0015 (6)0.0005 (6)
N30.0233 (8)0.0284 (8)0.0169 (7)0.0039 (7)0.0020 (6)0.0011 (6)
N50.0234 (8)0.0204 (7)0.0161 (7)0.0008 (6)0.0009 (6)0.0001 (6)
N10.0288 (8)0.0199 (8)0.0162 (7)0.0048 (6)0.0034 (6)0.0014 (6)
N40.0266 (8)0.0194 (7)0.0169 (7)0.0039 (6)0.0019 (6)0.0010 (6)
N60.0234 (8)0.0245 (8)0.0175 (8)0.0032 (6)0.0020 (6)0.0011 (6)
C10.0271 (10)0.0465 (13)0.0259 (10)0.0118 (9)0.0002 (8)0.0034 (9)
C20.0350 (11)0.0284 (10)0.0203 (9)0.0040 (8)0.0051 (8)0.0030 (8)
C30.0364 (12)0.0266 (10)0.0336 (11)0.0032 (9)0.0061 (9)0.0082 (9)
C40.0237 (9)0.0218 (9)0.0197 (9)0.0048 (7)0.0040 (7)0.0040 (7)
C50.0224 (9)0.0217 (9)0.0181 (8)0.0017 (7)0.0024 (7)0.0021 (7)
C60.0192 (8)0.0201 (8)0.0178 (8)0.0002 (7)0.0008 (7)0.0007 (7)
C70.0186 (8)0.0203 (8)0.0163 (8)0.0008 (7)0.0004 (6)0.0003 (7)
C80.0249 (9)0.0187 (8)0.0209 (9)0.0008 (7)0.0006 (7)0.0011 (7)
C90.0261 (9)0.0191 (9)0.0218 (9)0.0020 (7)0.0031 (7)0.0029 (7)
C100.0195 (8)0.0224 (9)0.0187 (9)0.0005 (7)0.0006 (7)0.0010 (7)
C110.0218 (9)0.0206 (9)0.0194 (9)0.0027 (7)0.0007 (7)0.0014 (7)
C120.0189 (8)0.0183 (8)0.0199 (9)0.0027 (7)0.0011 (7)0.0000 (7)
C130.0243 (9)0.0191 (8)0.0195 (9)0.0005 (7)0.0017 (7)0.0016 (7)
C140.0242 (9)0.0287 (10)0.0223 (9)0.0013 (8)0.0007 (7)0.0035 (8)
C150.0342 (11)0.0309 (11)0.0273 (10)0.0078 (9)0.0028 (9)0.0054 (8)
C160.0384 (12)0.0335 (11)0.0290 (11)0.0081 (9)0.0033 (9)0.0025 (9)
C170.0303 (10)0.0336 (11)0.0180 (9)0.0060 (8)0.0048 (8)0.0014 (8)
C180.0367 (12)0.0394 (12)0.0277 (11)0.0024 (10)0.0070 (9)0.0043 (9)
C190.0644 (18)0.0561 (16)0.0300 (12)0.0062 (14)0.0089 (12)0.0132 (11)
C200.0279 (11)0.0354 (11)0.0323 (11)0.0053 (9)0.0047 (8)0.0062 (9)
C210.0460 (13)0.0434 (13)0.0252 (10)0.0162 (11)0.0070 (9)0.0043 (9)
C220.0303 (11)0.0322 (11)0.0518 (14)0.0021 (9)0.0020 (10)0.0180 (10)
C230.0244 (9)0.0229 (9)0.0240 (9)0.0062 (7)0.0009 (7)0.0059 (7)
C240.0227 (9)0.0225 (9)0.0199 (9)0.0018 (7)0.0001 (7)0.0018 (7)
C250.0197 (8)0.0205 (8)0.0180 (8)0.0011 (7)0.0008 (7)0.0000 (7)
C260.0194 (8)0.0210 (8)0.0157 (8)0.0002 (7)0.0003 (6)0.0010 (7)
C270.0255 (9)0.0183 (8)0.0194 (9)0.0007 (7)0.0002 (7)0.0019 (7)
C280.0219 (9)0.0195 (9)0.0203 (9)0.0002 (7)0.0017 (7)0.0017 (7)
C290.0174 (8)0.0224 (9)0.0174 (8)0.0007 (7)0.0002 (6)0.0005 (7)
C300.0231 (9)0.0187 (8)0.0183 (8)0.0010 (7)0.0025 (7)0.0030 (7)
C310.0197 (8)0.0191 (8)0.0200 (9)0.0019 (7)0.0001 (7)0.0005 (7)
C320.0210 (9)0.0176 (8)0.0203 (9)0.0013 (7)0.0007 (7)0.0005 (7)
C330.0296 (10)0.0330 (11)0.0184 (9)0.0044 (8)0.0027 (7)0.0008 (8)
C340.0531 (15)0.0351 (12)0.0314 (12)0.0038 (11)0.0093 (10)0.0054 (10)
C350.0652 (18)0.0556 (16)0.0306 (12)0.0087 (14)0.0093 (12)0.0127 (11)
C360.0239 (10)0.0316 (10)0.0250 (10)0.0064 (8)0.0016 (8)0.0057 (8)
C370.0227 (10)0.0552 (15)0.0378 (12)0.0055 (10)0.0008 (9)0.0078 (11)
C380.0442 (15)0.0456 (14)0.0649 (18)0.0216 (12)0.0073 (13)0.0014 (13)
Geometric parameters (Å, º) top
S1—C121.7416 (18)C15—H15A0.9700
S1—C61.7574 (18)C15—H15B0.9700
S2—C311.7469 (18)C16—H16A0.9600
S2—C251.7563 (19)C16—H16B0.9600
O1—C51.339 (2)C16—H16C0.9600
O1—C41.494 (2)C17—C181.524 (3)
O2—C51.211 (2)C17—H17A0.9700
O6—C321.234 (2)C17—H17B0.9700
O3—C131.235 (2)C18—C191.525 (3)
O5—C241.211 (2)C18—H18A0.9700
O4—C241.341 (2)C18—H18B0.9700
O4—C231.498 (2)C19—H19A0.9600
N2—C61.307 (2)C19—H19B0.9600
N2—C71.394 (2)C19—H19C0.9600
N3—C131.351 (2)C20—C231.513 (3)
N3—C141.463 (2)C20—H20A0.9600
N3—C171.471 (2)C20—H20B0.9600
N5—C251.303 (2)C20—H20C0.9600
N5—C261.395 (2)C21—C231.519 (3)
N1—C61.374 (2)C21—H21A0.9600
N1—C51.381 (2)C21—H21B0.9600
N1—H10.8600C21—H21C0.9600
N4—C251.378 (2)C22—C231.510 (3)
N4—C241.379 (2)C22—H22A0.9600
N4—H40.8600C22—H22B0.9600
N6—C321.354 (2)C22—H22C0.9600
N6—C361.464 (2)C26—C271.395 (2)
N6—C331.473 (2)C26—C311.401 (2)
C1—C41.517 (3)C27—C281.385 (3)
C1—H1A0.9600C27—H270.9300
C1—H1B0.9600C28—C291.404 (3)
C1—H1C0.9600C28—H280.9300
C2—C41.523 (3)C29—C301.392 (3)
C2—H2A0.9600C29—C321.509 (2)
C2—H2B0.9600C30—C311.396 (2)
C2—H2C0.9600C30—H300.9300
C3—C41.516 (3)C33—C341.511 (3)
C3—H3A0.9600C33—H33A0.9700
C3—H3B0.9600C33—H33B0.9700
C3—H3C0.9600C34—C351.523 (3)
C7—C81.398 (2)C34—H34A0.9700
C7—C121.405 (2)C34—H34B0.9700
C8—C91.386 (3)C35—H35A0.9600
C8—H80.9300C35—H35B0.9600
C9—C101.406 (3)C35—H35C0.9600
C9—H90.9300C36—C371.509 (3)
C10—C111.388 (3)C36—H36A0.9700
C10—C131.511 (2)C36—H36B0.9700
C11—C121.391 (2)C37—C381.511 (4)
C11—H110.9300C37—H37A0.9700
C14—C151.528 (3)C37—H37B0.9700
C14—H14A0.9700C38—H38A0.9600
C14—H14B0.9700C38—H38B0.9600
C15—C161.517 (3)C38—H38C0.9600
C12—S1—C687.81 (9)C17—C18—H18B109.4
C31—S2—C2587.99 (9)C19—C18—H18B109.4
C5—O1—C4119.41 (14)H18A—C18—H18B108.0
C24—O4—C23119.54 (14)C18—C19—H19A109.5
C6—N2—C7109.36 (15)C18—C19—H19B109.5
C13—N3—C14123.81 (16)H19A—C19—H19B109.5
C13—N3—C17117.46 (16)C18—C19—H19C109.5
C14—N3—C17117.57 (16)H19A—C19—H19C109.5
C25—N5—C26109.89 (15)H19B—C19—H19C109.5
C6—N1—C5122.29 (15)C23—C20—H20A109.5
C6—N1—H1118.9C23—C20—H20B109.5
C5—N1—H1118.9H20A—C20—H20B109.5
C25—N4—C24122.45 (16)C23—C20—H20C109.5
C25—N4—H4118.8H20A—C20—H20C109.5
C24—N4—H4118.8H20B—C20—H20C109.5
C32—N6—C36122.09 (16)C23—C21—H21A109.5
C32—N6—C33117.85 (16)C23—C21—H21B109.5
C36—N6—C33116.85 (16)H21A—C21—H21B109.5
C4—C1—H1A109.5C23—C21—H21C109.5
C4—C1—H1B109.5H21A—C21—H21C109.5
H1A—C1—H1B109.5H21B—C21—H21C109.5
C4—C1—H1C109.5C23—C22—H22A109.5
H1A—C1—H1C109.5C23—C22—H22B109.5
H1B—C1—H1C109.5H22A—C22—H22B109.5
C4—C2—H2A109.5C23—C22—H22C109.5
C4—C2—H2B109.5H22A—C22—H22C109.5
H2A—C2—H2B109.5H22B—C22—H22C109.5
C4—C2—H2C109.5O4—C23—C22110.99 (16)
H2A—C2—H2C109.5O4—C23—C20109.34 (15)
H2B—C2—H2C109.5C22—C23—C20112.42 (18)
C4—C3—H3A109.5O4—C23—C21101.98 (15)
C4—C3—H3B109.5C22—C23—C21111.22 (18)
H3A—C3—H3B109.5C20—C23—C21110.41 (18)
C4—C3—H3C109.5O5—C24—O4127.02 (17)
H3A—C3—H3C109.5O5—C24—N4123.22 (17)
H3B—C3—H3C109.5O4—C24—N4109.76 (16)
O1—C4—C3109.24 (15)N5—C25—N4121.01 (16)
O1—C4—C1110.23 (15)N5—C25—S2116.96 (14)
C3—C4—C1113.05 (18)N4—C25—S2122.03 (14)
O1—C4—C2102.60 (14)C27—C26—N5125.16 (16)
C3—C4—C2111.01 (17)C27—C26—C31119.80 (16)
C1—C4—C2110.21 (17)N5—C26—C31115.03 (16)
O2—C5—O1126.91 (17)C28—C27—C26119.02 (17)
O2—C5—N1123.45 (17)C28—C27—H27120.5
O1—C5—N1109.64 (15)C26—C27—H27120.5
N2—C6—N1120.96 (16)C27—C28—C29121.05 (17)
N2—C6—S1117.36 (14)C27—C28—H28119.5
N1—C6—S1121.68 (14)C29—C28—H28119.5
N2—C7—C8125.35 (16)C30—C29—C28120.34 (16)
N2—C7—C12115.22 (16)C30—C29—C32120.88 (16)
C8—C7—C12119.44 (16)C28—C29—C32118.35 (16)
C9—C8—C7118.75 (17)C29—C30—C31118.30 (17)
C9—C8—H8120.6C29—C30—H30120.8
C7—C8—H8120.6C31—C30—H30120.8
C8—C9—C10121.50 (17)C30—C31—C26121.38 (17)
C8—C9—H9119.2C30—C31—S2128.57 (14)
C10—C9—H9119.2C26—C31—S2110.02 (13)
C11—C10—C9120.03 (17)O6—C32—N6121.92 (17)
C11—C10—C13117.64 (16)O6—C32—C29118.79 (16)
C9—C10—C13122.28 (16)N6—C32—C29119.22 (16)
C10—C11—C12118.46 (17)N6—C33—C34113.35 (17)
C10—C11—H11120.8N6—C33—H33A108.9
C12—C11—H11120.8C34—C33—H33A108.9
C11—C12—C7121.77 (16)N6—C33—H33B108.9
C11—C12—S1127.97 (14)C34—C33—H33B108.9
C7—C12—S1110.25 (13)H33A—C33—H33B107.7
O3—C13—N3121.74 (17)C33—C34—C35110.6 (2)
O3—C13—C10119.49 (17)C33—C34—H34A109.5
N3—C13—C10118.77 (16)C35—C34—H34A109.5
N3—C14—C15113.52 (16)C33—C34—H34B109.5
N3—C14—H14A108.9C35—C34—H34B109.5
C15—C14—H14A108.9H34A—C34—H34B108.1
N3—C14—H14B108.9C34—C35—H35A109.5
C15—C14—H14B108.9C34—C35—H35B109.5
H14A—C14—H14B107.7H35A—C35—H35B109.5
C16—C15—C14111.76 (17)C34—C35—H35C109.5
C16—C15—H15A109.3H35A—C35—H35C109.5
C14—C15—H15A109.3H35B—C35—H35C109.5
C16—C15—H15B109.3N6—C36—C37112.85 (17)
C14—C15—H15B109.3N6—C36—H36A109.0
H15A—C15—H15B107.9C37—C36—H36A109.0
C15—C16—H16A109.5N6—C36—H36B109.0
C15—C16—H16B109.5C37—C36—H36B109.0
H16A—C16—H16B109.5H36A—C36—H36B107.8
C15—C16—H16C109.5C36—C37—C38112.81 (19)
H16A—C16—H16C109.5C36—C37—H37A109.0
H16B—C16—H16C109.5C38—C37—H37A109.0
N3—C17—C18112.97 (17)C36—C37—H37B109.0
N3—C17—H17A109.0C38—C37—H37B109.0
C18—C17—H17A109.0H37A—C37—H37B107.8
N3—C17—H17B109.0C37—C38—H38A109.5
C18—C17—H17B109.0C37—C38—H38B109.5
H17A—C17—H17B107.8H38A—C38—H38B109.5
C17—C18—C19111.2 (2)C37—C38—H38C109.5
C17—C18—H18A109.4H38A—C38—H38C109.5
C19—C18—H18A109.4H38B—C38—H38C109.5
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C26–C31 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···N50.862.122.963 (2)168
N4—H4···N20.862.163.006 (2)167
C8—H8···O40.932.593.461 (2)157
C27—H27···O10.932.613.321 (2)134
C11—H11···O6i0.932.383.161 (2)141
C28—H28···O3ii0.932.613.292 (2)131
C37—H37A···O6iii0.972.563.375 (3)142
C16—H16B···O3iv0.962.443.397 (3)177
C20—H20C···O2v0.962.613.460 (3)147
C22—H22A···Cgvi0.962.983.942 (3)176
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+1/2, y, z+1/2; (iv) x1/2, y, z+3/2; (v) x+3/2, y+1/2, z; (vi) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC19H27N3O3S
Mr377.50
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)113
a, b, c (Å)14.068 (3), 20.942 (4), 26.515 (5)
V3)7812 (3)
Z16
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.45 × 0.35 × 0.23
Data collection
DiffractometerRigaku Saturn 724 CCD area-detector
Absorption correctionNumerical
(NUMABS; Higashi, 2000)
Tmin, Tmax0.993, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
62834, 8937, 8783
Rint0.049
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.114, 1.27
No. of reflections8937
No. of parameters469
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.23

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), ORTEX (McArdle, 1995), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C26–C31 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···N50.862.122.963 (2)168.0
N4—H4···N20.862.163.006 (2)166.8
C8—H8···O40.932.593.461 (2)156.7
C27—H27···O10.932.613.321 (2)133.9
C11—H11···O6i0.932.383.161 (2)141.2
C28—H28···O3ii0.932.613.292 (2)130.8
C37—H37A···O6iii0.972.563.375 (3)142.2
C16—H16B···O3iv0.962.443.397 (3)176.5
C20—H20C···O2v0.962.613.460 (3)147.1
C22—H22A···Cgvi0.962.983.942 (3)176.1
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+1/2, y, z+1/2; (iv) x1/2, y, z+3/2; (v) x+3/2, y+1/2, z; (vi) x+2, y+1, z+1.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Fujian Institute of Research on the Structure of Matter, State Key Laboratory of Structural Chemistry, Chinese Academy of Sciences (Nos. SZD08003 and NSFC– 30811130467), the Fujian Natural Science Foundation (No. 2008 J0330) and the Fujian Terms of Science and Technology (Nos. 2008 F5033, 2008 J1005 and 2009I0016).

References

First citationBrantley, E., Trapani, V., Alley, M. C., Hose, C. D., Bradshaw, T. D., Stevens, M. F. G., Sausville, E. A. & Stinson, S. F. (2004). Drug Metab. Disp. 32, 1392–1401.  Web of Science CrossRef CAS Google Scholar
First citationĆaleta, I., Kralj, M., Marjanović, M., Bertoša, B., Tomić, S., Pavlović, G., Pavelić, K. & Karminski-Zamola, G. (2009). J. Med. Chem. 52, 1744–1756.  Web of Science PubMed Google Scholar
First citationHigashi, T. (2000). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLei, C., Fang, X., Yu, H.-Y., Huang, M.-D. & Wang, J.-D. (2010). Acta Cryst. E66, o914.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLynch, D. E. (2002). Acta Cryst. E58, o1139–o1141.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMatković-Čalogović, D., Popović, Z., Tralić-Kulenović, V., Racanè, L. & Karminski-Zamola, G. (2003). Acta Cryst. C59, o190–o191.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcArdle, P. (1995). J. Appl. Cryst. 28, 65.  CrossRef IUCr Journals Google Scholar
First citationMortimer, C. G., Wells, G., Crochard, J., Stone, E. L., Bradshaw, T. D., Stevens, M. F. G. & Westwell, A. D. (2006). J. Med. Chem. 49, 179–185.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPalmer, P. J., Trigg, R. B. & Warrington, J. V. (1971). J. Med. Chem. 14, 248–251.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds