organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Benzyl-N-methyl-3-phenyl-3-[4-(tri­fluoro­meth­yl)phen­­oxy]propanamine (N-benzylflouoxetine)

aDepartment of Chemistry, Lahore College for Women University, Lahore 54000, Pakistan, and bDepartment of Physics, Ondokuz Mayıs University, TR-55139, Samsun, Turkey
*Correspondence e-mail: nosheen.chem.lcwu@gmail.com

(Received 9 March 2010; accepted 6 April 2010; online 24 April 2010)

In the title compound, C24H24F3NO, the N-benzyl derivative of fluoxetine {N-methyl-3-[4-(trifluoro­meth­yl)phen­oxy]­benzene­propanamine}, the three aromatic rings A, B and C are inclined to one another by 76.77 (12)° for A/B, 17.05 (14)° for A/C and 89.66 (14)° for B/C. In the crystal structure, mol­ecules are linked via C—H⋯π inter­actions to form one-dimensional chains propagating in the [010] direction.

Related literature

For the therapeutic uses of fluoxetine, see: Benefield et al. (1986[Benefield, P., Heel, R. C. & Lewis, S. P. (1986). Drugs, 32, 481-508.]); Feighner & Boyer (1991[Feighner, J. P. & Boyer, W. F. (1991). Selective Serotonin Re-uptake Inhibitors. New York: Wiley.]); Markowitz et al. (1999[Markowitz, J. S., Brown, C. S. & Moore, T. R. (1999). Ann. Pharmacother. 33, 73-85.]); Wong et al. (1995[Wong, D., Bymaster, F. & Engleman, E. (1995). Life Sci. 57, 411-441.]); Zhu et al. (2009[Zhu, S.-P., Mao, Z. F., Huang, J. & Wang, J.-Y. (2009). Clin. Exp. Pharmacol. Physiol. 36, e1-e5.]). For the crystal structures of various fluoxetine derivatives, see: Childs et al. (2004[Childs, S. L., Chyll, L. J., Dunlap, J. T., Smolenskaya, V. N., Stahly, B. C. & Stahly, G. P. (2004). J. Am. Chem. Soc. 126, 13335-13342.]); Robertson et al. (1988[Robertson, D. W., Jones, N. D., Swartzendruber, J. K., Yang, K. S. & Wong, D. T. (1988). J. Med. Chem. 31, 185-189.]).

[Scheme 1]

Experimental

Crystal data
  • C24H24F3NO

  • Mr = 399.44

  • Monoclinic, P 21 /c

  • a = 6.1712 (5) Å

  • b = 17.2900 (14) Å

  • c = 20.3028 (16) Å

  • β = 91.029 (5)°

  • V = 2166.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.31 × 0.25 × 0.22 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • 24582 measured reflections

  • 5395 independent reflections

  • 1743 reflections with I > 2σ(I)

  • Rint = 0.092

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.136

  • S = 0.91

  • 5395 reflections

  • 297 parameters

  • 8 restraints

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
C—H⋯π inter­actions (Å, °)

Cg1 is the centroid of ring A (C1–C6), Cg2 that of ring B (C8–C13) and Cg3 that of ring C (C17–C22).

D H Centroid C—H H⋯Cg DCg C—H⋯Cg
C10 H10 Cg3i 0.93 2.90 3.588 (3) 132
C18 H18 Cg1ii 0.93 3.08 3.976 (4) 162
C19 H19 Cg2ii 0.93 2.94 3.719 (4) 143
Symmetry codes: (i) −x + 1, y − [{1\over 2}], −z + [{1\over 2}]; (ii) −x, y + [{1\over 2}], −z + [{1\over 2}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Fluoxetine (N-methyl-3-[4-(trifluoromethyl)phenoxy]benzenepropanamine) has been approved worldwide in the therapy of major depression (Markowitz et al., 1999); Feighner & Boyer, 1991) and in the treatment of other syndromes, such as Bulimia nervosa, Panic fits and obsessive–compulsive disorder (Benefield et al., 1986; Wong et al., 1995). Recently, Zhu et al. reported that continuous Fluoxetine administration also prevents recurrence of pulmonary arterial hypertension in rats (Zhu et al., 2009). Crystal structure of Fluoxetine has been reported as the hydrochloride, hydrochloride benzoic acid, hydrochloride succinic acid and hydrochloride fumaric acid (Robertson et al., 1988; Childs et al., 2004). Herein, we report on the crystal structure of N-Benzyl Fluoxetine.

The molecular structure of the title molecule is illustrated in Fig. 1. The geometrical parameters are similar to those in the above mentioned derivatives. In the title compound the F atoms of the CF3 groups shows disorder and were modelled with three different orientations (F1a—F3a, F1b—F2b and F2aa—F2ab—F3bb—F3ba) with occupancy factors of 0.50, 0.50 and 0.25, respectively (Fig. 1). The H7—C7—C8—C9 torsion angle is -19.2°, indicating that the monosubstituted phenyl ring (B) deviates only slightly from the plane defined by atoms C8, C7, and H7.

The relationship of this phenyl ring to the trifluoromethyl-substituted phenoxy ring (A) is defined by the torsion angles C8—C7—O1—C1 and C7—O1—C1—C6, which are 82.8 (2) and -6.9 (3)°, respectively. The three phenyl ring mean planes are approximately planar, with maximum deviations of 0.0094 (17) Å for atom C3 (ring A), 0.0032 (18) Å for atom C11 (ring B) and 0.0050 (17) Å for atom C17 (ring C).

In the crystal structure of the title compound, there are no intra- or intermolecular hydrogen-bonding interactions, only weak C—H···π interactions. These lead to the formation of a chain propagating along [010]; see Fig. 2 and Table 1.

Related literature top

For related literature on the therapeutic uses of fluoxetine, see: Benefield et al. (1986); Feighner & Boyer (1991); Markowitz et al. (1999); Wong et al. (1995); Zhu et al. (2009). For the crystal structures of various fluoxetine derivatives, see: Childs et al. (2004); Robertson et al. (1988).

Experimental top

A mixture of Fluoxetine hydrogen chloride 0.5 g (1.45 mmol), sodium hydride 0.14 g (5.8 mmol) and N,N-dimethylformamide (10 ml) was stirred at room temperature for 30 min, followed by the addition of benzyl chloride 0.33 ml (2.9 mmol). Stirring was continued for a period of 3 h and the contents were then poured over crushed ice. The precipitated product was isolated, washed and crystallized from methanol, giving colourless prism-like crystals, suitable for X-ray analysis.

Refinement top

The F atoms of the CF3 group shows disorder and they were modelled with three different orientations (F1a/F3a, F1b/F2b and F2aa/F2ab/F3bb/F3ba) with occupancy factors of 0.50, 0.50 and 0.25, respectively The C-bound H atoms were included in calculated positions and refined using a riding model: C—H = 0.98, 0.97, 0.96 and 0.93 Å, for methine, methylene, methyl and aromatic H atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.2 for methine, methylene and aromatic H atoms and = 1.5 for methyl H atoms.

Structure description top

Fluoxetine (N-methyl-3-[4-(trifluoromethyl)phenoxy]benzenepropanamine) has been approved worldwide in the therapy of major depression (Markowitz et al., 1999); Feighner & Boyer, 1991) and in the treatment of other syndromes, such as Bulimia nervosa, Panic fits and obsessive–compulsive disorder (Benefield et al., 1986; Wong et al., 1995). Recently, Zhu et al. reported that continuous Fluoxetine administration also prevents recurrence of pulmonary arterial hypertension in rats (Zhu et al., 2009). Crystal structure of Fluoxetine has been reported as the hydrochloride, hydrochloride benzoic acid, hydrochloride succinic acid and hydrochloride fumaric acid (Robertson et al., 1988; Childs et al., 2004). Herein, we report on the crystal structure of N-Benzyl Fluoxetine.

The molecular structure of the title molecule is illustrated in Fig. 1. The geometrical parameters are similar to those in the above mentioned derivatives. In the title compound the F atoms of the CF3 groups shows disorder and were modelled with three different orientations (F1a—F3a, F1b—F2b and F2aa—F2ab—F3bb—F3ba) with occupancy factors of 0.50, 0.50 and 0.25, respectively (Fig. 1). The H7—C7—C8—C9 torsion angle is -19.2°, indicating that the monosubstituted phenyl ring (B) deviates only slightly from the plane defined by atoms C8, C7, and H7.

The relationship of this phenyl ring to the trifluoromethyl-substituted phenoxy ring (A) is defined by the torsion angles C8—C7—O1—C1 and C7—O1—C1—C6, which are 82.8 (2) and -6.9 (3)°, respectively. The three phenyl ring mean planes are approximately planar, with maximum deviations of 0.0094 (17) Å for atom C3 (ring A), 0.0032 (18) Å for atom C11 (ring B) and 0.0050 (17) Å for atom C17 (ring C).

In the crystal structure of the title compound, there are no intra- or intermolecular hydrogen-bonding interactions, only weak C—H···π interactions. These lead to the formation of a chain propagating along [010]; see Fig. 2 and Table 1.

For related literature on the therapeutic uses of fluoxetine, see: Benefield et al. (1986); Feighner & Boyer (1991); Markowitz et al. (1999); Wong et al. (1995); Zhu et al. (2009). For the crystal structures of various fluoxetine derivatives, see: Childs et al. (2004); Robertson et al. (1988).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the three independent molecules of the title compound, showing the atom-numbering scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Part of the crystal packing of the title compound, showing the formation of a chain along [010], generated by the C—H···π interactions [For clarity the H and F atoms not involved in the motifs shown have been omitted].
N-Benzyl-N-methyl-3-phenyl- 3-[4-(trifluoromethyl)phenoxy]propanamine top
Crystal data top
C24H24F3NOF(000) = 840
Mr = 399.44Dx = 1.225 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1693 reflections
a = 6.1712 (5) Åθ = 3.1–17.9°
b = 17.2900 (14) ŵ = 0.09 mm1
c = 20.3028 (16) ÅT = 296 K
β = 91.029 (5)°Prism, colourless
V = 2166.0 (3) Å30.31 × 0.25 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1743 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.092
Graphite monochromatorθmax = 28.4°, θmin = 2.3°
φ and ω scansh = 88
24582 measured reflectionsk = 2023
5395 independent reflectionsl = 2726
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0453P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max < 0.001
5395 reflectionsΔρmax = 0.13 e Å3
297 parametersΔρmin = 0.12 e Å3
8 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc* = kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0059 (9)
Crystal data top
C24H24F3NOV = 2166.0 (3) Å3
Mr = 399.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.1712 (5) ŵ = 0.09 mm1
b = 17.2900 (14) ÅT = 296 K
c = 20.3028 (16) Å0.31 × 0.25 × 0.22 mm
β = 91.029 (5)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1743 reflections with I > 2σ(I)
24582 measured reflectionsRint = 0.092
5395 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0528 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 0.91Δρmax = 0.13 e Å3
5395 reflectionsΔρmin = 0.12 e Å3
297 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.0963 (2)0.50665 (8)0.16926 (7)0.0583 (4)
N10.5187 (3)0.65181 (10)0.17839 (9)0.0558 (5)
C10.0584 (4)0.47323 (13)0.22867 (11)0.0502 (6)
C20.1392 (4)0.49238 (13)0.25629 (12)0.0594 (6)
H20.23490.52480.23370.071*
C30.1931 (4)0.46374 (15)0.31639 (13)0.0680 (7)
H30.32650.47610.33420.082*
C40.0517 (5)0.41668 (14)0.35088 (12)0.0639 (7)
C50.1420 (4)0.39704 (14)0.32336 (13)0.0689 (7)
H50.23720.36470.34620.083*
C60.1974 (4)0.42465 (13)0.26226 (12)0.0620 (7)
H60.32840.41040.24380.074*
C70.3076 (3)0.49854 (14)0.14017 (11)0.0543 (6)
H70.41900.50080.17510.065*
C80.3265 (4)0.42297 (14)0.10444 (11)0.0519 (6)
C90.5138 (4)0.37997 (15)0.10818 (12)0.0697 (7)
H90.62830.39700.13480.084*
C100.5352 (5)0.31207 (17)0.07326 (14)0.0777 (8)
H100.66310.28380.07640.093*
C110.3681 (6)0.28656 (16)0.03409 (13)0.0788 (8)
H110.38260.24100.01030.095*
C120.1785 (5)0.32795 (18)0.02973 (13)0.0778 (8)
H120.06410.31040.00330.093*
C130.1591 (4)0.39583 (15)0.06486 (12)0.0665 (7)
H130.03070.42380.06180.080*
C140.3318 (4)0.56805 (13)0.09553 (11)0.0619 (7)
H14A0.46480.56270.07120.074*
H14B0.21220.56860.06390.074*
C150.3365 (3)0.64435 (13)0.13203 (11)0.0598 (7)
H15A0.34310.68610.10020.072*
H15B0.20260.65000.15590.072*
C160.4799 (4)0.71459 (14)0.22471 (12)0.0675 (7)
H16A0.42840.75950.20050.081*
H16B0.61590.72840.24630.081*
C170.3187 (4)0.69440 (15)0.27594 (12)0.0594 (7)
C180.1365 (5)0.73751 (17)0.28500 (13)0.0794 (8)
H180.10990.77990.25780.095*
C190.0087 (5)0.7199 (2)0.33326 (18)0.1073 (12)
H190.13220.75000.33840.129*
C200.0286 (6)0.6584 (3)0.37342 (17)0.1050 (12)
H200.06960.64640.40610.126*
C210.2097 (7)0.61415 (18)0.36606 (16)0.1025 (11)
H210.23510.57190.39350.123*
C220.3546 (5)0.63265 (16)0.31761 (15)0.0826 (8)
H220.47890.60290.31300.099*
C230.7204 (3)0.66501 (15)0.14376 (13)0.0821 (8)
H23A0.74840.62190.11530.123*
H23B0.83750.67040.17520.123*
H23C0.70800.71140.11800.123*
C240.1069 (8)0.3881 (3)0.41791 (18)0.0918 (10)
F1A0.023 (2)0.3208 (7)0.4307 (7)0.117 (2)0.50
F2AA0.024 (5)0.4318 (16)0.4644 (11)0.119 (9)0.25
F2AB0.145 (4)0.4449 (16)0.4585 (14)0.119 (9)0.25
F3A0.3270 (11)0.3735 (7)0.4202 (5)0.117 (2)0.50
F1B0.0799 (13)0.3802 (13)0.4568 (5)0.195 (4)0.50
F2B0.207 (3)0.4342 (8)0.4524 (7)0.198 (8)0.50
F3BA0.115 (3)0.3139 (9)0.4299 (11)0.115 (7)0.25
F3BB0.266 (4)0.3368 (8)0.4193 (7)0.102 (4)0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0573 (10)0.0676 (11)0.0499 (10)0.0091 (8)0.0015 (8)0.0066 (9)
N10.0472 (11)0.0650 (14)0.0553 (13)0.0002 (10)0.0054 (10)0.0031 (11)
C10.0585 (15)0.0490 (16)0.0428 (15)0.0006 (12)0.0029 (12)0.0009 (13)
C20.0586 (15)0.0634 (17)0.0559 (17)0.0019 (13)0.0014 (13)0.0045 (14)
C30.0693 (17)0.0713 (19)0.0638 (19)0.0038 (14)0.0113 (15)0.0053 (16)
C40.090 (2)0.0531 (18)0.0488 (17)0.0010 (15)0.0071 (15)0.0007 (14)
C50.093 (2)0.0546 (17)0.0588 (19)0.0143 (14)0.0046 (16)0.0058 (14)
C60.0672 (16)0.0603 (18)0.0586 (18)0.0161 (13)0.0030 (14)0.0035 (14)
C70.0488 (14)0.0631 (17)0.0510 (15)0.0025 (12)0.0011 (11)0.0015 (14)
C80.0538 (15)0.0548 (17)0.0472 (15)0.0013 (13)0.0027 (12)0.0036 (13)
C90.0674 (17)0.071 (2)0.0704 (19)0.0088 (14)0.0047 (14)0.0046 (16)
C100.090 (2)0.075 (2)0.068 (2)0.0236 (17)0.0081 (16)0.0004 (17)
C110.115 (2)0.065 (2)0.0565 (19)0.0038 (19)0.0126 (18)0.0072 (15)
C120.088 (2)0.082 (2)0.0635 (19)0.0147 (17)0.0034 (15)0.0090 (17)
C130.0658 (16)0.071 (2)0.0626 (18)0.0000 (14)0.0019 (14)0.0063 (15)
C140.0676 (16)0.0649 (18)0.0533 (16)0.0013 (13)0.0024 (12)0.0065 (15)
C150.0595 (15)0.0558 (17)0.0643 (17)0.0046 (12)0.0016 (13)0.0036 (14)
C160.0691 (16)0.0635 (18)0.0700 (19)0.0056 (13)0.0023 (15)0.0066 (15)
C170.0615 (16)0.0561 (18)0.0605 (18)0.0021 (14)0.0034 (14)0.0140 (15)
C180.0753 (19)0.104 (2)0.0590 (19)0.0177 (18)0.0067 (16)0.0164 (17)
C190.081 (2)0.171 (4)0.070 (3)0.021 (2)0.004 (2)0.037 (2)
C200.101 (3)0.141 (4)0.074 (3)0.037 (2)0.028 (2)0.037 (3)
C210.150 (3)0.074 (2)0.086 (3)0.017 (2)0.040 (2)0.0079 (18)
C220.099 (2)0.065 (2)0.084 (2)0.0102 (16)0.0231 (19)0.0049 (18)
C230.0596 (16)0.099 (2)0.088 (2)0.0046 (15)0.0151 (15)0.0027 (17)
C240.125 (4)0.070 (3)0.081 (3)0.005 (3)0.016 (3)0.010 (3)
F1A0.135 (4)0.110 (4)0.109 (3)0.023 (3)0.047 (3)0.057 (3)
F2AA0.21 (3)0.108 (11)0.041 (5)0.056 (15)0.015 (13)0.008 (7)
F2AB0.21 (3)0.108 (11)0.041 (5)0.056 (15)0.015 (13)0.008 (7)
F3A0.135 (4)0.110 (4)0.109 (3)0.023 (3)0.047 (3)0.057 (3)
F1B0.189 (7)0.299 (13)0.097 (5)0.017 (9)0.009 (4)0.088 (7)
F2B0.348 (18)0.139 (13)0.111 (9)0.068 (12)0.118 (10)0.014 (7)
F3BA0.146 (18)0.068 (8)0.132 (9)0.016 (9)0.053 (13)0.049 (7)
F3BB0.158 (12)0.032 (6)0.116 (7)0.018 (7)0.009 (8)0.032 (6)
Geometric parameters (Å, º) top
O1—C11.361 (2)C14—H14B0.9700
O1—C71.448 (2)C15—H15A0.9700
N1—C231.458 (2)C15—H15B0.9700
N1—C161.459 (3)C16—C171.493 (3)
N1—C151.459 (2)C16—H16A0.9700
C1—C61.373 (3)C16—H16B0.9700
C1—C21.391 (3)C17—C181.364 (3)
C2—C31.363 (3)C17—C221.378 (3)
C2—H20.9300C18—C191.374 (4)
C3—C41.375 (3)C18—H180.9300
C3—H30.9300C19—C201.357 (4)
C4—C51.371 (3)C19—H190.9300
C4—C241.493 (4)C20—C211.365 (4)
C5—C61.378 (3)C20—H200.9300
C5—H50.9300C21—C221.379 (4)
C6—H60.9300C21—H210.9300
C7—C81.500 (3)C22—H220.9300
C7—C141.514 (3)C23—H23A0.9600
C7—H70.9800C23—H23B0.9600
C8—C91.375 (3)C23—H23C0.9600
C8—C131.379 (3)C24—F2B1.234 (10)
C9—C101.379 (3)C24—F1A1.298 (10)
C9—H90.9300C24—F2AA1.305 (15)
C10—C111.364 (3)C24—F2AB1.306 (18)
C10—H100.9300C24—F3BA1.307 (16)
C11—C121.373 (3)C24—F3BB1.323 (13)
C11—H110.9300C24—F3A1.384 (8)
C12—C131.380 (3)C24—F1B1.392 (8)
C12—H120.9300F2AA—F2AB0.79 (4)
C13—H130.9300F1B—F3BA1.74 (2)
C14—C151.513 (3)F3BA—F3BB1.03 (2)
C14—H14A0.9700
C1—O1—C7119.38 (16)C18—C17—C22117.7 (3)
C23—N1—C16110.24 (18)C18—C17—C16121.8 (3)
C23—N1—C15110.93 (18)C22—C17—C16120.5 (2)
C16—N1—C15110.37 (18)C17—C18—C19121.7 (3)
O1—C1—C6125.7 (2)C17—C18—H18119.2
O1—C1—C2115.0 (2)C19—C18—H18119.2
C6—C1—C2119.3 (2)C20—C19—C18119.7 (3)
C3—C2—C1120.2 (2)C20—C19—H19120.1
C3—C2—H2119.9C18—C19—H19120.1
C1—C2—H2119.9C19—C20—C21120.3 (3)
C2—C3—C4120.5 (2)C19—C20—H20119.9
C2—C3—H3119.7C21—C20—H20119.9
C4—C3—H3119.7C20—C21—C22119.4 (3)
C5—C4—C3119.2 (2)C20—C21—H21120.3
C5—C4—C24120.3 (3)C22—C21—H21120.3
C3—C4—C24120.5 (3)C17—C22—C21121.3 (3)
C4—C5—C6120.9 (2)C17—C22—H22119.4
C4—C5—H5119.6C21—C22—H22119.4
C6—C5—H5119.6N1—C23—H23A109.5
C1—C6—C5119.8 (2)N1—C23—H23B109.5
C1—C6—H6120.1H23A—C23—H23B109.5
C5—C6—H6120.1N1—C23—H23C109.5
O1—C7—C8111.09 (17)H23A—C23—H23C109.5
O1—C7—C14105.45 (17)H23B—C23—H23C109.5
C8—C7—C14113.11 (19)F2B—C24—F1A131.9 (9)
O1—C7—H7109.0F2B—C24—F2AA53.7 (12)
C8—C7—H7109.0F1A—C24—F2AA103.0 (14)
C14—C7—H7109.0F1A—C24—F2AB128.6 (15)
C9—C8—C13117.9 (2)F2B—C24—F3BA120.5 (10)
C9—C8—C7121.1 (2)F2AA—C24—F3BA116.7 (17)
C13—C8—C7121.0 (2)F2AB—C24—F3BA128 (2)
C8—C9—C10121.3 (2)F2B—C24—F3BB92.5 (11)
C8—C9—H9119.3F1A—C24—F3BB71.8 (8)
C10—C9—H9119.3F2AA—C24—F3BB130.8 (15)
C11—C10—C9119.8 (3)F2AB—C24—F3BB110.5 (17)
C11—C10—H10120.1F3BA—C24—F3BB46.2 (9)
C9—C10—H10120.1F2B—C24—F3A66.2 (9)
C10—C11—C12120.2 (3)F1A—C24—F3A102.7 (6)
C10—C11—H11119.9F2AA—C24—F3A116.9 (13)
C12—C11—H11119.9F2AB—C24—F3A85.9 (13)
C11—C12—C13119.5 (2)F3BA—C24—F3A77.0 (8)
C11—C12—H12120.3F2B—C24—F1B99.1 (9)
C13—C12—H12120.3F1A—C24—F1B58.3 (7)
C8—C13—C12121.3 (2)F2AA—C24—F1B48.6 (9)
C8—C13—H13119.3F2AB—C24—F1B82.7 (12)
C12—C13—H13119.3F3BA—C24—F1B80.3 (11)
C15—C14—C7113.6 (2)F3BB—C24—F1B121.9 (8)
C15—C14—H14A108.8F3A—C24—F1B140.1 (5)
C7—C14—H14A108.8F2B—C24—C4115.4 (8)
C15—C14—H14B108.8F1A—C24—C4112.4 (6)
C7—C14—H14B108.8F2AA—C24—C4112.0 (14)
H14A—C14—H14B107.7F2AB—C24—C4111.9 (17)
N1—C15—C14113.64 (18)F3BA—C24—C4120.3 (10)
N1—C15—H15A108.8F3BB—C24—C4115.0 (7)
C14—C15—H15A108.8F3A—C24—C4109.3 (5)
N1—C15—H15B108.8F1B—C24—C4110.4 (4)
C14—C15—H15B108.8F2AB—F2AA—C2472.6 (18)
H15A—C15—H15B107.7F2AA—F2AB—C2472 (2)
N1—C16—C17113.22 (18)C24—F1B—F3BA47.7 (7)
N1—C16—H16A108.9F3BB—F3BA—C2467.7 (10)
C17—C16—H16A108.9F3BB—F3BA—F1B115.4 (15)
N1—C16—H16B108.9C24—F3BA—F1B52.0 (7)
C17—C16—H16B108.9F3BA—F3BB—C2466.1 (12)
H16A—C16—H16B107.7
C7—O1—C1—C66.9 (3)C3—C4—C24—F3BA122.0 (11)
C7—O1—C1—C2172.21 (18)C5—C4—C24—F3BB111.0 (12)
O1—C1—C2—C3178.6 (2)C3—C4—C24—F3BB69.8 (12)
C6—C1—C2—C30.6 (3)C5—C4—C24—F3A144.7 (7)
C1—C2—C3—C41.1 (4)C3—C4—C24—F3A36.1 (8)
C2—C3—C4—C51.8 (4)C5—C4—C24—F1B31.7 (12)
C2—C3—C4—C24177.4 (3)C3—C4—C24—F1B147.5 (11)
C3—C4—C5—C60.9 (4)F2B—C24—F2AA—F2AB9 (4)
C24—C4—C5—C6178.3 (3)F1A—C24—F2AA—F2AB142 (4)
O1—C1—C6—C5177.6 (2)F3BA—C24—F2AA—F2AB119 (4)
C2—C1—C6—C51.5 (3)F3BB—C24—F2AA—F2AB65 (5)
C4—C5—C6—C10.8 (4)F3A—C24—F2AA—F2AB30 (5)
C1—O1—C7—C882.8 (2)F1B—C24—F2AA—F2AB165 (5)
C1—O1—C7—C14154.29 (17)C4—C24—F2AA—F2AB97 (4)
O1—C7—C8—C9139.3 (2)F2B—C24—F2AB—F2AA158 (9)
C14—C7—C8—C9102.3 (2)F1A—C24—F2AB—F2AA50 (5)
O1—C7—C8—C1343.0 (3)F3BA—C24—F2AB—F2AA83 (5)
C14—C7—C8—C1375.3 (3)F3BB—C24—F2AB—F2AA133 (4)
C13—C8—C9—C100.4 (4)F3A—C24—F2AB—F2AA153 (4)
C7—C8—C9—C10177.3 (2)F1B—C24—F2AB—F2AA12 (4)
C8—C9—C10—C110.0 (4)C4—C24—F2AB—F2AA98 (4)
C9—C10—C11—C120.5 (4)F2B—C24—F1B—F3BA119.6 (11)
C10—C11—C12—C130.5 (4)F1A—C24—F1B—F3BA14.4 (13)
C9—C8—C13—C120.4 (4)F2AA—C24—F1B—F3BA139.4 (18)
C7—C8—C13—C12177.3 (2)F2AB—C24—F1B—F3BA131 (2)
C11—C12—C13—C80.1 (4)F3BB—C24—F1B—F3BA20.9 (13)
O1—C7—C14—C1564.4 (2)F3A—C24—F1B—F3BA55.9 (16)
C8—C7—C14—C15173.96 (18)C4—C24—F1B—F3BA118.8 (9)
C23—N1—C15—C1474.1 (2)F2B—C24—F3BA—F3BB60 (2)
C16—N1—C15—C14163.38 (18)F1A—C24—F3BA—F3BB176 (4)
C7—C14—C15—N162.1 (2)F2AA—C24—F3BA—F3BB122 (2)
C23—N1—C16—C17162.2 (2)F2AB—C24—F3BA—F3BB82 (2)
C15—N1—C16—C1774.9 (2)F3A—C24—F3BA—F3BB8.2 (14)
N1—C16—C17—C18123.5 (2)F1B—C24—F3BA—F3BB155.2 (16)
N1—C16—C17—C2259.1 (3)C4—C24—F3BA—F3BB96.7 (13)
C22—C17—C18—C190.8 (4)F2B—C24—F3BA—F1B95.0 (12)
C16—C17—C18—C19178.3 (2)F1A—C24—F3BA—F1B29 (3)
C17—C18—C19—C200.2 (4)F2AA—C24—F3BA—F1B33.1 (12)
C18—C19—C20—C210.1 (5)F2AB—C24—F3BA—F1B72.8 (16)
C19—C20—C21—C220.2 (5)F3BB—C24—F3BA—F1B155.2 (16)
C18—C17—C22—C211.1 (4)F3A—C24—F3BA—F1B146.9 (7)
C16—C17—C22—C21178.7 (2)C4—C24—F3BA—F1B108.1 (8)
C20—C21—C22—C170.8 (4)C24—F1B—F3BA—F3BB25.5 (15)
C5—C4—C24—F2B143.1 (14)F1B—F3BA—F3BB—C2421.5 (11)
C3—C4—C24—F2B36.1 (15)F2B—C24—F3BB—F3BA131.5 (18)
C5—C4—C24—F1A31.4 (10)F1A—C24—F3BB—F3BA2 (2)
C3—C4—C24—F1A149.4 (9)F2AA—C24—F3BB—F3BA90 (2)
C5—C4—C24—F2AA84.1 (17)F2AB—C24—F3BB—F3BA123 (2)
C3—C4—C24—F2AA95.1 (17)F3A—C24—F3BB—F3BA165 (3)
C5—C4—C24—F2AB121.9 (13)F1B—C24—F3BB—F3BA29 (2)
C3—C4—C24—F2AB57.3 (14)C4—C24—F3BB—F3BA108.9 (16)
C5—C4—C24—F3BA58.8 (12)

Experimental details

Crystal data
Chemical formulaC24H24F3NO
Mr399.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)6.1712 (5), 17.2900 (14), 20.3028 (16)
β (°) 91.029 (5)
V3)2166.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.31 × 0.25 × 0.22
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
24582, 5395, 1743
Rint0.092
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.136, 0.91
No. of reflections5395
No. of parameters297
No. of restraints8
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.12

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

C—H···π interactions (Å, °) top
DHCentroidC-HH···CgD···CgC-H···Cg
C10H10Cg3i0.932.903.588 (3)132
C18H18Cg1ii0.933.083.976 (4)162
C19H19Cg2ii0.932.943.719 (4)143
Cg1 is the centroid of ring A (C1–C6), Cg2 that of ring B (C8–C13) and Cg3 that of ring C (C17–C22). Symmetry codes: (i) -x + 1, y - 1/2, -z + 1/2; (ii) -x, y + 1/2, -z + 1/2.
 

Acknowledgements

The authors are grateful to Professor Hoong-Kun Fun (Universiti Sains Malaysia) and Mr Zeeshan Haider (HEJ) for their kind assistance.

References

First citationBenefield, P., Heel, R. C. & Lewis, S. P. (1986). Drugs, 32, 481–508.  PubMed Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChilds, S. L., Chyll, L. J., Dunlap, J. T., Smolenskaya, V. N., Stahly, B. C. & Stahly, G. P. (2004). J. Am. Chem. Soc. 126, 13335–13342.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFeighner, J. P. & Boyer, W. F. (1991). Selective Serotonin Re-uptake Inhibitors. New York: Wiley.  Google Scholar
First citationMarkowitz, J. S., Brown, C. S. & Moore, T. R. (1999). Ann. Pharmacother. 33, 73–85.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRobertson, D. W., Jones, N. D., Swartzendruber, J. K., Yang, K. S. & Wong, D. T. (1988). J. Med. Chem. 31, 185–189.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWong, D., Bymaster, F. & Engleman, E. (1995). Life Sci. 57, 411–441.  CrossRef CAS PubMed Web of Science Google Scholar
First citationZhu, S.-P., Mao, Z. F., Huang, J. & Wang, J.-Y. (2009). Clin. Exp. Pharmacol. Physiol. 36, e1–e5.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds