organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2,4-Dihydr­­oxy-N′-(2-hydr­­oxy-3-meth­­oxy-5-nitro­benzyl­­idene)benzohydrazide dihydrate

aDepartment of Chemistry and Life Science, Chuzhou University, Chuzhou, Anhui 239000, People's Republic of China
*Correspondence e-mail: hanyouyue@126.com

(Received 6 April 2010; accepted 7 April 2010; online 14 April 2010)

The asymmetric unit of the title compound, C15H13N3O7·2H2O, consists of a hydrazone mol­ecule and two solvent water mol­ecules. The mol­ecule adopts an E configuration with respect to the C=N bond. It is relatively planar, with a dihedral angle between the two benzene rings of 2.6 (1)°. There are intra­molecular O—H⋯N and O—H⋯O hydrogen bonds in the hydrazone mol­ecule. In the crystal structure, symmetry-related mol­ecules are linked through inter­molecular N—H⋯O and O—H⋯O hydrogen bonds to form a three-dimensional network.

Related literature

For the biological properties of hydrazone compounds, see: Patil et al. (2010[Patil, S. A., Naik, V. H., Kulkarni, A. D., Kamble, U., Bagihalli, G. B. & Badami, P. S. (2010). J. Coord. Chem. 63, 688-699.]); Cukurovali et al. (2006[Cukurovali, A., Yilmaz, I., Gur, S. & Kazaz, C. (2006). Eur. J. Med. Chem. 41, 201-207.]). For the crystal structures of hydrazone compounds, see: Mohd Lair et al. (2009[Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o190.]); Lin & Sang (2009[Lin, X.-S. & Sang, Y.-L. (2009). Acta Cryst. E65, o1650.]); Suleiman Gwaram et al. (2010[Suleiman Gwaram, N., Khaledi, H., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o721.]). For the hydrazone compounds we have reported on recently, see: Han & Zhao (2010a[Han, Y.-Y. & Zhao, Q.-R. (2010a). Acta Cryst. E66, o1025.],b[Han, Y.-Y. & Zhao, Q.-R. (2010b). Acta Cryst. E66, o1026.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the crystal structures of similar compounds, see: Li & Ban (2009[Li, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o876.]); Lo & Ng (2009[Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o969.]); Ning & Xu (2009[Ning, J.-H. & Xu, X.-W. (2009). Acta Cryst. E65, o905-o906.]); Zhu et al. (2009[Zhu, C.-G., Wei, Y.-J. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o85.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3O7·2H2O

  • Mr = 383.32

  • Triclinic, [P \overline 1]

  • a = 7.976 (2) Å

  • b = 9.325 (2) Å

  • c = 11.547 (3) Å

  • α = 95.43 (2)°

  • β = 96.21 (2)°

  • γ = 102.01 (2)°

  • V = 829.0 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 298 K

  • 0.23 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.975

  • 11747 measured reflections

  • 4268 independent reflections

  • 1790 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.143

  • S = 0.94

  • 4268 reflections

  • 263 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8B⋯O4i 0.86 (2) 2.39 (2) 2.953 (2) 124 (2)
O8—H8B⋯O7i 0.86 (2) 2.18 (1) 3.001 (3) 163 (2)
O9—H9B⋯O3ii 0.85 (2) 2.19 (1) 3.032 (2) 170 (3)
O9—H9A⋯O2iii 0.86 (1) 1.98 (1) 2.840 (2) 176 (2)
O8—H8A⋯O9iv 0.86 (2) 1.93 (1) 2.786 (2) 176 (2)
N1—H1A⋯O5v 0.88 (1) 2.55 (2) 3.183 (3) 130 (2)
N1—H1A⋯O8ii 0.88 (1) 2.45 (2) 3.195 (3) 143 (2)
O4—H4⋯N2 0.82 1.85 2.569 (2) 146
O2—H2⋯O3 0.82 1.80 2.526 (2) 147
O1—H1⋯O8vi 0.82 1.91 2.718 (2) 169
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1; (iii) x, y-1, z; (iv) -x+2, -y+1, -z+1; (v) -x, -y, -z+1; (vi) x, y, z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazone compounds have been widely investigated for their biological properties (Patil et al., 2010; Cukurovali et al., 2006). Furthermore, the crystal structures of the hydrazone compounds have also attracted much attention in recent years (Mohd Lair et al., 2009; Lin & Sang, 2009; Suleiman Gwaram et al., 2010). As a continuation of our work on the structural characterization of such compounds (Han & Zhao, 2010a,b), we report herein on the synthesis and crystal structure of the new title hydrazone compound.

The title compound, Fig. 1, consists of a hydrazone molecule and two water molecules of crystallization. The hydrazone molecule adopts an E configuration with respect to the CN bond. The dihedral angle between the two benzene rings in the hydrazone molecule is 2.6 (1)°. There are intramolecular O—H···N and O—H···O hydrogen bonds in the hydrazone molecule (Fig. 1 and Table 1). All the bond lengths are within normal ranges (Allen et al., 1987), and are comparable with those in similar compounds (Li & Ban, 2009; Lo & Ng, 2009; Ning & Xu, 2009; Zhu et al., 2009).

In the crystal structure of the title compound symmetry related molecules are linked through intermolecular N—H···O and O—H···O hydrogen bonds to form a three-dimensional network (Table 1 and Fig. 2).

Related literature top

For the biological properties of hydrazone compounds, see: Patil et al. (2010); Cukurovali et al. (2006). For the crystal structures of hydrazone compounds, see: Mohd Lair et al. (2009); Lin & Sang (2009); Suleiman Gwaram et al. (2010). For the hydrazone compounds we have reported on recently, see: Han & Zhao (2010a,b). For bond-length data, see: Allen et al. (1987). For the crystal strcutures of similar compounds, see: Li & Ban (2009); Lo & Ng (2009); Ning & Xu (2009); Zhu et al. (2009).

Experimental top

A mixture of 3-methoxy-5-nitrosalicylaldehyde (0.197 g, 1 mmol) and 2,4-dihydroxybenzohydrazide (0.168 g, 1 mmol) in 50 ml methanol was stirred at room temperature for 1 h. The mixture was then filtered to remove any impurities, and the filtrate left at room temperature for slow evaporation of the solvent. After a few days colourless block-like crystals of the title compound, suitable for X-ray diffraction, were formed.

Refinement top

Amino H and water H atoms were located from a difference Fourier map and refined isotropically, with N—H, O—H, and H···H distances restrained to 0.90 (1), 0.85 (1), and 1.37 (2) Å, respectively. The C-bound H atoms were positioned geometrically and refined using the riding-model approximation, with C—H = 0.93 and 0.96 Å for CH and methyl H atoms, respectively, O—H(hydroxyl) = 0.82 Å, with Uiso(H) = k × Ueq(parent C or O atom), where k = 1.2 for CH H atoms and k = 1.5 for O(hydroxyl) and methyl H atoms.

Structure description top

Hydrazone compounds have been widely investigated for their biological properties (Patil et al., 2010; Cukurovali et al., 2006). Furthermore, the crystal structures of the hydrazone compounds have also attracted much attention in recent years (Mohd Lair et al., 2009; Lin & Sang, 2009; Suleiman Gwaram et al., 2010). As a continuation of our work on the structural characterization of such compounds (Han & Zhao, 2010a,b), we report herein on the synthesis and crystal structure of the new title hydrazone compound.

The title compound, Fig. 1, consists of a hydrazone molecule and two water molecules of crystallization. The hydrazone molecule adopts an E configuration with respect to the CN bond. The dihedral angle between the two benzene rings in the hydrazone molecule is 2.6 (1)°. There are intramolecular O—H···N and O—H···O hydrogen bonds in the hydrazone molecule (Fig. 1 and Table 1). All the bond lengths are within normal ranges (Allen et al., 1987), and are comparable with those in similar compounds (Li & Ban, 2009; Lo & Ng, 2009; Ning & Xu, 2009; Zhu et al., 2009).

In the crystal structure of the title compound symmetry related molecules are linked through intermolecular N—H···O and O—H···O hydrogen bonds to form a three-dimensional network (Table 1 and Fig. 2).

For the biological properties of hydrazone compounds, see: Patil et al. (2010); Cukurovali et al. (2006). For the crystal structures of hydrazone compounds, see: Mohd Lair et al. (2009); Lin & Sang (2009); Suleiman Gwaram et al. (2010). For the hydrazone compounds we have reported on recently, see: Han & Zhao (2010a,b). For bond-length data, see: Allen et al. (1987). For the crystal strcutures of similar compounds, see: Li & Ban (2009); Lo & Ng (2009); Ning & Xu (2009); Zhu et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and displacement ellipsoids drawn at the 30% probability level. Intramolecular O—H···O and O—H···N hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A perspective view, along the a axis, of the crystal packing of the title compound, showing the O—H···O, O—H···N, and N—H···O hydrogen bonds as dashed lines (see Table 1 for details).
(E)-2,4-Dihydroxy-N'-(2-hydroxy-3-methoxy-5- nitrobenzylidene)benzohydrazide dihydrate top
Crystal data top
C15H13N3O7·2H2OZ = 2
Mr = 383.32F(000) = 400
Triclinic, P1Dx = 1.536 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.976 (2) ÅCell parameters from 1898 reflections
b = 9.325 (2) Åθ = 2.6–25.6°
c = 11.547 (3) ŵ = 0.13 mm1
α = 95.43 (2)°T = 298 K
β = 96.21 (2)°Block, colourless
γ = 102.01 (2)°0.23 × 0.20 × 0.20 mm
V = 829.0 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4268 independent reflections
Radiation source: fine-focus sealed tube1790 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 29.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.971, Tmax = 0.975k = 1212
11747 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.0611P)2]
where P = (Fo2 + 2Fc2)/3
4268 reflections(Δ/σ)max = 0.001
263 parametersΔρmax = 0.16 e Å3
7 restraintsΔρmin = 0.23 e Å3
Crystal data top
C15H13N3O7·2H2Oγ = 102.01 (2)°
Mr = 383.32V = 829.0 (4) Å3
Triclinic, P1Z = 2
a = 7.976 (2) ÅMo Kα radiation
b = 9.325 (2) ŵ = 0.13 mm1
c = 11.547 (3) ÅT = 298 K
α = 95.43 (2)°0.23 × 0.20 × 0.20 mm
β = 96.21 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4268 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1790 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.975Rint = 0.045
11747 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0507 restraints
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.16 e Å3
4268 reflectionsΔρmin = 0.23 e Å3
263 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8600 (2)0.84330 (17)1.02241 (12)0.0573 (5)
H10.86270.78141.06810.086*
O20.6371 (2)0.89359 (17)0.64100 (13)0.0605 (5)
H20.56360.85190.58630.091*
O30.4100 (2)0.68584 (17)0.52377 (12)0.0534 (4)
O40.0820 (2)0.45944 (17)0.28656 (12)0.0534 (4)
H40.14600.48120.34910.080*
O50.3563 (2)0.1600 (2)0.34555 (17)0.0764 (6)
O60.4541 (2)0.1357 (2)0.16969 (16)0.0838 (6)
O70.1224 (2)0.36004 (18)0.09529 (12)0.0555 (5)
O80.8842 (2)0.6698 (2)0.19713 (15)0.0631 (5)
O90.8089 (2)0.1954 (2)0.65935 (17)0.0796 (6)
N10.3056 (2)0.4776 (2)0.59954 (14)0.0453 (5)
N20.1982 (2)0.4267 (2)0.49649 (14)0.0441 (5)
N30.3569 (3)0.0901 (2)0.26028 (19)0.0568 (6)
C10.5283 (3)0.6659 (2)0.71728 (17)0.0384 (5)
C20.6353 (3)0.8076 (2)0.72930 (18)0.0423 (6)
C30.7446 (3)0.8642 (3)0.83179 (19)0.0472 (6)
H30.81590.95790.83790.057*
C40.7485 (3)0.7825 (3)0.92498 (17)0.0427 (6)
C50.6437 (3)0.6424 (3)0.91557 (18)0.0466 (6)
H50.64570.58710.97840.056*
C60.5371 (3)0.5857 (2)0.81357 (18)0.0455 (6)
H60.46840.49090.80790.055*
C70.4131 (3)0.6119 (2)0.60768 (17)0.0390 (5)
C80.0968 (3)0.3000 (3)0.48753 (18)0.0464 (6)
H80.09710.24390.55000.056*
C90.0187 (3)0.2433 (2)0.38010 (17)0.0417 (5)
C100.0196 (3)0.3255 (2)0.28470 (18)0.0419 (5)
C110.1331 (3)0.2684 (3)0.18101 (18)0.0443 (6)
C120.2421 (3)0.1325 (3)0.17254 (19)0.0481 (6)
H120.31660.09390.10400.058*
C130.2392 (3)0.0535 (3)0.26850 (19)0.0471 (6)
C140.1305 (3)0.1057 (3)0.37055 (18)0.0475 (6)
H140.13150.04960.43300.057*
C150.2229 (3)0.3030 (3)0.01694 (19)0.0638 (7)
H15A0.19580.21120.04470.096*
H15B0.19620.37270.07190.096*
H15C0.34380.28690.00900.096*
H1A0.296 (3)0.418 (2)0.6542 (17)0.080*
H8A0.977 (2)0.715 (2)0.2410 (19)0.080*
H9A0.759 (3)0.1042 (12)0.657 (2)0.080*
H9B0.743 (3)0.234 (2)0.615 (2)0.080*
H8B0.906 (3)0.5873 (17)0.172 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0587 (11)0.0548 (11)0.0468 (9)0.0006 (9)0.0125 (8)0.0006 (7)
O20.0653 (12)0.0487 (10)0.0564 (10)0.0081 (9)0.0119 (8)0.0186 (8)
O30.0516 (10)0.0577 (10)0.0434 (9)0.0048 (8)0.0026 (7)0.0162 (8)
O40.0512 (11)0.0499 (10)0.0491 (9)0.0038 (8)0.0075 (8)0.0046 (8)
O50.0741 (14)0.0609 (12)0.0809 (13)0.0103 (10)0.0060 (10)0.0162 (10)
O60.0693 (13)0.0863 (14)0.0677 (11)0.0289 (11)0.0142 (10)0.0032 (10)
O70.0570 (11)0.0588 (11)0.0426 (9)0.0020 (8)0.0081 (7)0.0056 (8)
O80.0602 (12)0.0694 (13)0.0548 (11)0.0087 (10)0.0054 (8)0.0095 (9)
O90.0685 (14)0.0679 (14)0.0864 (13)0.0128 (11)0.0181 (10)0.0234 (11)
N10.0466 (12)0.0447 (12)0.0358 (10)0.0027 (9)0.0075 (9)0.0036 (8)
N20.0404 (12)0.0486 (12)0.0382 (10)0.0044 (10)0.0029 (8)0.0000 (8)
N30.0452 (13)0.0540 (14)0.0608 (13)0.0057 (10)0.0010 (11)0.0022 (11)
C10.0361 (13)0.0385 (13)0.0380 (11)0.0045 (10)0.0016 (9)0.0033 (9)
C20.0410 (14)0.0402 (14)0.0445 (12)0.0056 (11)0.0023 (10)0.0099 (10)
C30.0446 (14)0.0381 (13)0.0519 (13)0.0001 (11)0.0025 (11)0.0006 (10)
C40.0396 (13)0.0459 (14)0.0384 (11)0.0067 (11)0.0025 (10)0.0013 (10)
C50.0470 (15)0.0489 (15)0.0397 (12)0.0013 (12)0.0012 (10)0.0103 (10)
C60.0425 (14)0.0429 (14)0.0454 (12)0.0016 (11)0.0005 (10)0.0076 (10)
C70.0354 (13)0.0392 (14)0.0397 (12)0.0027 (11)0.0042 (10)0.0035 (10)
C80.0448 (15)0.0495 (15)0.0410 (12)0.0057 (12)0.0006 (11)0.0044 (11)
C90.0376 (13)0.0427 (14)0.0405 (12)0.0040 (11)0.0009 (10)0.0005 (10)
C100.0342 (13)0.0404 (14)0.0469 (13)0.0040 (11)0.0033 (10)0.0034 (10)
C110.0391 (14)0.0488 (15)0.0415 (12)0.0077 (11)0.0009 (10)0.0001 (11)
C120.0382 (14)0.0541 (16)0.0456 (12)0.0065 (12)0.0042 (10)0.0070 (11)
C130.0381 (14)0.0425 (14)0.0533 (13)0.0009 (11)0.0007 (11)0.0044 (11)
C140.0444 (14)0.0475 (15)0.0453 (12)0.0028 (12)0.0007 (11)0.0014 (11)
C150.0625 (18)0.082 (2)0.0418 (13)0.0149 (15)0.0093 (12)0.0008 (12)
Geometric parameters (Å, º) top
O1—C41.353 (2)C1—C71.461 (3)
O1—H10.8200C2—C31.381 (3)
O2—C21.355 (2)C3—C41.377 (3)
O2—H20.8200C3—H30.9300
O3—C71.242 (2)C4—C51.384 (3)
O4—C101.337 (2)C5—C61.367 (3)
O4—H40.8200C5—H50.9300
O5—N31.232 (2)C6—H60.9300
O6—N31.216 (2)C8—C91.447 (3)
O7—C111.366 (3)C8—H80.9300
O7—C151.439 (2)C9—C141.389 (3)
O8—H8A0.855 (19)C9—C101.401 (3)
O8—H8B0.855 (19)C10—C111.407 (3)
O9—H9A0.857 (9)C11—C121.368 (3)
O9—H9B0.85 (2)C12—C131.388 (3)
N1—C71.352 (3)C12—H120.9300
N1—N21.370 (2)C13—C141.368 (3)
N1—H1A0.881 (10)C14—H140.9300
N2—C81.274 (3)C15—H15A0.9600
N3—C131.455 (3)C15—H15B0.9600
C1—C21.401 (3)C15—H15C0.9600
C1—C61.402 (3)
C4—O1—H1109.5O3—C7—N1119.77 (18)
C2—O2—H2109.5O3—C7—C1122.2 (2)
C10—O4—H4109.5N1—C7—C1118.00 (19)
C11—O7—C15117.01 (18)N2—C8—C9120.0 (2)
H8A—O8—H8B104.2 (19)N2—C8—H8120.0
H9A—O9—H9B106.7 (19)C9—C8—H8120.0
C7—N1—N2117.96 (17)C14—C9—C10119.15 (19)
C7—N1—H1A127.0 (17)C14—C9—C8120.0 (2)
N2—N1—H1A115.1 (17)C10—C9—C8120.8 (2)
C8—N2—N1118.57 (18)O4—C10—C9123.22 (18)
O6—N3—O5122.4 (2)O4—C10—C11116.9 (2)
O6—N3—C13118.6 (2)C9—C10—C11119.9 (2)
O5—N3—C13118.98 (19)O7—C11—C12125.54 (19)
C2—C1—C6117.07 (18)O7—C11—C10114.1 (2)
C2—C1—C7118.85 (19)C12—C11—C10120.4 (2)
C6—C1—C7124.1 (2)C11—C12—C13118.6 (2)
O2—C2—C3117.5 (2)C11—C12—H12120.7
O2—C2—C1121.57 (18)C13—C12—H12120.7
C3—C2—C1120.9 (2)C14—C13—C12122.6 (2)
C4—C3—C2120.3 (2)C14—C13—N3118.8 (2)
C4—C3—H3119.9C12—C13—N3118.6 (2)
C2—C3—H3119.9C13—C14—C9119.4 (2)
O1—C4—C3117.5 (2)C13—C14—H14120.3
O1—C4—C5122.60 (19)C9—C14—H14120.3
C3—C4—C5119.93 (19)O7—C15—H15A109.5
C6—C5—C4119.8 (2)O7—C15—H15B109.5
C6—C5—H5120.1H15A—C15—H15B109.5
C4—C5—H5120.1O7—C15—H15C109.5
C5—C6—C1122.0 (2)H15A—C15—H15C109.5
C5—C6—H6119.0H15B—C15—H15C109.5
C1—C6—H6119.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8B···O4i0.86 (2)2.39 (2)2.953 (2)124 (2)
O8—H8B···O7i0.86 (2)2.18 (1)3.001 (3)163 (2)
O9—H9B···O3ii0.85 (2)2.19 (1)3.032 (2)170 (3)
O9—H9A···O2iii0.86 (1)1.98 (1)2.840 (2)176 (2)
O8—H8A···O9iv0.86 (2)1.93 (1)2.786 (2)176 (2)
N1—H1A···O5v0.88 (1)2.55 (2)3.183 (3)130 (2)
N1—H1A···O8ii0.88 (1)2.45 (2)3.195 (3)143 (2)
O4—H4···N20.821.852.569 (2)146
O2—H2···O30.821.802.526 (2)147
O1—H1···O8vi0.821.912.718 (2)169
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x, y1, z; (iv) x+2, y+1, z+1; (v) x, y, z+1; (vi) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H13N3O7·2H2O
Mr383.32
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.976 (2), 9.325 (2), 11.547 (3)
α, β, γ (°)95.43 (2), 96.21 (2), 102.01 (2)
V3)829.0 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.23 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.971, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
11747, 4268, 1790
Rint0.045
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.143, 0.94
No. of reflections4268
No. of parameters263
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.23

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8B···O4i0.855 (19)2.39 (2)2.953 (2)124 (2)
O8—H8B···O7i0.855 (19)2.175 (11)3.001 (3)163 (2)
O9—H9B···O3ii0.85 (2)2.188 (11)3.032 (2)170 (3)
O9—H9A···O2iii0.857 (9)1.984 (10)2.840 (2)176 (2)
O8—H8A···O9iv0.855 (19)1.932 (10)2.786 (2)176 (2)
N1—H1A···O5v0.881 (10)2.55 (2)3.183 (3)130 (2)
N1—H1A···O8ii0.881 (10)2.445 (18)3.195 (3)143 (2)
O4—H4···N20.821.852.569 (2)146
O2—H2···O30.821.802.526 (2)147
O1—H1···O8vi0.821.912.718 (2)169
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x, y1, z; (iv) x+2, y+1, z+1; (v) x, y, z+1; (vi) x, y, z+1.
 

Acknowledgements

This work was supported by the Applied Chemistry Key Subject of Anhui Province (grant No. 200802187C).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCukurovali, A., Yilmaz, I., Gur, S. & Kazaz, C. (2006). Eur. J. Med. Chem. 41, 201–207.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHan, Y.-Y. & Zhao, Q.-R. (2010a). Acta Cryst. E66, o1025.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHan, Y.-Y. & Zhao, Q.-R. (2010b). Acta Cryst. E66, o1026.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o876.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLin, X.-S. & Sang, Y.-L. (2009). Acta Cryst. E65, o1650.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o969.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNing, J.-H. & Xu, X.-W. (2009). Acta Cryst. E65, o905–o906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, S. A., Naik, V. H., Kulkarni, A. D., Kamble, U., Bagihalli, G. B. & Badami, P. S. (2010). J. Coord. Chem. 63, 688–699.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuleiman Gwaram, N., Khaledi, H., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o721.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, C.-G., Wei, Y.-J. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o85.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds