organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(2-Hydr­­oxy-1-naphth­yl)methyl­­idene]-2-nitro­benzohydrazide

aDepartment of Chemistry, Baicheng Normal University, Baicheng 137000, People's Republic of China
*Correspondence e-mail: jyxygzb@163.com

(Received 15 April 2010; accepted 22 April 2010; online 28 April 2010)

In the title Schiff base compound, C18H13N3O4, prepared by the reaction of 2-hydr­oxy-1-naphthaldehyde with 2-nitro­benzohydrazide, the dihedral angle between the benzene ring and naphthyl ring system is 23.0 (2)°. There is an intra­molecular O—H⋯N hydrogen bond involving the naphthalene hydr­oxy substituent and a hydrazide N atom. In the crystal structure, symmetry-related mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds, forming chains propagating in [101].

Related literature

For the pharmaceutical and medicinal activity of Schiff bases, see: Dao et al. (2000[Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805-813.]); Sriram et al. (2006[Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127-2129.]); Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]). For the coordination chemistry of Schiff bases, see: Ali et al. (2008[Ali, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718-m719.]); Kargar et al. (2009[Kargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403-m404.]); Yeap et al. (2009[Yeap, C. S., Kia, R., Kargar, H. & Fun, H.-K. (2009). Acta Cryst. E65, m570-m571.]). For the crystal structures of Schiff base compounds, see: Fun et al. (2009[Fun, H.-K., Kia, R., Vijesh, A. M. & Isloor, A. M. (2009). Acta Cryst. E65, o349-o350.]); Nadeem et al. (2009[Nadeem, S., Shah, M. R. & VanDerveer, D. (2009). Acta Cryst. E65, o897.]); Eltayeb et al. (2008[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, o576-o577.]). For Schiff base compounds reported by the author, see: Hao (2009a[Hao, Y.-M. (2009a). Acta Cryst. E65, o1400.],b[Hao, Y.-M. (2009b). Acta Cryst. E65, o2098.],c[Hao, Y.-M. (2009c). Acta Cryst. E65, o2600.],d[Hao, Y.-M. (2009d). Acta Cryst. E65, o2990.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13N3O4

  • Mr = 335.31

  • Monoclinic, P 21 /n

  • a = 7.4473 (6) Å

  • b = 29.068 (2) Å

  • c = 7.8504 (6) Å

  • β = 113.963 (4)°

  • V = 1553.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.30 × 0.28 × 0.27 mm

Data collection
  • Bruker SMART CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.970, Tmax = 0.973

  • 8499 measured reflections

  • 2972 independent reflections

  • 1856 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.111

  • S = 1.05

  • 2972 reflections

  • 230 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.87 2.5881 (18) 146
N2—H2⋯O2i 0.90 (1) 1.94 (1) 2.8133 (19) 164 (2)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff base compounds are a class of important materials used as pharmaceuticals and in various medicinal fields of interest (Dao et al., 2000; Sriram et al., 2006; Karthikeyan et al., 2006). Schiff bases have also been used as versatile ligands in coordination chemistry (Ali et al., 2008; Kargar et al., 2009; Yeap et al., 2009). Recently, the crystal structures of a large number of new Schiff base compounds have been reported (Fun et al., 2009; Nadeem et al., 2009; Eltayeb et al., 2008). As a continuation of our work on such compounds (Hao, 2009a,b,c,d) we report herein on the crystal structure of a new title Schiff base compound, prepared by the reaction of 2-hydroxy-1-naphthyaldehyde with 2-nitrobenzohydrazide.

The molecular structure of the title compound is illustrated in Fig. 1. In the molecule there is an intramolecular O—H···N hydrogen bond, involving the naphthalene hydroxyl substituent and the hydrazide N-atom (Fig.1 and Table 1). The molecule is twisted with the dihedral angle between the benzene and the naphthyl ring mean planes being 23.0 (2)°. All the bond lengths are within normal values (Allen et al., 1987).

In the crystal structure, symmetry related molecules are linked through intermolecular N—H···O hydrogen bonds, forming chains propagating in [101] (see Table 1 and Fig. 2).

Related literature top

For the pharmaceutical and medicinal activity of Schiff bases, see: Dao et al. (2000); Sriram et al. (2006); Karthikeyan et al. (2006). For the coordination chemistry of Schiff bases, see: Ali et al. (2008); Kargar et al. (2009); Yeap et al. (2009). For the crystal structures of Schiff base compounds, see: Fun et al. (2009); Nadeem et al. (2009); Eltayeb et al. (2008). For Schiff base compounds reported by the author, see: Hao (2009a,b,c,d). For reference structural data, see: Allen et al. (1987).

Experimental top

2-Hydroxy-1-naphthyaldehyde (0.1 mmol, 17.2 mg) and 2-nitrobenzohydrazide (0.1 mmol, 18.1 mg) in 30 ml of methanol were refluxed for 30 min to give a clear colourless solution. Colourless block-shaped single crystals of the title compound were formed by slow evaporation of the solvent over several days at room temperature.

Refinement top

Hydrogen atom H2 was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1)Å, and Uiso(H) restrained to 0.08 Å2. The other H-atoms were included in calculated positions and treated as riding atoms: d(C—H) = 0.93 Å, d(O—H) = 0.82 Å with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Structure description top

Schiff base compounds are a class of important materials used as pharmaceuticals and in various medicinal fields of interest (Dao et al., 2000; Sriram et al., 2006; Karthikeyan et al., 2006). Schiff bases have also been used as versatile ligands in coordination chemistry (Ali et al., 2008; Kargar et al., 2009; Yeap et al., 2009). Recently, the crystal structures of a large number of new Schiff base compounds have been reported (Fun et al., 2009; Nadeem et al., 2009; Eltayeb et al., 2008). As a continuation of our work on such compounds (Hao, 2009a,b,c,d) we report herein on the crystal structure of a new title Schiff base compound, prepared by the reaction of 2-hydroxy-1-naphthyaldehyde with 2-nitrobenzohydrazide.

The molecular structure of the title compound is illustrated in Fig. 1. In the molecule there is an intramolecular O—H···N hydrogen bond, involving the naphthalene hydroxyl substituent and the hydrazide N-atom (Fig.1 and Table 1). The molecule is twisted with the dihedral angle between the benzene and the naphthyl ring mean planes being 23.0 (2)°. All the bond lengths are within normal values (Allen et al., 1987).

In the crystal structure, symmetry related molecules are linked through intermolecular N—H···O hydrogen bonds, forming chains propagating in [101] (see Table 1 and Fig. 2).

For the pharmaceutical and medicinal activity of Schiff bases, see: Dao et al. (2000); Sriram et al. (2006); Karthikeyan et al. (2006). For the coordination chemistry of Schiff bases, see: Ali et al. (2008); Kargar et al. (2009); Yeap et al. (2009). For the crystal structures of Schiff base compounds, see: Fun et al. (2009); Nadeem et al. (2009); Eltayeb et al. (2008). For Schiff base compounds reported by the author, see: Hao (2009a,b,c,d). For reference structural data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability ellipsoids. The intramolecular O-H···N hydrogenbond is shown as a dashed line.
[Figure 2] Fig. 2. Molecular packing of the title compound, viewed along the c-axis, with the N-H···O hydrogen bonds drawn as dashed lines (see Table 1 for details).
N'-[(2-Hydroxy-1-naphthyl)methylidene]-2-nitrobenzohydrazide top
Crystal data top
C18H13N3O4F(000) = 696
Mr = 335.31Dx = 1.434 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1415 reflections
a = 7.4473 (6) Åθ = 2.6–24.5°
b = 29.068 (2) ŵ = 0.10 mm1
c = 7.8504 (6) ÅT = 298 K
β = 113.963 (4)°Block, colourless
V = 1553.0 (2) Å30.30 × 0.28 × 0.27 mm
Z = 4
Data collection top
Bruker SMART CCD area detector
diffractometer
2972 independent reflections
Radiation source: fine-focus sealed tube1856 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 25.9°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.970, Tmax = 0.973k = 3530
8499 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0464P)2 + 0.0232P]
where P = (Fo2 + 2Fc2)/3
2972 reflections(Δ/σ)max < 0.001
230 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.22 e Å3
Crystal data top
C18H13N3O4V = 1553.0 (2) Å3
Mr = 335.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.4473 (6) ŵ = 0.10 mm1
b = 29.068 (2) ÅT = 298 K
c = 7.8504 (6) Å0.30 × 0.28 × 0.27 mm
β = 113.963 (4)°
Data collection top
Bruker SMART CCD area detector
diffractometer
2972 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1856 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.973Rint = 0.038
8499 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.16 e Å3
2972 reflectionsΔρmin = 0.22 e Å3
230 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9372 (2)0.21679 (5)0.1587 (2)0.0397 (4)
N20.8992 (2)0.24623 (5)0.0095 (2)0.0391 (4)
N30.8947 (3)0.38594 (6)0.0264 (2)0.0484 (5)
O10.9712 (2)0.20162 (5)0.49534 (18)0.0565 (4)
H10.97520.21670.40870.085*
O21.1317 (2)0.29693 (4)0.18479 (17)0.0468 (4)
O30.8562 (2)0.36371 (5)0.1378 (2)0.0621 (5)
O40.9318 (3)0.42719 (5)0.0425 (2)0.0876 (6)
C10.8835 (3)0.14285 (6)0.2610 (3)0.0380 (5)
C20.9240 (3)0.15757 (6)0.4402 (3)0.0411 (5)
C30.9145 (3)0.12727 (7)0.5760 (3)0.0517 (6)
H30.93850.13800.69490.062*
C40.8703 (3)0.08250 (8)0.5329 (3)0.0570 (6)
H40.86430.06280.62360.068*
C50.8329 (3)0.06477 (7)0.3541 (3)0.0506 (6)
C60.7861 (4)0.01817 (8)0.3104 (4)0.0742 (8)
H60.78020.00160.40120.089*
C70.7492 (5)0.00153 (8)0.1374 (4)0.0952 (10)
H70.71820.02940.11010.114*
C80.7582 (4)0.03098 (8)0.0022 (4)0.0897 (9)
H80.73430.01950.11560.108*
C90.8014 (4)0.07638 (7)0.0383 (3)0.0661 (7)
H90.80570.09540.05530.079*
C100.8398 (3)0.09508 (6)0.2155 (3)0.0439 (5)
C110.8723 (3)0.17566 (6)0.1180 (3)0.0402 (5)
H110.81670.16660.00630.048*
C120.9971 (3)0.28614 (6)0.0366 (2)0.0348 (4)
C130.9339 (3)0.31554 (6)0.1353 (2)0.0331 (4)
C140.8952 (3)0.36234 (6)0.1387 (2)0.0352 (5)
C150.8493 (3)0.38854 (7)0.2967 (3)0.0479 (5)
H150.82600.41990.29470.057*
C160.8383 (3)0.36763 (7)0.4579 (3)0.0528 (6)
H160.80610.38490.56600.063*
C170.8747 (3)0.32149 (7)0.4602 (3)0.0487 (6)
H170.86710.30760.56960.058*
C180.9226 (3)0.29568 (6)0.3002 (2)0.0406 (5)
H180.94780.26440.30290.049*
H20.808 (3)0.2378 (7)0.1025 (18)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0456 (10)0.0343 (9)0.0344 (9)0.0023 (8)0.0112 (8)0.0062 (7)
N20.0450 (10)0.0332 (9)0.0301 (9)0.0065 (8)0.0061 (8)0.0051 (7)
N30.0534 (12)0.0479 (11)0.0422 (11)0.0055 (9)0.0176 (9)0.0051 (9)
O10.0807 (12)0.0454 (9)0.0459 (9)0.0007 (8)0.0283 (9)0.0018 (7)
O20.0517 (9)0.0414 (8)0.0320 (7)0.0067 (7)0.0014 (7)0.0027 (6)
O30.0759 (12)0.0751 (11)0.0434 (9)0.0037 (9)0.0325 (9)0.0006 (8)
O40.1449 (18)0.0426 (10)0.0877 (14)0.0041 (10)0.0601 (13)0.0203 (9)
C10.0375 (12)0.0358 (11)0.0377 (11)0.0007 (9)0.0123 (9)0.0057 (9)
C20.0415 (12)0.0365 (11)0.0443 (12)0.0048 (9)0.0165 (10)0.0045 (9)
C30.0574 (15)0.0562 (14)0.0440 (13)0.0084 (11)0.0231 (11)0.0134 (11)
C40.0537 (15)0.0567 (15)0.0612 (16)0.0096 (11)0.0241 (13)0.0288 (12)
C50.0436 (13)0.0421 (12)0.0598 (15)0.0019 (10)0.0145 (11)0.0140 (11)
C60.0713 (18)0.0451 (14)0.088 (2)0.0054 (13)0.0132 (15)0.0221 (13)
C70.121 (3)0.0380 (14)0.097 (2)0.0154 (15)0.013 (2)0.0023 (15)
C80.131 (3)0.0440 (15)0.0764 (18)0.0076 (16)0.0243 (18)0.0090 (14)
C90.091 (2)0.0417 (13)0.0582 (16)0.0089 (12)0.0226 (14)0.0033 (11)
C100.0407 (12)0.0372 (11)0.0481 (12)0.0010 (9)0.0120 (10)0.0063 (10)
C110.0405 (12)0.0379 (11)0.0376 (11)0.0001 (9)0.0112 (9)0.0011 (9)
C120.0373 (11)0.0350 (11)0.0291 (10)0.0008 (9)0.0104 (9)0.0013 (8)
C130.0311 (10)0.0350 (10)0.0300 (10)0.0032 (8)0.0092 (8)0.0003 (8)
C140.0366 (11)0.0366 (11)0.0303 (10)0.0017 (9)0.0115 (9)0.0032 (8)
C150.0555 (14)0.0377 (11)0.0472 (13)0.0027 (10)0.0174 (11)0.0089 (10)
C160.0670 (16)0.0523 (14)0.0358 (12)0.0011 (11)0.0176 (11)0.0114 (10)
C170.0616 (15)0.0537 (13)0.0313 (12)0.0040 (11)0.0193 (11)0.0034 (10)
C180.0470 (13)0.0376 (11)0.0350 (11)0.0022 (9)0.0145 (10)0.0023 (9)
Geometric parameters (Å, º) top
N1—C111.281 (2)C6—C71.360 (3)
N1—N21.3838 (19)C6—H60.9300
N2—C121.341 (2)C7—C81.386 (4)
N2—H20.899 (9)C7—H70.9300
N3—O31.212 (2)C8—C91.360 (3)
N3—O41.225 (2)C8—H80.9300
N3—C141.468 (2)C9—C101.411 (3)
O1—C21.352 (2)C9—H90.9300
O1—H10.8200C11—H110.9300
O2—C121.229 (2)C12—C131.502 (2)
C1—C21.381 (2)C13—C181.388 (2)
C1—C101.438 (2)C13—C141.389 (2)
C1—C111.449 (2)C14—C151.375 (2)
C2—C31.407 (3)C15—C161.376 (3)
C3—C41.351 (3)C15—H150.9300
C3—H30.9300C16—C171.370 (3)
C4—C51.413 (3)C16—H160.9300
C4—H40.9300C17—C181.380 (3)
C5—C61.406 (3)C17—H170.9300
C5—C101.417 (3)C18—H180.9300
C11—N1—N2116.07 (15)C7—C8—H8119.3
C12—N2—N1119.34 (15)C8—C9—C10121.0 (2)
C12—N2—H2122.4 (14)C8—C9—H9119.5
N1—N2—H2118.3 (14)C10—C9—H9119.5
O3—N3—O4123.87 (18)C9—C10—C5117.49 (19)
O3—N3—C14118.30 (17)C9—C10—C1123.50 (18)
O4—N3—C14117.83 (18)C5—C10—C1119.01 (18)
C2—O1—H1109.5N1—C11—C1121.60 (17)
C2—C1—C10119.08 (17)N1—C11—H11119.2
C2—C1—C11120.32 (17)C1—C11—H11119.2
C10—C1—C11120.47 (17)O2—C12—N2123.57 (16)
O1—C2—C1122.73 (17)O2—C12—C13122.88 (16)
O1—C2—C3115.90 (17)N2—C12—C13113.46 (16)
C1—C2—C3121.36 (18)C18—C13—C14117.16 (16)
C4—C3—C2119.7 (2)C18—C13—C12118.64 (16)
C4—C3—H3120.2C14—C13—C12124.12 (16)
C2—C3—H3120.2C15—C14—C13122.20 (17)
C3—C4—C5122.0 (2)C15—C14—N3116.68 (17)
C3—C4—H4119.0C13—C14—N3121.09 (16)
C5—C4—H4119.0C14—C15—C16119.03 (19)
C6—C5—C4121.5 (2)C14—C15—H15120.5
C6—C5—C10119.6 (2)C16—C15—H15120.5
C4—C5—C10118.81 (19)C17—C16—C15120.40 (19)
C7—C6—C5121.0 (2)C17—C16—H16119.8
C7—C6—H6119.5C15—C16—H16119.8
C5—C6—H6119.5C16—C17—C18120.01 (19)
C6—C7—C8119.5 (2)C16—C17—H17120.0
C6—C7—H7120.3C18—C17—H17120.0
C8—C7—H7120.3C17—C18—C13121.19 (18)
C9—C8—C7121.4 (3)C17—C18—H18119.4
C9—C8—H8119.3C13—C18—H18119.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.5881 (18)146
N2—H2···O2i0.90 (1)1.94 (1)2.8133 (19)164 (2)
Symmetry code: (i) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC18H13N3O4
Mr335.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.4473 (6), 29.068 (2), 7.8504 (6)
β (°) 113.963 (4)
V3)1553.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.28 × 0.27
Data collection
DiffractometerBruker SMART CCD area detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.970, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
8499, 2972, 1856
Rint0.038
(sin θ/λ)max1)0.614
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.111, 1.05
No. of reflections2972
No. of parameters230
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.22

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.5881 (18)146
N2—H2···O2i0.899 (9)1.938 (11)2.8133 (19)164 (2)
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

References

First citationAli, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718–m719.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805–813.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, o576–o577.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Kia, R., Vijesh, A. M. & Isloor, A. M. (2009). Acta Cryst. E65, o349–o350.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHao, Y.-M. (2009a). Acta Cryst. E65, o1400.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHao, Y.-M. (2009b). Acta Cryst. E65, o2098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHao, Y.-M. (2009c). Acta Cryst. E65, o2600.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHao, Y.-M. (2009d). Acta Cryst. E65, o2990.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403–m404.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNadeem, S., Shah, M. R. & VanDerveer, D. (2009). Acta Cryst. E65, o897.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127–2129.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYeap, C. S., Kia, R., Kargar, H. & Fun, H.-K. (2009). Acta Cryst. E65, m570–m571.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds