organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Meth­oxy­anilino)anthra­quinone

aCollege of Chemical & Pharmaceutical, Qingdao Agriculture University, Qingdao 266109, People's Republic of China, and bState Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, People's Republic of China
*Correspondence e-mail: lhedlut2002@yahoo.com.cn

(Received 23 March 2010; accepted 10 April 2010; online 21 April 2010)

In the title compound, C21H15NO3, the dihedral angle formed between the aromatic ring systems is 71.50 (3)°. The meth­oxy group is coplanar with the benzene ring to which it is connected, the C—O—C—C torsion angle being 6.37 (17)°. The observed conformation is stabilized by an intra­molecular N—H⋯O hydrogen bond, generating an S(6) ring.

Related literature

For background to anthraquinone derivatives, see: Matsui (1998[Matsui, M. (1998). Dyes Pigments, 40, 21-26.]); Rao & Choudhary (1990[Rao, B. V. & Choudhary, V. (1990). J. Soc. Dyers Colour. 106, 388-394.]).

[Scheme 1]

Experimental

Crystal data
  • C21H15NO3

  • Mr = 329.34

  • Monoclinic, P 21 /c

  • a = 11.4222 (3) Å

  • b = 7.9878 (2) Å

  • c = 16.9332 (4) Å

  • β = 100.9851 (12)°

  • V = 1516.65 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 110 K

  • 0.40 × 0.30 × 0.14 mm

Data collection
  • Bruker–Nonius X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). SADABS, APEX2 and SAINT. Madison, Wisconsin, USA.]) Tmin = 0.962, Tmax = 0.987

  • 32405 measured reflections

  • 5620 independent reflections

  • 3863 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.161

  • S = 1.05

  • 5620 reflections

  • 286 parameters

  • All H-atom parameters refined

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.932 (19) 1.886 (18) 2.6279 (13) 135.0 (17)

Data collection: APEX2 (Bruker, 2006[Bruker (2006). SADABS, APEX2 and SAINT. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). SADABS, APEX2 and SAINT. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: XL (Bruker, 2004[Bruker (2004). XL. Bruker AXS Inc., Madison, Wisconsin, USA.]); molecular graphics: XL; software used to prepare material for publication: XL.

Supporting information


Comment top

Anthraquinone and its derivatives are important compounds in the fields of dyes and pigments (Matsui 1998; Rao & Choudhary, 1990). Here, we report the crystal structure of the title compound, (I), Fig. 1. The dihedral angle formed between the aromatic systems is 71.50 (3)°. The methoxy group is co-planar with the benzene ring to which it is connected with the C21–O3–C16–C17 torsion angle being 6.37 (17) °. The observed conformation is stabilised by an intramolecular N–H···O hydrogen bond, Table 1.

Related literature top

For background to anthraquinone derivatives, see: Matsui (1998); Rao & Choudhary (1990).

Experimental top

The crystal was obtained by dissolving (I) in methyl acetate (50 ml) and leaving the resulting solution, which was covered with Parafilm plastic containing pin holes, to evaporate at room temperature.

Refinement top

The hydrogen atoms were refined freely: N–H = 0.932 (19) Å, and C–H = 0.937 (16)–1.051 (17) Å.

Structure description top

Anthraquinone and its derivatives are important compounds in the fields of dyes and pigments (Matsui 1998; Rao & Choudhary, 1990). Here, we report the crystal structure of the title compound, (I), Fig. 1. The dihedral angle formed between the aromatic systems is 71.50 (3)°. The methoxy group is co-planar with the benzene ring to which it is connected with the C21–O3–C16–C17 torsion angle being 6.37 (17) °. The observed conformation is stabilised by an intramolecular N–H···O hydrogen bond, Table 1.

For background to anthraquinone derivatives, see: Matsui (1998); Rao & Choudhary (1990).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: XL (Bruker, 2004); molecular graphics: XL (Bruker, 2004); software used to prepare material for publication: XL (Bruker, 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
1-(2-Methoxyanilino)anthraquinone top
Crystal data top
C21H15NO3F(000) = 688
Mr = 329.34Dx = 1.442 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 8857 reflections
a = 11.4222 (3) Åθ = 2.8–31.7°
b = 7.9878 (2) ŵ = 0.10 mm1
c = 16.9332 (4) ÅT = 110 K
β = 100.9851 (12)°Prism, red
V = 1516.65 (7) Å30.40 × 0.30 × 0.14 mm
Z = 4
Data collection top
Bruker–Nonius X8 APEXII
diffractometer
5620 independent reflections
Radiation source: fine-focus sealed tube3863 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ scansθmax = 34.9°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1716
Tmin = 0.962, Tmax = 0.987k = 1211
32405 measured reflectionsl = 2425
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0934P)2 + 0.1215P]
where P = (Fo2 + 2Fc2)/3
5620 reflections(Δ/σ)max = 0.001
286 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C21H15NO3V = 1516.65 (7) Å3
Mr = 329.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.4222 (3) ŵ = 0.10 mm1
b = 7.9878 (2) ÅT = 110 K
c = 16.9332 (4) Å0.40 × 0.30 × 0.14 mm
β = 100.9851 (12)°
Data collection top
Bruker–Nonius X8 APEXII
diffractometer
5620 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
3863 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.987Rint = 0.031
32405 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.161All H-atom parameters refined
S = 1.05Δρmax = 0.49 e Å3
5620 reflectionsΔρmin = 0.20 e Å3
286 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13993 (7)0.20278 (10)0.63675 (5)0.02712 (19)
O20.22023 (8)0.23872 (11)0.55875 (5)0.0302 (2)
O30.46774 (7)0.06574 (11)0.66601 (4)0.0286 (2)
N10.26972 (8)0.02097 (13)0.72798 (6)0.0258 (2)
H10.2651 (17)0.076 (2)0.6971 (11)0.058 (5)*
C10.05822 (9)0.09907 (14)0.62187 (6)0.0203 (2)
C20.06875 (9)0.07113 (13)0.65401 (6)0.0192 (2)
C30.17497 (9)0.12548 (14)0.70664 (6)0.0216 (2)
C40.18047 (11)0.29225 (15)0.73478 (6)0.0263 (2)
H40.2586 (12)0.3278 (18)0.7699 (8)0.030 (4)*
C50.08556 (11)0.39923 (16)0.71402 (7)0.0279 (3)
H50.0911 (14)0.524 (2)0.7336 (10)0.043 (4)*
C60.02007 (11)0.34632 (15)0.66463 (6)0.0248 (2)
H60.0882 (13)0.4234 (19)0.6527 (9)0.034 (4)*
C70.02689 (9)0.18511 (14)0.63397 (6)0.0201 (2)
C80.13910 (9)0.13774 (14)0.57762 (6)0.0214 (2)
C90.14902 (9)0.03492 (14)0.54568 (6)0.0198 (2)
C100.25212 (10)0.08461 (15)0.49214 (6)0.0232 (2)
H100.3179 (11)0.0046 (17)0.4743 (7)0.020 (3)*
C110.26221 (10)0.24721 (15)0.46310 (6)0.0249 (2)
H110.3326 (12)0.2845 (18)0.4248 (8)0.029 (3)*
C120.17056 (10)0.36132 (15)0.48686 (6)0.0242 (2)
H120.1783 (13)0.481 (2)0.4670 (9)0.038 (4)*
C130.06699 (10)0.31181 (14)0.53857 (6)0.0222 (2)
H130.0034 (14)0.387 (2)0.5534 (9)0.037 (4)*
C140.05540 (9)0.14870 (13)0.56821 (5)0.0189 (2)
C150.37851 (10)0.06745 (14)0.77938 (6)0.0240 (2)
C160.48166 (10)0.08838 (14)0.74715 (6)0.0227 (2)
C170.58900 (10)0.12904 (15)0.79741 (7)0.0265 (2)
H170.6567 (14)0.143 (2)0.7741 (9)0.038 (4)*
C180.59215 (11)0.15392 (16)0.87909 (7)0.0297 (3)
H180.6648 (14)0.188 (2)0.9122 (10)0.043 (4)*
C190.49073 (12)0.13533 (17)0.91119 (7)0.0327 (3)
H190.4947 (14)0.153 (2)0.9695 (10)0.048 (5)*
C200.38352 (12)0.09066 (17)0.86123 (7)0.0315 (3)
H200.3124 (14)0.0724 (19)0.8831 (9)0.035 (4)*
C210.56705 (12)0.10204 (19)0.62942 (7)0.0329 (3)
H21A0.6315 (16)0.015 (2)0.6472 (11)0.048 (4)*
H21B0.5396 (15)0.094 (2)0.5726 (11)0.047 (4)*
H21C0.6026 (15)0.216 (2)0.6451 (10)0.048 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0201 (4)0.0221 (4)0.0365 (4)0.0035 (3)0.0012 (3)0.0040 (3)
O20.0269 (4)0.0259 (5)0.0363 (4)0.0078 (3)0.0020 (3)0.0011 (3)
O30.0257 (4)0.0362 (5)0.0235 (4)0.0020 (3)0.0038 (3)0.0023 (3)
N10.0191 (4)0.0260 (5)0.0305 (4)0.0014 (4)0.0001 (3)0.0068 (4)
C10.0180 (5)0.0207 (5)0.0221 (4)0.0002 (4)0.0040 (3)0.0001 (4)
C20.0193 (5)0.0189 (5)0.0204 (4)0.0014 (4)0.0059 (3)0.0007 (4)
C30.0204 (5)0.0232 (6)0.0224 (4)0.0015 (4)0.0064 (3)0.0015 (4)
C40.0272 (6)0.0256 (6)0.0262 (5)0.0045 (4)0.0058 (4)0.0066 (4)
C50.0342 (6)0.0232 (6)0.0277 (5)0.0009 (5)0.0090 (4)0.0060 (4)
C60.0298 (6)0.0206 (6)0.0256 (5)0.0033 (5)0.0089 (4)0.0015 (4)
C70.0217 (5)0.0199 (5)0.0201 (4)0.0002 (4)0.0075 (3)0.0013 (4)
C80.0213 (5)0.0209 (5)0.0230 (4)0.0018 (4)0.0066 (3)0.0025 (4)
C90.0194 (5)0.0204 (5)0.0204 (4)0.0006 (4)0.0054 (3)0.0027 (4)
C100.0196 (5)0.0252 (6)0.0244 (4)0.0006 (4)0.0034 (4)0.0027 (4)
C110.0208 (5)0.0280 (6)0.0250 (4)0.0025 (4)0.0018 (4)0.0017 (4)
C120.0233 (5)0.0218 (6)0.0269 (5)0.0032 (4)0.0037 (4)0.0007 (4)
C130.0203 (5)0.0206 (5)0.0254 (4)0.0011 (4)0.0038 (4)0.0013 (4)
C140.0172 (5)0.0195 (5)0.0204 (4)0.0004 (4)0.0042 (3)0.0013 (4)
C150.0217 (5)0.0235 (6)0.0251 (4)0.0016 (4)0.0002 (4)0.0023 (4)
C160.0231 (5)0.0193 (5)0.0243 (4)0.0002 (4)0.0014 (4)0.0006 (4)
C170.0207 (5)0.0243 (6)0.0323 (5)0.0000 (4)0.0007 (4)0.0004 (4)
C180.0280 (6)0.0256 (6)0.0305 (5)0.0007 (5)0.0069 (4)0.0006 (4)
C190.0383 (7)0.0342 (7)0.0232 (5)0.0031 (5)0.0002 (4)0.0014 (4)
C200.0312 (6)0.0365 (7)0.0270 (5)0.0047 (5)0.0059 (4)0.0031 (5)
C210.0300 (6)0.0394 (8)0.0307 (5)0.0020 (6)0.0094 (5)0.0037 (5)
Geometric parameters (Å, º) top
O1—C11.2374 (13)C10—C111.3858 (17)
O2—C81.2241 (13)C10—H101.038 (13)
O3—C161.3647 (13)C11—C121.3886 (16)
O3—C211.4222 (15)C11—H110.978 (14)
N1—C31.3600 (15)C12—C131.3884 (14)
N1—C151.4238 (13)C12—H121.009 (16)
N1—H10.932 (19)C13—C141.3934 (15)
C1—C21.4608 (15)C13—H130.937 (16)
C1—C141.4892 (14)C15—C201.3887 (16)
C2—C71.4128 (15)C15—C161.3996 (16)
C2—C31.4293 (14)C16—C171.3912 (15)
C3—C41.4122 (16)C17—C181.3910 (16)
C4—C51.3726 (17)C17—H170.940 (16)
C4—H41.014 (14)C18—C191.3782 (19)
C5—C61.3961 (16)C18—H180.948 (16)
C5—H51.051 (17)C19—C201.3956 (17)
C6—C71.3851 (16)C19—H190.990 (17)
C6—H60.983 (15)C20—H200.966 (16)
C7—C81.4933 (14)C21—H21A1.016 (18)
C8—C91.4779 (16)C21—H21B0.955 (18)
C9—C141.3998 (14)C21—H21C1.013 (18)
C9—C101.3998 (14)
C16—O3—C21117.52 (9)C10—C11—H11121.5 (8)
C3—N1—C15124.05 (10)C12—C11—H11118.1 (8)
C3—N1—H1113.9 (12)C13—C12—C11120.03 (11)
C15—N1—H1120.7 (12)C13—C12—H12119.3 (9)
O1—C1—C2122.81 (9)C11—C12—H12120.6 (9)
O1—C1—C14118.80 (10)C12—C13—C14120.30 (10)
C2—C1—C14118.38 (9)C12—C13—H13120.7 (10)
C7—C2—C3118.67 (9)C14—C13—H13119.0 (10)
C7—C2—C1120.35 (9)C13—C14—C9119.59 (9)
C3—C2—C1120.99 (9)C13—C14—C1118.73 (9)
N1—C3—C4120.49 (10)C9—C14—C1121.67 (9)
N1—C3—C2121.15 (10)C20—C15—C16119.71 (10)
C4—C3—C2118.35 (10)C20—C15—N1120.68 (11)
C5—C4—C3121.24 (10)C16—C15—N1119.61 (9)
C5—C4—H4122.7 (8)O3—C16—C17124.53 (11)
C3—C4—H4116.1 (8)O3—C16—C15115.56 (9)
C4—C5—C6121.01 (11)C17—C16—C15119.91 (10)
C4—C5—H5120.9 (9)C18—C17—C16119.63 (11)
C6—C5—H5118.0 (9)C18—C17—H17122.3 (9)
C7—C6—C5119.11 (11)C16—C17—H17118.0 (9)
C7—C6—H6121.3 (9)C19—C18—C17120.82 (10)
C5—C6—H6119.6 (9)C19—C18—H18120.3 (10)
C6—C7—C2121.56 (9)C17—C18—H18118.9 (10)
C6—C7—C8117.08 (10)C18—C19—C20119.67 (11)
C2—C7—C8121.36 (9)C18—C19—H19119.7 (10)
O2—C8—C9121.19 (10)C20—C19—H19120.6 (10)
O2—C8—C7120.98 (10)C15—C20—C19120.24 (12)
C9—C8—C7117.83 (9)C15—C20—H20119.0 (9)
C14—C9—C10119.81 (10)C19—C20—H20120.7 (9)
C14—C9—C8120.32 (9)O3—C21—H21A108.9 (10)
C10—C9—C8119.87 (10)O3—C21—H21B106.8 (10)
C11—C10—C9119.89 (10)H21A—C21—H21B109.4 (15)
C11—C10—H10122.2 (7)O3—C21—H21C112.5 (10)
C9—C10—H10117.8 (7)H21A—C21—H21C107.9 (13)
C10—C11—C12120.35 (10)H21B—C21—H21C111.3 (14)
O1—C1—C2—C7179.01 (10)C8—C9—C10—C11179.05 (9)
C14—C1—C2—C70.30 (14)C9—C10—C11—C120.04 (16)
O1—C1—C2—C31.50 (16)C10—C11—C12—C131.45 (17)
C14—C1—C2—C3179.20 (9)C11—C12—C13—C141.36 (16)
C15—N1—C3—C40.72 (17)C12—C13—C14—C90.14 (16)
C15—N1—C3—C2179.32 (10)C12—C13—C14—C1178.47 (9)
C7—C2—C3—N1179.95 (10)C10—C9—C14—C131.55 (15)
C1—C2—C3—N10.44 (16)C8—C9—C14—C13178.96 (9)
C7—C2—C3—C41.43 (15)C10—C9—C14—C1177.02 (9)
C1—C2—C3—C4179.07 (9)C8—C9—C14—C12.46 (15)
N1—C3—C4—C5179.81 (11)O1—C1—C14—C131.90 (15)
C2—C3—C4—C51.55 (16)C2—C1—C14—C13178.77 (9)
C3—C4—C5—C60.36 (18)O1—C1—C14—C9176.69 (10)
C4—C5—C6—C72.38 (17)C2—C1—C14—C92.64 (15)
C5—C6—C7—C22.49 (16)C3—N1—C15—C2071.76 (16)
C5—C6—C7—C8176.51 (9)C3—N1—C15—C16108.85 (13)
C3—C2—C7—C60.58 (15)C21—O3—C16—C176.37 (17)
C1—C2—C7—C6178.92 (9)C21—O3—C16—C15173.84 (11)
C3—C2—C7—C8178.37 (9)C20—C15—C16—O3178.95 (11)
C1—C2—C7—C82.13 (15)N1—C15—C16—O31.66 (16)
C6—C7—C8—O21.10 (15)C20—C15—C16—C171.25 (18)
C2—C7—C8—O2177.90 (10)N1—C15—C16—C17178.14 (11)
C6—C7—C8—C9178.70 (9)O3—C16—C17—C18178.15 (11)
C2—C7—C8—C92.30 (14)C15—C16—C17—C182.07 (18)
O2—C8—C9—C14179.78 (10)C16—C17—C18—C191.38 (19)
C7—C8—C9—C140.03 (14)C17—C18—C19—C200.1 (2)
O2—C8—C9—C100.74 (15)C16—C15—C20—C190.27 (19)
C7—C8—C9—C10179.46 (9)N1—C15—C20—C19179.65 (12)
C14—C9—C10—C111.46 (16)C18—C19—C20—C151.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.932 (19)1.886 (18)2.6279 (13)135.0 (17)

Experimental details

Crystal data
Chemical formulaC21H15NO3
Mr329.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)110
a, b, c (Å)11.4222 (3), 7.9878 (2), 16.9332 (4)
β (°) 100.9851 (12)
V3)1516.65 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.30 × 0.14
Data collection
DiffractometerBruker–Nonius X8 APEXII
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.962, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
32405, 5620, 3863
Rint0.031
(sin θ/λ)max1)0.805
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.161, 1.05
No. of reflections5620
No. of parameters286
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.49, 0.20

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SIR92 (Altomare et al., 1994), XL (Bruker, 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.932 (19)1.886 (18)2.6279 (13)135.0 (17)
 

Acknowledgements

This research was supported by the China Scholarship Council (No. 2007102249). We also wish to thank Dr Harold S. Freeman and Dr Paul Boyle at North Carolina State University for their help.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). XL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). SADABS, APEX2 and SAINT. Madison, Wisconsin, USA.  Google Scholar
First citationMatsui, M. (1998). Dyes Pigments, 40, 21–26.  Web of Science CrossRef Google Scholar
First citationRao, B. V. & Choudhary, V. (1990). J. Soc. Dyers Colour. 106, 388–394.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds