organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Nitro­phenyl 1-naphthoate

aDepartment of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan, and bInstitut für Anorganische Chemie, J.-W.-Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: humaira_siddiqi@yahoo.com

(Received 27 March 2010; accepted 29 March 2010; online 2 April 2010)

In the title compound, C17H11NO4, the dihedral angle between the two benzene rings is 8.66 (3)°. The nitro group is twisted by 4.51 (9)° out of the plane of the aromatic ring to which it is attached. The presence of inter­molecular C—H⋯O contacts in the crystal structure leads to the formation of chains along the c axis.

Related literature

For biological and synthetic background, see: Bezerra-Netto et al. (2006[Bezerra-Netto, H. J. C., Daniel, I. L., Ana, L. P. M., Helio, M. A., Eliezer, J. B. & Carlos, A. M. F. (2006). Bioorg. Med. Chem. 14, 7924-7935.]); Bibi et al. (2009[Bibi, U., Siddiqi, H. M., Bolte, M. & Akhter, Z. (2009). Acta Cryst. E65, o3038.]); Kumarraja & Pitchumani (2004[Kumarraja, M. & Pitchumani, K. (2004). J. Appl. Catal. A, 265, 135-139.]); Selvakumar et al. (2002[Selvakumar, N., Malar Azhagan, A., Seinivas, D. & Gopi Krishna, G. (2002). Tetrahedron Lett. 43, 9175-9178.]); Tafesh & Weiguny (1996[Tafesh, M. & Weiguny, J. (1996). Chem. Rev. 96, 2035-2052.]).

[Scheme 1]

Experimental

Crystal data
  • C17H11NO4

  • Mr = 293.27

  • Monoclinic, P 21 /c

  • a = 7.2049 (6) Å

  • b = 12.8175 (8) Å

  • c = 14.7838 (14) Å

  • β = 99.006 (7)°

  • V = 1348.44 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.25 × 0.21 × 0.21 mm

Data collection
  • Stoe IPDS-II two-circle diffractometer

  • 10239 measured reflections

  • 2508 independent reflections

  • 1928 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.088

  • S = 0.96

  • 2508 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O2i 0.95 2.45 3.3728 (18) 164
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The ability of non-steroidal anti–inflammatory drugs (NSAID's) to modulate the pain, inflammation and fever make them attractive drugs (Bezerra-Netto et al., 2006). Aromatic esters containing a nitro-substituted phenyl ring form a medicinally important class of NSAID's. These can be used as starting materials for the preparation of several analgesic and anti–inflammatory drugs, and some of them are potential intermediates in natural product syntheses (Selvakumar et al., 2002). Nitro compounds can be reduced to give amines which are important synthons for preparing a large number of technologically important materials (Kumarraja et al., 2004; Tafesh et al., 1996). In continuation of studies on related compounds (Bibi et al., 2009), the title compound is reported herein.

A perspective view of the title compound is shown in Fig. 1. The dihedral angle formed between the two aromatic ring systems is 8.66 (3)°. The nitro group is twisted by only 4.51 (9)° out of the plane of the aromatic ring to which it is attached. The crystal structure is stabilized by C—H···O contacts, Table 1.

Related literature top

For biological and synthetic background, see: Bezerra-Netto et al. (2006); Bibi et al. (2009); Kumarraja & Pitchumani (2004); Selvakumar et al. (2002); Tafesh & Weiguny (1996).

Experimental top

1-Naphthoic acid (1.5 g, 1 mol) was taken in a 100 ml two neck round bottom flask and warmed on a water bath to 323 K. An excess of dry thionyl chloride was added slowly with stirring. Drops (2-3) of DMF were added and the mixture was refluxed for about 50-60 minutes at 343 K. After the completion of the reaction, excess thionyl chloride was removed by repeated evaporations at reduced pressure. 4-Nitrophenol (1.5 g, 0.0065 mol) was dissolved in dry dichloromethane containing triethyl amine at room temperature. The acid chloride was added drop-wise with constant stirring at room temperature for half an hour. The reaction mixture was heated gently for 30 minutes under anhydrous condition and then the solution was poured with constant stirring into cold water (20 ml ). Excess triethyl amine was destroyed by adding the cold dilute HCl solution. The reaction was monitored by TLC using ethyl acetate:n-hexane (1:1). After the completion of reaction the oily product was allowed to settle down and the supernatant liquid was decanted. The product was stirred well with distilled water and extracted with ethyl acetate (3 x 40 ml). Washing was done with 5% NaHCO3 solution to remove unreacted acid and the extract was dried over anhydrous Na2SO4, filtered, and concentrated on a rotary evaporator. The ester soon solidified and was filtered. The title compound was recrystallized from n-hexane (Yield 36.5 %, m.pt. 385–393 K)

Refinement top

H atoms were found in a difference map, but they were refined with fixed individual isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)] using a riding model, with C—H = 0.95 Å.

Structure description top

The ability of non-steroidal anti–inflammatory drugs (NSAID's) to modulate the pain, inflammation and fever make them attractive drugs (Bezerra-Netto et al., 2006). Aromatic esters containing a nitro-substituted phenyl ring form a medicinally important class of NSAID's. These can be used as starting materials for the preparation of several analgesic and anti–inflammatory drugs, and some of them are potential intermediates in natural product syntheses (Selvakumar et al., 2002). Nitro compounds can be reduced to give amines which are important synthons for preparing a large number of technologically important materials (Kumarraja et al., 2004; Tafesh et al., 1996). In continuation of studies on related compounds (Bibi et al., 2009), the title compound is reported herein.

A perspective view of the title compound is shown in Fig. 1. The dihedral angle formed between the two aromatic ring systems is 8.66 (3)°. The nitro group is twisted by only 4.51 (9)° out of the plane of the aromatic ring to which it is attached. The crystal structure is stabilized by C—H···O contacts, Table 1.

For biological and synthetic background, see: Bezerra-Netto et al. (2006); Bibi et al. (2009); Kumarraja & Pitchumani (2004); Selvakumar et al. (2002); Tafesh & Weiguny (1996).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
4-Nitrophenyl 1-naphthoate top
Crystal data top
C17H11NO4F(000) = 608
Mr = 293.27Dx = 1.445 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8709 reflections
a = 7.2049 (6) Åθ = 3.3–26.0°
b = 12.8175 (8) ŵ = 0.10 mm1
c = 14.7838 (14) ÅT = 173 K
β = 99.006 (7)°Block, colourless
V = 1348.44 (19) Å30.25 × 0.21 × 0.21 mm
Z = 4
Data collection top
Stoe IPDS-II two-circle
diffractometer
1928 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Graphite monochromatorθmax = 25.6°, θmin = 3.3°
ω scansh = 88
10239 measured reflectionsk = 1515
2508 independent reflectionsl = 1317
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0582P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
2508 reflectionsΔρmax = 0.26 e Å3
200 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0103 (16)
Crystal data top
C17H11NO4V = 1348.44 (19) Å3
Mr = 293.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.2049 (6) ŵ = 0.10 mm1
b = 12.8175 (8) ÅT = 173 K
c = 14.7838 (14) Å0.25 × 0.21 × 0.21 mm
β = 99.006 (7)°
Data collection top
Stoe IPDS-II two-circle
diffractometer
1928 reflections with I > 2σ(I)
10239 measured reflectionsRint = 0.040
2508 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 0.96Δρmax = 0.26 e Å3
2508 reflectionsΔρmin = 0.20 e Å3
200 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.36959 (17)0.15975 (9)0.73346 (9)0.0357 (3)
O10.28241 (13)0.47946 (6)0.47417 (6)0.0264 (2)
O20.14518 (13)0.59160 (7)0.56191 (7)0.0303 (2)
O30.42873 (18)0.18063 (9)0.81407 (8)0.0526 (3)
O40.33027 (18)0.07066 (8)0.70625 (9)0.0519 (3)
C10.19783 (17)0.57191 (9)0.49057 (9)0.0239 (3)
C20.30357 (17)0.40273 (9)0.54233 (9)0.0239 (3)
C30.38432 (18)0.42424 (10)0.63163 (10)0.0275 (3)
H30.42490.49290.64910.033*
C40.40489 (18)0.34404 (10)0.69505 (10)0.0291 (3)
H40.45790.35680.75700.035*
C50.34691 (18)0.24492 (10)0.66653 (9)0.0272 (3)
C60.27048 (19)0.22251 (10)0.57696 (10)0.0301 (3)
H60.23350.15340.55920.036*
C70.24893 (19)0.30293 (10)0.51368 (10)0.0280 (3)
H70.19750.28990.45160.034*
C110.17730 (17)0.63938 (10)0.40772 (9)0.0239 (3)
C120.20200 (17)0.75036 (9)0.41572 (9)0.0250 (3)
C130.2570 (2)0.80306 (10)0.49996 (10)0.0323 (3)
H130.27700.76460.55560.039*
C140.2816 (2)0.90913 (11)0.50176 (12)0.0426 (4)
H140.31690.94360.55880.051*
C150.2553 (2)0.96756 (11)0.42033 (13)0.0460 (4)
H150.27381.04100.42260.055*
C160.2035 (2)0.91929 (11)0.33809 (12)0.0380 (4)
H160.18670.95940.28340.046*
C170.17434 (18)0.80981 (10)0.33332 (10)0.0286 (3)
C180.12013 (19)0.75958 (11)0.24776 (10)0.0322 (3)
H180.09980.80000.19320.039*
C190.0969 (2)0.65407 (11)0.24282 (10)0.0334 (3)
H190.06010.62130.18510.040*
C200.12749 (19)0.59370 (10)0.32339 (10)0.0288 (3)
H200.11340.52010.31930.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0365 (7)0.0352 (7)0.0361 (8)0.0029 (5)0.0078 (5)0.0115 (5)
O10.0335 (5)0.0227 (4)0.0240 (5)0.0043 (4)0.0081 (4)0.0044 (4)
O20.0387 (6)0.0295 (5)0.0240 (5)0.0049 (4)0.0089 (4)0.0020 (4)
O30.0747 (9)0.0495 (7)0.0318 (7)0.0025 (6)0.0026 (6)0.0140 (5)
O40.0705 (8)0.0296 (6)0.0539 (8)0.0058 (5)0.0045 (6)0.0137 (5)
C10.0237 (6)0.0228 (6)0.0251 (7)0.0011 (5)0.0036 (5)0.0006 (5)
C20.0236 (6)0.0241 (6)0.0252 (7)0.0031 (5)0.0075 (5)0.0043 (5)
C30.0278 (7)0.0253 (6)0.0289 (8)0.0011 (5)0.0033 (5)0.0004 (5)
C40.0277 (7)0.0333 (7)0.0256 (8)0.0022 (5)0.0018 (6)0.0022 (6)
C50.0253 (7)0.0280 (7)0.0291 (8)0.0039 (5)0.0070 (5)0.0090 (5)
C60.0316 (7)0.0233 (6)0.0350 (9)0.0002 (5)0.0045 (6)0.0016 (6)
C70.0303 (7)0.0275 (7)0.0256 (7)0.0026 (5)0.0026 (5)0.0007 (5)
C110.0219 (6)0.0259 (6)0.0246 (7)0.0012 (5)0.0053 (5)0.0029 (5)
C120.0218 (6)0.0254 (6)0.0282 (8)0.0015 (5)0.0051 (5)0.0029 (5)
C130.0368 (8)0.0296 (7)0.0299 (8)0.0010 (5)0.0033 (6)0.0004 (6)
C140.0546 (10)0.0309 (8)0.0409 (10)0.0040 (6)0.0033 (7)0.0061 (6)
C150.0567 (11)0.0247 (7)0.0561 (12)0.0042 (7)0.0070 (8)0.0015 (7)
C160.0397 (8)0.0300 (7)0.0441 (10)0.0021 (6)0.0061 (7)0.0131 (6)
C170.0235 (6)0.0293 (7)0.0333 (8)0.0023 (5)0.0058 (6)0.0063 (6)
C180.0315 (7)0.0386 (8)0.0265 (8)0.0016 (6)0.0042 (6)0.0111 (6)
C190.0372 (8)0.0396 (8)0.0228 (7)0.0025 (6)0.0026 (6)0.0010 (6)
C200.0314 (7)0.0281 (6)0.0271 (8)0.0013 (5)0.0050 (6)0.0009 (5)
Geometric parameters (Å, º) top
N1—O41.2290 (16)C11—C121.4362 (18)
N1—O31.2307 (18)C12—C131.418 (2)
N1—C51.4651 (17)C12—C171.4242 (19)
O1—C11.3713 (15)C13—C141.371 (2)
O1—C21.3993 (15)C13—H130.9500
O2—C11.2022 (17)C14—C151.405 (2)
C1—C111.4876 (18)C14—H140.9500
C2—C31.385 (2)C15—C161.363 (2)
C2—C71.3850 (18)C15—H150.9500
C3—C41.3836 (19)C16—C171.4191 (19)
C3—H30.9500C16—H160.9500
C4—C51.3825 (19)C17—C181.419 (2)
C4—H40.9500C18—C191.363 (2)
C5—C61.382 (2)C18—H180.9500
C6—C71.3844 (19)C19—C201.409 (2)
C6—H60.9500C19—H190.9500
C7—H70.9500C20—H200.9500
C11—C201.373 (2)
O4—N1—O3123.10 (12)C13—C12—C17118.61 (12)
O4—N1—C5118.41 (13)C13—C12—C11123.94 (12)
O3—N1—C5118.49 (12)C17—C12—C11117.43 (12)
C1—O1—C2118.78 (10)C14—C13—C12120.47 (14)
O2—C1—O1123.12 (12)C14—C13—H13119.8
O2—C1—C11126.58 (11)C12—C13—H13119.8
O1—C1—C11110.27 (11)C13—C14—C15120.82 (15)
C3—C2—C7122.17 (12)C13—C14—H14119.6
C3—C2—O1121.92 (11)C15—C14—H14119.6
C7—C2—O1115.80 (12)C16—C15—C14120.24 (14)
C4—C3—C2118.86 (12)C16—C15—H15119.9
C4—C3—H3120.6C14—C15—H15119.9
C2—C3—H3120.6C15—C16—C17120.72 (14)
C5—C4—C3118.75 (13)C15—C16—H16119.6
C5—C4—H4120.6C17—C16—H16119.6
C3—C4—H4120.6C18—C17—C16120.73 (13)
C4—C5—C6122.62 (12)C18—C17—C12120.13 (12)
C4—C5—N1118.84 (13)C16—C17—C12119.13 (13)
C6—C5—N1118.53 (12)C19—C18—C17120.82 (13)
C5—C6—C7118.57 (12)C19—C18—H18119.6
C5—C6—H6120.7C17—C18—H18119.6
C7—C6—H6120.7C18—C19—C20119.87 (13)
C6—C7—C2118.99 (13)C18—C19—H19120.1
C6—C7—H7120.5C20—C19—H19120.1
C2—C7—H7120.5C11—C20—C19121.17 (12)
C20—C11—C12120.56 (12)C11—C20—H20119.4
C20—C11—C1118.54 (11)C19—C20—H20119.4
C12—C11—C1120.86 (12)
C2—O1—C1—O22.09 (18)C20—C11—C12—C13178.63 (13)
C2—O1—C1—C11176.10 (10)C1—C11—C12—C133.73 (19)
C1—O1—C2—C351.49 (16)C20—C11—C12—C170.49 (18)
C1—O1—C2—C7132.16 (12)C1—C11—C12—C17178.13 (11)
C7—C2—C3—C42.4 (2)C17—C12—C13—C140.4 (2)
O1—C2—C3—C4178.48 (12)C11—C12—C13—C14178.56 (14)
C2—C3—C4—C51.1 (2)C12—C13—C14—C150.8 (2)
C3—C4—C5—C60.5 (2)C13—C14—C15—C160.4 (3)
C3—C4—C5—N1179.64 (12)C14—C15—C16—C170.3 (2)
O4—N1—C5—C4174.87 (13)C15—C16—C17—C18179.92 (14)
O3—N1—C5—C44.5 (2)C15—C16—C17—C120.7 (2)
O4—N1—C5—C64.29 (19)C13—C12—C17—C18179.70 (12)
O3—N1—C5—C6176.38 (13)C11—C12—C17—C181.46 (18)
C4—C5—C6—C70.9 (2)C13—C12—C17—C160.31 (19)
N1—C5—C6—C7179.98 (12)C11—C12—C17—C16177.93 (12)
C5—C6—C7—C20.3 (2)C16—C17—C18—C19178.26 (14)
C3—C2—C7—C62.0 (2)C12—C17—C18—C191.1 (2)
O1—C2—C7—C6178.32 (12)C17—C18—C19—C200.2 (2)
O2—C1—C11—C20138.43 (14)C12—C11—C20—C190.8 (2)
O1—C1—C11—C2039.68 (15)C1—C11—C20—C19176.85 (12)
O2—C1—C11—C1239.26 (19)C18—C19—C20—C111.2 (2)
O1—C1—C11—C12142.63 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O2i0.952.453.3728 (18)164
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC17H11NO4
Mr293.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)7.2049 (6), 12.8175 (8), 14.7838 (14)
β (°) 99.006 (7)
V3)1348.44 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.21 × 0.21
Data collection
DiffractometerStoe IPDS-II two-circle
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10239, 2508, 1928
Rint0.040
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.088, 0.96
No. of reflections2508
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.20

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O2i0.95002.45003.3728 (18)164.00
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

The authors are grateful to the University Research Fund 2008–09, Department of Chemistry, Quaid-I-Azam University, for support. The Institut für Anorganische Chemie, J.-W.-Goethe-Universität Frankfurt, is acknowledged for providing laboratory and analytical facilities.

References

First citationBezerra-Netto, H. J. C., Daniel, I. L., Ana, L. P. M., Helio, M. A., Eliezer, J. B. & Carlos, A. M. F. (2006). Bioorg. Med. Chem. 14, 7924–7935.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBibi, U., Siddiqi, H. M., Bolte, M. & Akhter, Z. (2009). Acta Cryst. E65, o3038.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKumarraja, M. & Pitchumani, K. (2004). J. Appl. Catal. A, 265, 135–139.  Web of Science CrossRef CAS Google Scholar
First citationSelvakumar, N., Malar Azhagan, A., Seinivas, D. & Gopi Krishna, G. (2002). Tetrahedron Lett. 43, 9175–9178.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTafesh, M. & Weiguny, J. (1996). Chem. Rev. 96, 2035–2052.  CrossRef PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds