organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,4-Di­methyl­phen­yl)-4-methyl­benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
*Correspondence e-mail: gowdabt@yahoo.com

(Received 7 April 2010; accepted 12 April 2010; online 21 April 2010)

In the mol­ecule of the title compound, C16H17NO, the N—H and C=O bonds are anti to each other and the two benzene rings form a dihedral angle of 75.8 (1)°. The amide group is twisted by 28.1 (3) and 76.3 (2)° out of the planes of the 4-methyl­phenyl and 2,4-dimethyl­phenyl rings, respectively. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains running along the c axis. The crystal studied was hemihedrally twinned with a twin law resulting from a twofold rotation about the a axis.

Related literature

For the preparation, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.]). For related structures, see: Bowes et al. (2003[Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1-o3.]); Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.], 2009a[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2009a). Acta Cryst. E65, o1612.],b[Gowda, B. T., Tokarčík, M., Kožíšek, J., Rodrigues, V. Z. & Fuess, H. (2009b). Acta Cryst. E65, o2751.], 2010[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2010). Private communication (refcode CCDC 691312). CCDC, Union Road, Cambridge, England.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17NO

  • Mr = 239.31

  • Monoclinic, P 21 /c

  • a = 22.4974 (17) Å

  • b = 6.6033 (2) Å

  • c = 9.2474 (6) Å

  • β = 100.209 (6)°

  • V = 1352.02 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 295 K

  • 0.33 × 0.22 × 0.03 mm

Data collection
  • Oxford Diffraction Xcalibur, Ruby, Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.983, Tmax = 0.998

  • 12970 measured reflections

  • 3430 independent reflections

  • 2107 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.192

  • S = 1.03

  • 3430 reflections

  • 167 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O1i 0.86 2.07 2.884 (4) 159
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of a study of the substituent effects on the crystal structures of benzanilides (Gowda et al., 2003, 2009a,b, 2010), in the present work, the structure of N-(2,4-dimethylphenyl)4-methylbenzamide has been determined. In the structure, the N—H and C=O bonds are anti to each other (Fig. 1), similar to those observed in 4-methyl-N-(phenyl)benzamide (Gowda et al., 2010), N-(2,6-dimethylphenyl)4-methylbenzamide (Gowda et al., 2009a), N-(3,4-dimethylphenyl)4-methylbenzamide (Gowda et al., 2009b) and the parent benzanilide (Bowes et al., 2003). The benzene rings form a dihedral angle of 75.8 (1) °. The amide group is twisted by 28.1 (3) and 76.3 (2) ° out of the planes of the 4-methylphenyl and 2,4-dimethylphenyl rings, respectively. Intermolecular N–H···O hydrogen bonds (Table 1) link the molecules into chains running along the c axis of the crystal (Fig. 2).

Related literature top

For the preparation, see: Gowda et al. (2003). For related structures, see: Bowes et al. (2003); Gowda et al. (2003, 2009a,b, 2010).

Experimental top

The title compound was prepared according to the literature method (Gowda et al., 2003). Plate-like colourless crystals were obtained from a slow evaporation of its ethanolic solution at room temperature.

Refinement top

Twinning was discovered, with two twin domains in a 1:1 ratio. and taken into account from the early stages of data collection. The twin law was determined as the matrix (-0.9998 0.0015 -0.8619/ -0.0001 -1.0000 -0.0003/ 0.0000 -0.0005 1.0001), which corresponds to a twofold rotation about the a axis. The non-diagonal matrix element of -0.8619 has a near-rational value of -6/7. Inspection of diffraction patterns and HKL files confirmed that reflections are overlapped mainly in the zones with l = 0 and l = 7. The twin scale factor was refined to a final value of 0.484 (2). All hydrogen atoms were positioned with idealized geometry using a riding model with C–H = 0.93 Å or 0.96 Å, and N–H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C-aromatic, N) and 1.5Ueq(C-methyl).

Structure description top

As part of a study of the substituent effects on the crystal structures of benzanilides (Gowda et al., 2003, 2009a,b, 2010), in the present work, the structure of N-(2,4-dimethylphenyl)4-methylbenzamide has been determined. In the structure, the N—H and C=O bonds are anti to each other (Fig. 1), similar to those observed in 4-methyl-N-(phenyl)benzamide (Gowda et al., 2010), N-(2,6-dimethylphenyl)4-methylbenzamide (Gowda et al., 2009a), N-(3,4-dimethylphenyl)4-methylbenzamide (Gowda et al., 2009b) and the parent benzanilide (Bowes et al., 2003). The benzene rings form a dihedral angle of 75.8 (1) °. The amide group is twisted by 28.1 (3) and 76.3 (2) ° out of the planes of the 4-methylphenyl and 2,4-dimethylphenyl rings, respectively. Intermolecular N–H···O hydrogen bonds (Table 1) link the molecules into chains running along the c axis of the crystal (Fig. 2).

For the preparation, see: Gowda et al. (2003). For related structures, see: Bowes et al. (2003); Gowda et al. (2003, 2009a,b, 2010).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of crystal structure of (I) with hydrogen bonds shown as dashed lines. Symmetry code (i): x, -y+1/2, z-1/2. H atoms not involved in hydrogen bonding were omitted.
N-(2,4-Dimethylphenyl)4-methylbenzamide top
Crystal data top
C16H17NOF(000) = 512
Mr = 239.31Dx = 1.176 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3071 reflections
a = 22.4974 (17) Åθ = 1.8–29.6°
b = 6.6033 (2) ŵ = 0.07 mm1
c = 9.2474 (6) ÅT = 295 K
β = 100.209 (6)°Plate, colourless
V = 1352.02 (14) Å30.33 × 0.22 × 0.03 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur, Ruby, Gemini
diffractometer
3430 independent reflections
Graphite monochromator2107 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.079
ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 2626
Tmin = 0.983, Tmax = 0.998k = 77
12970 measured reflectionsl = 911
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.192H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0864P)2]
where P = (Fo2 + 2Fc2)/3
3430 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.21 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C16H17NOV = 1352.02 (14) Å3
Mr = 239.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 22.4974 (17) ŵ = 0.07 mm1
b = 6.6033 (2) ÅT = 295 K
c = 9.2474 (6) Å0.33 × 0.22 × 0.03 mm
β = 100.209 (6)°
Data collection top
Oxford Diffraction Xcalibur, Ruby, Gemini
diffractometer
3430 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2107 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.998Rint = 0.079
12970 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0701 restraint
wR(F2) = 0.192H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
3430 reflectionsΔρmin = 0.18 e Å3
167 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.19951 (16)0.4402 (5)0.0180 (3)0.0468 (9)
C20.14244 (17)0.3963 (5)0.0076 (4)0.0515 (9)
C30.09535 (16)0.5225 (6)0.0511 (4)0.0567 (10)
H30.05650.49180.03680.068*
C40.10472 (18)0.6947 (6)0.1314 (4)0.0600 (10)
C50.16235 (19)0.7348 (7)0.1540 (4)0.0645 (11)
H50.16950.84860.20770.077*
C60.20935 (17)0.6099 (6)0.0986 (4)0.0545 (10)
H60.2480.63890.11510.065*
C70.27622 (16)0.2919 (5)0.1727 (4)0.0492 (9)
C80.32400 (15)0.1339 (5)0.2078 (4)0.0465 (9)
C90.32238 (18)0.0436 (6)0.1290 (4)0.0679 (11)
H90.29250.06370.04690.081*
C100.3653 (2)0.1920 (6)0.1721 (5)0.0699 (12)
H100.3630.31270.11950.084*
C110.41057 (18)0.1669 (6)0.2888 (5)0.0674 (12)
C120.41121 (17)0.0115 (7)0.3662 (4)0.0702 (11)
H120.44170.03330.44670.084*
C130.36811 (16)0.1577 (6)0.3279 (4)0.0596 (11)
H130.3690.27450.38440.072*
C140.13012 (19)0.2119 (6)0.0952 (5)0.0733 (12)
H14A0.14810.23050.19650.11*
H14B0.14720.09420.05730.11*
H14C0.08730.19420.08720.11*
C150.0514 (2)0.8274 (7)0.1942 (5)0.0921 (16)
H15A0.06530.96220.20820.138*
H15B0.02330.83060.12740.138*
H15C0.03190.77330.28690.138*
C160.4581 (2)0.3282 (7)0.3361 (6)0.1064 (17)
H16A0.44850.44710.27690.16*
H16B0.4590.36150.43750.16*
H16C0.4970.27790.32390.16*
N10.24865 (13)0.3076 (4)0.0336 (3)0.0561 (8)
H1N0.26150.2320.03010.067*
O10.26376 (11)0.4035 (4)0.2695 (3)0.0578 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.056 (2)0.056 (2)0.0281 (19)0.0081 (18)0.0065 (16)0.0041 (17)
C20.069 (3)0.055 (2)0.029 (2)0.0028 (19)0.0041 (17)0.0007 (17)
C30.058 (2)0.066 (3)0.043 (2)0.005 (2)0.0023 (17)0.005 (2)
C40.067 (3)0.052 (3)0.056 (3)0.007 (2)0.0004 (19)0.000 (2)
C50.080 (3)0.056 (2)0.057 (3)0.003 (2)0.010 (2)0.008 (2)
C60.063 (2)0.056 (2)0.044 (2)0.013 (2)0.0079 (17)0.0021 (19)
C70.067 (2)0.056 (2)0.026 (2)0.0060 (17)0.0125 (17)0.0031 (18)
C80.056 (2)0.050 (2)0.035 (2)0.0034 (15)0.0135 (17)0.0004 (17)
C90.087 (3)0.059 (3)0.053 (3)0.005 (2)0.002 (2)0.003 (2)
C100.090 (3)0.051 (3)0.068 (3)0.008 (2)0.011 (2)0.009 (2)
C110.068 (3)0.049 (3)0.087 (3)0.006 (2)0.016 (2)0.013 (2)
C120.055 (2)0.083 (3)0.066 (3)0.005 (2)0.0048 (19)0.001 (2)
C130.056 (2)0.064 (3)0.054 (2)0.003 (2)0.002 (2)0.012 (2)
C140.094 (3)0.064 (3)0.066 (3)0.003 (2)0.025 (2)0.014 (2)
C150.089 (3)0.091 (4)0.094 (4)0.021 (3)0.010 (3)0.018 (3)
C160.099 (4)0.093 (4)0.124 (5)0.021 (3)0.011 (3)0.013 (3)
N10.073 (2)0.063 (2)0.0321 (18)0.0104 (17)0.0092 (15)0.0008 (15)
O10.0831 (18)0.0566 (14)0.0335 (13)0.0090 (13)0.0096 (12)0.0010 (13)
Geometric parameters (Å, º) top
C1—C21.377 (5)C9—H90.93
C1—C61.385 (5)C10—C111.357 (6)
C1—N11.424 (4)C10—H100.93
C2—C31.381 (5)C11—C121.377 (5)
C2—C141.514 (5)C11—C161.518 (5)
C3—C41.394 (5)C12—C131.370 (5)
C3—H30.93C12—H120.93
C4—C51.375 (5)C13—H130.93
C4—C151.515 (5)C14—H14A0.96
C5—C61.367 (5)C14—H14B0.96
C5—H50.93C14—H14C0.96
C6—H60.93C15—H15A0.96
C7—O11.230 (4)C15—H15B0.96
C7—N11.329 (4)C15—H15C0.96
C7—C81.492 (5)C16—H16A0.96
C8—C131.360 (5)C16—H16B0.96
C8—C91.377 (5)C16—H16C0.96
C9—C101.384 (5)N1—H1N0.86
C2—C1—C6120.4 (3)C10—C11—C12117.1 (4)
C2—C1—N1120.3 (3)C10—C11—C16122.4 (4)
C6—C1—N1119.3 (3)C12—C11—C16120.6 (4)
C1—C2—C3118.6 (3)C13—C12—C11121.8 (4)
C1—C2—C14121.7 (3)C13—C12—H12119.1
C3—C2—C14119.7 (4)C11—C12—H12119.1
C2—C3—C4121.6 (4)C8—C13—C12120.7 (4)
C2—C3—H3119.2C8—C13—H13119.7
C4—C3—H3119.2C12—C13—H13119.7
C5—C4—C3118.3 (3)C2—C14—H14A109.5
C5—C4—C15122.2 (4)C2—C14—H14B109.5
C3—C4—C15119.5 (4)H14A—C14—H14B109.5
C6—C5—C4120.9 (4)C2—C14—H14C109.5
C6—C5—H5119.5H14A—C14—H14C109.5
C4—C5—H5119.5H14B—C14—H14C109.5
C5—C6—C1120.2 (4)C4—C15—H15A109.5
C5—C6—H6119.9C4—C15—H15B109.5
C1—C6—H6119.9H15A—C15—H15B109.5
O1—C7—N1122.0 (3)C4—C15—H15C109.5
O1—C7—C8120.6 (3)H15A—C15—H15C109.5
N1—C7—C8117.4 (3)H15B—C15—H15C109.5
C13—C8—C9118.5 (3)C11—C16—H16A109.5
C13—C8—C7119.3 (3)C11—C16—H16B109.5
C9—C8—C7122.0 (3)H16A—C16—H16B109.5
C8—C9—C10119.9 (4)C11—C16—H16C109.5
C8—C9—H9120.1H16A—C16—H16C109.5
C10—C9—H9120.1H16B—C16—H16C109.5
C11—C10—C9122.0 (4)C7—N1—C1125.0 (3)
C11—C10—H10119C7—N1—H1N117.5
C9—C10—H10119C1—N1—H1N117.5
C6—C1—C2—C31.3 (5)N1—C7—C8—C929.8 (5)
N1—C1—C2—C3176.4 (3)C13—C8—C9—C100.4 (6)
C6—C1—C2—C14179.9 (3)C7—C8—C9—C10175.4 (4)
N1—C1—C2—C142.2 (5)C8—C9—C10—C111.8 (7)
C1—C2—C3—C41.9 (5)C9—C10—C11—C121.9 (6)
C14—C2—C3—C4179.5 (3)C9—C10—C11—C16179.4 (4)
C2—C3—C4—C51.4 (5)C10—C11—C12—C130.1 (6)
C2—C3—C4—C15179.7 (4)C16—C11—C12—C13178.6 (4)
C3—C4—C5—C60.3 (6)C9—C8—C13—C122.3 (6)
C15—C4—C5—C6178.6 (4)C7—C8—C13—C12177.4 (3)
C4—C5—C6—C10.2 (6)C11—C12—C13—C82.2 (6)
C2—C1—C6—C50.3 (5)O1—C7—N1—C15.1 (6)
N1—C1—C6—C5177.5 (3)C8—C7—N1—C1175.7 (3)
O1—C7—C8—C1324.1 (5)C2—C1—N1—C775.0 (4)
N1—C7—C8—C13155.2 (3)C6—C1—N1—C7107.3 (4)
O1—C7—C8—C9150.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O1i0.862.072.884 (4)159
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H17NO
Mr239.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)22.4974 (17), 6.6033 (2), 9.2474 (6)
β (°) 100.209 (6)
V3)1352.02 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.33 × 0.22 × 0.03
Data collection
DiffractometerOxford Diffraction Xcalibur, Ruby, Gemini
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.983, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
12970, 3430, 2107
Rint0.079
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.192, 1.03
No. of reflections3430
No. of parameters167
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.18

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O1i0.862.072.884 (4)159
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship.

References

First citationBowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2010). Private communication (refcode CCDC 691312). CCDC, Union Road, Cambridge, England.  Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Rodrigues, V. Z. & Fuess, H. (2009b). Acta Cryst. E65, o2751.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2009a). Acta Cryst. E65, o1612.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds