organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Bromo-3-phenyl-1-(3-phenyl­sydnon-4-yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 7 April 2010; accepted 26 April 2010; online 30 April 2010)

The title sydnone derivative [systematic name: 2-bromo-1-(5-oxido-3-phenyl-1,2,3-oxadiazo­lium-4-yl)-3-phenyl­prop-2-en-1-one], C17H11BrN2O3, exists in a Z configuration with respect to the acyclic C=C bond. An intra­molecular C—H⋯Br hydrogen bond generates a six-membered ring, producing an S(6) ring motif. The 1,2,3-oxadiazole ring in the sydnone unit is essentially planar [maximum deviation = 0.011 (2) Å] and forms dihedral angles of 55.39 (13) and 57.12 (12)° with the two benzene rings. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link mol­ecules into two-mol­ecule-thick arrays parallel to the bc plane. The crystal structure also features a short inter­molecular N⋯C contacts [3.030 (3) Å] as well as C—H⋯π and ππ inter­actions [centroid–centroid distances = 3.3798 (11) and 3.2403 (12) Å].

Related literature

For general background to and applications of sydnone deriv­atives, see: Baker et al. (1949[Baker, W., Ollis, W. D. & Poole, V. D. (1949). J. Chem. Soc. pp. 307-314.]); Hedge et al. (2008[Hedge, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem., 43, 2831-2834.]); Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]). For related structures, see: Baker & Ollis (1957[Baker, W. & Ollis, W. D. (1957). Q. Rev. Chem. Soc. 11, 15-29.]); Goh et al. (2010[Goh, J. H., Fun, H.-K., Nithinchandra, Kalluraya, B. (2010). Acta Cryst. E66 FJ2294.]); Grossie et al. (2009[Grossie, D. A., Turnbull, K., Felix-Balderrama, S. & Raghavapuram, S. (2009). Acta Cryst. E65, o554-o555.]). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C17H11BrN2O3

  • Mr = 371.19

  • Monoclinic, P 21 /c

  • a = 15.0512 (5) Å

  • b = 5.9887 (2) Å

  • c = 22.3940 (6) Å

  • β = 129.444 (2)°

  • V = 1558.80 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.65 mm−1

  • T = 293 K

  • 0.38 × 0.27 × 0.17 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.435, Tmax = 0.658

  • 18185 measured reflections

  • 4816 independent reflections

  • 3232 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.103

  • S = 1.02

  • 4816 reflections

  • 252 parameters

  • All H-atom parameters refined

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C12–C17 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O3i 0.87 (3) 2.58 (3) 3.126 (3) 122 (2)
C3—H3A⋯O3i 0.93 (3) 2.53 (3) 3.140 (4) 124 (2)
C5—H5A⋯O2ii 0.92 (3) 2.47 (3) 3.388 (3) 171 (2)
C17—H17A⋯Br1 0.97 (3) 2.66 (3) 3.364 (3) 130 (3)
C14—H14ACg1iii 0.96 (3) 2.86 (3) 3.639 (3) 139 (2)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+2, -z+1; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sydnones constitute a well-defined class of mesoionic compounds consisting of 1,2,3-oxadiazole ring system. The introduction of the concept of mesoionic structure for certain heterocyclic compounds in 1949 has proved to be fruitful development in heterocyclic chemistry (Baker et al., 1949). The study of sydnones still remains a field of interest because of their electronic structure and also because of the various types of biological activities displayed by some of them. Interest in sydnone derivatives has also been encouraged by the discovery that they exhibit various pharmacological activities (Hedge et al., 2008; Rai et al., 2008). Chalcone derivatives were obtained by the base catalyzed condensation of 4-acetyl-3-aryl sydnones with aromatic aldehydes in aqueous alcoholic medium at 273–278 K. Bromination of chalcones with bromine in glacial acetic acid afforded dibromo chalcones. The dibromochalcones obtained were subjected to dehydrobromination in presence of triethylamine in dry benzene medium to get 2-bromopropenones.

The title sydnone derivative (Fig. 1) exists in a Z configuration with respect to the acyclic C10C11 bond [C10C11 = 1.335 (3) Å; torsion angle of C9–C10–C11–C12 = 179.9 (2)°]. An intramolecular C17—H17A···Br1 hydrogen bond (Table 1) generates a six-membered ring, producing an S(6) ring motif (Bernstein et al., 1995). The 1,2,3-oxadiazole ring (N1/N2/O1/C7/C8) is essentially planar, with the maximum deviation of -0.011 (2) Å at atom N2. The C1-C6 and C12-C17 benzene rings incline at dihedral angles of 55.39 (13) and 57.12 (12)°, respectively, to the 1,2,3-oxadiazole ring. As reported previously (Goh et al., 2010; Grossie et al., 2009), the exocyclic C7–O2 bond length of 1.193 (3) Å does not support the formulation of Baker & Ollis (1957), which reported the delocalization of a positive charge in the ring, and a negative charge in the exocyclic oxygen. The bond lengths are comparable to those observed in closely related sydnone structures (Goh et al., 2010; Grossie et al., 2009).

In the crystal structure, intermolecular C2—H2A···O3, C3—H3A···O3 and C5—H5A···O2 hydrogen bonds (Table 1) link molecules into two-molecule-thick arrays parallel to the bc plane (Fig. 2). An interesting feature of the crystal structure is the presence of a short N2···C7 interaction [N2···C7 = 3.030 (3) Å; symmetry code: -x+1, -y+1, -z+1] which is shorter than the sum of the van der Waals radii of the relevant atoms. The crystal structure is further stabilized by weak C14—H14A···Cg1 (Table 1) as well as aromatic Cg2···Cg2 stacking interactions [Cg2···Cg2ii = 3.3798 (11) Å and Cg2···Cg2iii = 3.2403 (12) Å; (ii) -x+1, -y+2, -z+1 and (iii) -x+1, -y+1, -z+1 where Cg1 and Cg2 are the centroids of C12-C17 benzene and 1,2,3-oxadiazole rings, respectively].

Related literature top

For general background to and applications of sydnone derivatives, see: Baker et al. (1949); Hedge et al. (2008); Rai et al. (2008). For related structures, see: Baker & Ollis (1957); Goh et al. (2010); Grossie et al. (2009). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

To a stirred suspension of 2,3-dibromo-1-(3'-phenylsydnon-4'-yl)-3-phenyl-propan-1-one (0.01 mol) in benzene was added a solution of triethylamine (0.04 mol) in dry benzene (20 ml) at room temperature. The reaction mixture was stirred at room temperature for 24 h. After removing the separated triethylamine hydrobromide, the filtrate was concentrated under reduced pressure to give 2-bromo propenone which was purified by recrystallization from ethanol. Single crystals suitable for X-ray analysis were obtained from a 1:2 mixture of DMF and ethanol by slow evaporation.

Refinement top

All hydrogen atoms were located from difference Fourier map [range of C—H = 0.87 (3)–0.97 (3) Å] and allowed to refine freely.

Structure description top

Sydnones constitute a well-defined class of mesoionic compounds consisting of 1,2,3-oxadiazole ring system. The introduction of the concept of mesoionic structure for certain heterocyclic compounds in 1949 has proved to be fruitful development in heterocyclic chemistry (Baker et al., 1949). The study of sydnones still remains a field of interest because of their electronic structure and also because of the various types of biological activities displayed by some of them. Interest in sydnone derivatives has also been encouraged by the discovery that they exhibit various pharmacological activities (Hedge et al., 2008; Rai et al., 2008). Chalcone derivatives were obtained by the base catalyzed condensation of 4-acetyl-3-aryl sydnones with aromatic aldehydes in aqueous alcoholic medium at 273–278 K. Bromination of chalcones with bromine in glacial acetic acid afforded dibromo chalcones. The dibromochalcones obtained were subjected to dehydrobromination in presence of triethylamine in dry benzene medium to get 2-bromopropenones.

The title sydnone derivative (Fig. 1) exists in a Z configuration with respect to the acyclic C10C11 bond [C10C11 = 1.335 (3) Å; torsion angle of C9–C10–C11–C12 = 179.9 (2)°]. An intramolecular C17—H17A···Br1 hydrogen bond (Table 1) generates a six-membered ring, producing an S(6) ring motif (Bernstein et al., 1995). The 1,2,3-oxadiazole ring (N1/N2/O1/C7/C8) is essentially planar, with the maximum deviation of -0.011 (2) Å at atom N2. The C1-C6 and C12-C17 benzene rings incline at dihedral angles of 55.39 (13) and 57.12 (12)°, respectively, to the 1,2,3-oxadiazole ring. As reported previously (Goh et al., 2010; Grossie et al., 2009), the exocyclic C7–O2 bond length of 1.193 (3) Å does not support the formulation of Baker & Ollis (1957), which reported the delocalization of a positive charge in the ring, and a negative charge in the exocyclic oxygen. The bond lengths are comparable to those observed in closely related sydnone structures (Goh et al., 2010; Grossie et al., 2009).

In the crystal structure, intermolecular C2—H2A···O3, C3—H3A···O3 and C5—H5A···O2 hydrogen bonds (Table 1) link molecules into two-molecule-thick arrays parallel to the bc plane (Fig. 2). An interesting feature of the crystal structure is the presence of a short N2···C7 interaction [N2···C7 = 3.030 (3) Å; symmetry code: -x+1, -y+1, -z+1] which is shorter than the sum of the van der Waals radii of the relevant atoms. The crystal structure is further stabilized by weak C14—H14A···Cg1 (Table 1) as well as aromatic Cg2···Cg2 stacking interactions [Cg2···Cg2ii = 3.3798 (11) Å and Cg2···Cg2iii = 3.2403 (12) Å; (ii) -x+1, -y+2, -z+1 and (iii) -x+1, -y+1, -z+1 where Cg1 and Cg2 are the centroids of C12-C17 benzene and 1,2,3-oxadiazole rings, respectively].

For general background to and applications of sydnone derivatives, see: Baker et al. (1949); Hedge et al. (2008); Rai et al. (2008). For related structures, see: Baker & Ollis (1957); Goh et al. (2010); Grossie et al. (2009). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the b axis, showing two-molecule-thick arrays parallel to the bc plane. Hydrogen atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
2-Bromo-1-(5-oxido-3-phenyl-1,2,3-oxadiazolium-4-yl)-3-phenylprop-2-en-1-one top
Crystal data top
C17H11BrN2O3F(000) = 744
Mr = 371.19Dx = 1.582 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4335 reflections
a = 15.0512 (5) Åθ = 2.4–29.8°
b = 5.9887 (2) ŵ = 2.65 mm1
c = 22.3940 (6) ÅT = 293 K
β = 129.444 (2)°Block, yellow
V = 1558.80 (8) Å30.38 × 0.27 × 0.17 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4816 independent reflections
Radiation source: fine-focus sealed tube3232 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 30.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2021
Tmin = 0.435, Tmax = 0.658k = 88
18185 measured reflectionsl = 3229
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.043P)2 + 0.6594P]
where P = (Fo2 + 2Fc2)/3
4816 reflections(Δ/σ)max = 0.001
252 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.83 e Å3
Crystal data top
C17H11BrN2O3V = 1558.80 (8) Å3
Mr = 371.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.0512 (5) ŵ = 2.65 mm1
b = 5.9887 (2) ÅT = 293 K
c = 22.3940 (6) Å0.38 × 0.27 × 0.17 mm
β = 129.444 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4816 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3232 reflections with I > 2σ(I)
Tmin = 0.435, Tmax = 0.658Rint = 0.030
18185 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.103All H-atom parameters refined
S = 1.02Δρmax = 0.64 e Å3
4816 reflectionsΔρmin = 0.83 e Å3
252 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.90010 (2)0.71291 (5)0.499676 (17)0.06462 (12)
O10.50418 (13)0.7541 (2)0.52358 (8)0.0376 (3)
O20.69784 (14)0.7260 (2)0.61954 (8)0.0452 (4)
O30.66790 (15)0.8945 (4)0.42133 (10)0.0688 (5)
N10.49069 (14)0.7454 (2)0.42344 (9)0.0320 (3)
N20.42695 (15)0.7565 (3)0.44402 (10)0.0370 (4)
C10.4535 (2)0.5529 (4)0.31430 (14)0.0492 (5)
C20.3975 (2)0.5418 (5)0.23612 (15)0.0590 (7)
C30.3218 (2)0.7063 (5)0.18686 (14)0.0584 (7)
C40.3014 (2)0.8844 (5)0.21526 (14)0.0603 (7)
C50.3563 (2)0.9003 (4)0.29352 (13)0.0485 (5)
C60.43174 (17)0.7337 (3)0.34129 (11)0.0364 (4)
C70.61978 (17)0.7329 (3)0.55169 (12)0.0345 (4)
C80.60568 (16)0.7289 (3)0.48251 (11)0.0331 (4)
C90.68943 (17)0.7596 (3)0.46933 (12)0.0394 (4)
C100.79547 (16)0.6228 (4)0.51474 (11)0.0379 (4)
C110.80979 (17)0.4513 (4)0.55817 (12)0.0387 (4)
C120.90186 (17)0.2897 (3)0.60789 (12)0.0399 (4)
C130.87661 (19)0.1127 (4)0.63547 (13)0.0437 (5)
C140.9577 (2)0.0474 (4)0.68386 (14)0.0520 (6)
C151.0664 (2)0.0325 (5)0.70620 (16)0.0600 (7)
C161.0933 (2)0.1406 (5)0.68038 (19)0.0679 (8)
C171.0137 (2)0.3022 (5)0.63199 (17)0.0588 (7)
H1A0.505 (2)0.445 (4)0.3489 (14)0.054 (7)*
H2A0.411 (2)0.426 (5)0.2196 (16)0.065 (8)*
H3A0.286 (2)0.695 (4)0.1345 (17)0.059 (8)*
H4A0.251 (2)0.995 (5)0.1826 (16)0.072 (9)*
H5A0.343 (2)1.015 (4)0.3145 (14)0.053 (7)*
H11A0.7463 (18)0.430 (4)0.5558 (12)0.039 (6)*
H13A0.802 (2)0.111 (4)0.6204 (13)0.045 (6)*
H14A0.937 (2)0.169 (5)0.7008 (16)0.064 (8)*
H15A1.122 (3)0.135 (5)0.7404 (17)0.074 (9)*
H16A1.167 (3)0.148 (6)0.6941 (19)0.086 (10)*
H17A1.034 (2)0.422 (5)0.6138 (16)0.073 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.05352 (16)0.0904 (2)0.0739 (2)0.00434 (13)0.05173 (15)0.01659 (14)
O10.0456 (8)0.0357 (7)0.0432 (8)0.0004 (6)0.0337 (7)0.0005 (6)
O20.0507 (9)0.0494 (9)0.0344 (7)0.0007 (7)0.0265 (7)0.0009 (6)
O30.0518 (9)0.0982 (14)0.0619 (11)0.0083 (10)0.0387 (9)0.0395 (10)
N10.0357 (8)0.0292 (8)0.0359 (8)0.0006 (6)0.0250 (7)0.0002 (6)
N20.0399 (8)0.0339 (8)0.0432 (9)0.0009 (6)0.0293 (8)0.0012 (7)
C10.0559 (13)0.0462 (12)0.0469 (12)0.0092 (11)0.0333 (11)0.0010 (10)
C20.0718 (17)0.0574 (15)0.0522 (14)0.0037 (13)0.0415 (13)0.0145 (12)
C30.0565 (14)0.0771 (18)0.0352 (12)0.0021 (13)0.0261 (11)0.0098 (12)
C40.0563 (14)0.0746 (18)0.0367 (12)0.0199 (13)0.0233 (11)0.0045 (12)
C50.0504 (12)0.0527 (13)0.0381 (11)0.0135 (10)0.0261 (10)0.0010 (10)
C60.0348 (9)0.0411 (10)0.0335 (9)0.0005 (8)0.0218 (8)0.0036 (8)
C70.0411 (10)0.0282 (9)0.0401 (10)0.0015 (7)0.0285 (9)0.0002 (8)
C80.0350 (9)0.0327 (9)0.0340 (9)0.0010 (7)0.0230 (8)0.0024 (7)
C90.0378 (10)0.0495 (12)0.0352 (10)0.0033 (8)0.0252 (9)0.0032 (9)
C100.0345 (9)0.0492 (11)0.0377 (10)0.0044 (8)0.0265 (8)0.0041 (9)
C110.0329 (9)0.0438 (11)0.0432 (11)0.0032 (8)0.0259 (9)0.0038 (9)
C120.0344 (9)0.0425 (11)0.0439 (11)0.0014 (8)0.0254 (9)0.0038 (9)
C130.0373 (10)0.0471 (12)0.0443 (11)0.0038 (9)0.0247 (9)0.0031 (9)
C140.0500 (13)0.0471 (13)0.0534 (13)0.0009 (10)0.0302 (11)0.0039 (11)
C150.0490 (13)0.0571 (15)0.0614 (15)0.0134 (12)0.0291 (12)0.0067 (12)
C160.0410 (13)0.0770 (19)0.083 (2)0.0117 (12)0.0384 (14)0.0138 (15)
C170.0417 (12)0.0630 (15)0.0771 (18)0.0039 (11)0.0402 (13)0.0134 (14)
Geometric parameters (Å, º) top
Br1—C101.8867 (19)C5—H5A0.92 (3)
O1—N21.376 (2)C7—C81.424 (3)
O1—C71.431 (2)C8—C91.477 (3)
O2—C71.193 (3)C9—C101.480 (3)
O3—C91.213 (3)C10—C111.335 (3)
N1—N21.303 (2)C11—C121.462 (3)
N1—C81.359 (2)C11—H11A0.93 (2)
N1—C61.450 (2)C12—C131.396 (3)
C1—C61.377 (3)C12—C171.405 (3)
C1—C21.380 (3)C13—C141.380 (3)
C1—H1A0.93 (3)C13—H13A0.94 (2)
C2—C31.374 (4)C14—C151.376 (4)
C2—H2A0.87 (3)C14—H14A0.96 (3)
C3—C41.373 (4)C15—C161.368 (4)
C3—H3A0.93 (3)C15—H15A0.93 (3)
C4—C51.387 (3)C16—C171.377 (4)
C4—H4A0.92 (3)C16—H16A0.95 (3)
C5—C61.373 (3)C17—H17A0.97 (3)
N2—O1—C7111.17 (15)C7—C8—C9131.22 (18)
N2—N1—C8115.34 (16)O3—C9—C8118.59 (19)
N2—N1—C6117.16 (16)O3—C9—C10122.82 (19)
C8—N1—C6127.29 (16)C8—C9—C10118.59 (17)
N1—N2—O1104.55 (15)C11—C10—C9122.08 (18)
C6—C1—C2118.1 (2)C11—C10—Br1125.70 (16)
C6—C1—H1A119.2 (16)C9—C10—Br1112.17 (15)
C2—C1—H1A122.8 (16)C10—C11—C12134.49 (19)
C3—C2—C1120.7 (2)C10—C11—H11A112.3 (13)
C3—C2—H2A122.1 (19)C12—C11—H11A113.2 (14)
C1—C2—H2A117.2 (19)C13—C12—C17117.8 (2)
C4—C3—C2120.0 (2)C13—C12—C11116.55 (19)
C4—C3—H3A121.3 (17)C17—C12—C11125.6 (2)
C2—C3—H3A118.7 (17)C14—C13—C12121.4 (2)
C3—C4—C5120.6 (2)C14—C13—H13A122.0 (15)
C3—C4—H4A120.5 (18)C12—C13—H13A116.5 (14)
C5—C4—H4A118.9 (18)C15—C14—C13119.7 (2)
C6—C5—C4118.0 (2)C15—C14—H14A121.0 (17)
C6—C5—H5A118.9 (15)C13—C14—H14A119.4 (17)
C4—C5—H5A123.2 (15)C16—C15—C14119.9 (2)
C5—C6—C1122.6 (2)C16—C15—H15A119.6 (19)
C5—C6—N1119.33 (18)C14—C15—H15A120.4 (19)
C1—C6—N1118.08 (18)C15—C16—C17121.5 (2)
O2—C7—C8136.9 (2)C15—C16—H16A120 (2)
O2—C7—O1120.12 (19)C17—C16—H16A118 (2)
C8—C7—O1102.93 (16)C16—C17—C12119.7 (3)
N1—C8—C7105.97 (17)C16—C17—H17A120.5 (17)
N1—C8—C9121.14 (17)C12—C17—H17A119.8 (17)
C8—N1—N2—O11.9 (2)O2—C7—C8—C914.3 (4)
C6—N1—N2—O1176.99 (14)O1—C7—C8—C9164.64 (19)
C7—O1—N2—N12.04 (18)N1—C8—C9—O334.8 (3)
C6—C1—C2—C30.3 (4)C7—C8—C9—O3128.2 (2)
C1—C2—C3—C40.1 (5)N1—C8—C9—C10144.59 (19)
C2—C3—C4—C50.1 (5)C7—C8—C9—C1052.3 (3)
C3—C4—C5—C60.3 (4)O3—C9—C10—C11169.2 (2)
C4—C5—C6—C10.6 (4)C8—C9—C10—C1110.2 (3)
C4—C5—C6—N1179.9 (2)O3—C9—C10—Br18.3 (3)
C2—C1—C6—C50.5 (4)C8—C9—C10—Br1172.26 (15)
C2—C1—C6—N1180.0 (2)C9—C10—C11—C12179.9 (2)
N2—N1—C6—C557.7 (3)Br1—C10—C11—C122.7 (4)
C8—N1—C6—C5127.9 (2)C10—C11—C12—C13171.1 (2)
N2—N1—C6—C1121.9 (2)C10—C11—C12—C1711.2 (4)
C8—N1—C6—C152.6 (3)C17—C12—C13—C141.0 (4)
N2—O1—C7—O2179.32 (17)C11—C12—C13—C14178.9 (2)
N2—O1—C7—C81.49 (18)C12—C13—C14—C150.5 (4)
N2—N1—C8—C71.0 (2)C13—C14—C15—C160.0 (4)
C6—N1—C8—C7175.51 (16)C14—C15—C16—C170.1 (5)
N2—N1—C8—C9167.81 (17)C15—C16—C17—C120.4 (5)
C6—N1—C8—C917.6 (3)C13—C12—C17—C160.9 (4)
O2—C7—C8—N1179.3 (2)C11—C12—C17—C16178.6 (3)
O1—C7—C8—N10.36 (18)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C12–C17 benzene ring.
D—H···AD—HH···AD···AD—H···A
C2—H2A···O3i0.87 (3)2.58 (3)3.126 (3)122 (2)
C3—H3A···O3i0.93 (3)2.53 (3)3.140 (4)124 (2)
C5—H5A···O2ii0.92 (3)2.47 (3)3.388 (3)171 (2)
C17—H17A···Br10.97 (3)2.66 (3)3.364 (3)130 (3)
C14—H14A···Cg1iii0.96 (3)2.86 (3)3.639 (3)139 (2)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+2, z+1; (iii) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC17H11BrN2O3
Mr371.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.0512 (5), 5.9887 (2), 22.3940 (6)
β (°) 129.444 (2)
V3)1558.80 (8)
Z4
Radiation typeMo Kα
µ (mm1)2.65
Crystal size (mm)0.38 × 0.27 × 0.17
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.435, 0.658
No. of measured, independent and
observed [I > 2σ(I)] reflections
18185, 4816, 3232
Rint0.030
(sin θ/λ)max1)0.717
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.103, 1.02
No. of reflections4816
No. of parameters252
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.64, 0.83

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C12–C17 benzene ring.
D—H···AD—HH···AD···AD—H···A
C2—H2A···O3i0.87 (3)2.58 (3)3.126 (3)122 (2)
C3—H3A···O3i0.93 (3)2.53 (3)3.140 (4)124 (2)
C5—H5A···O2ii0.92 (3)2.47 (3)3.388 (3)171 (2)
C17—H17A···Br10.97 (3)2.66 (3)3.364 (3)130 (3)
C14—H14A···Cg1iii0.96 (3)2.86 (3)3.639 (3)139 (2)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+2, z+1; (iii) x+2, y1/2, z+3/2.
 

Footnotes

Thomson Reuters ResearcherID: C-7576-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

References

First citationBaker, W. & Ollis, W. D. (1957). Q. Rev. Chem. Soc. 11, 15–29.  CrossRef CAS Web of Science Google Scholar
First citationBaker, W., Ollis, W. D. & Poole, V. D. (1949). J. Chem. Soc. pp. 307–314.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoh, J. H., Fun, H.-K., Nithinchandra, Kalluraya, B. (2010). Acta Cryst. E66 FJ2294Google Scholar
First citationGrossie, D. A., Turnbull, K., Felix-Balderrama, S. & Raghavapuram, S. (2009). Acta Cryst. E65, o554–o555.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHedge, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem., 43, 2831–2834.  Web of Science PubMed Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds