organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4-(4-chloro­phen­yl)-4-hy­droxy­piperidinium] dipicrate di­methyl sulfoxide solvate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, V. V. Puram College of Science, Bangalore-560 004, India, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 20 April 2010; accepted 26 April 2010; online 30 April 2010)

The asymmetric unit of the title salt solvate, 2C11H15ClNO+·2C6H2N3O7·C2H6OS, contains two crystallographically independent 4-(4-chloro­phen­yl)-4-hydroxy­piperidinium cations, two picrate anions and a dimethyl sulfoxide solvent mol­ecule. In each cation, the piperidinium ring adopts a chair conformation. In the crystal structure, the cations, anions and solvent mol­ecules are connected by inter­molecular O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For background to the importance of piperidines, see: Vartanyan (1984[Vartanyan, R. S. (1984). Pharm. Chem. J. 18, 736-749.]). For related structures, see: Cygler et al. (1980[Cygler, M., Skarżyński, T., Skolimowski, J. & Thozet, A. (1980). Acta Cryst. B36, 2481-2483.]); Cygler & Ahmed (1984[Cygler, M. & Ahmed, F. R. (1984). Acta Cryst. B40, 436-440.]); Dutkiewicz et al. (2010[Dutkiewicz, G., Siddaraju, B. P., Yathirajan, H. S., Siddegowda, M. S. & Kubicki, M. (2010). Acta Cryst. E66, o562.]); Georges et al. (1989[Georges, G., Vercauteren, D. P., Evrard, G. & Durant, F. (1989). J. Chem. Soc. Perkin Trans. 2, pp. 449-455.]); Jasinski et al. (2009[Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Mallesha, L. & Mohana, K. N. (2009). Acta Cryst. E65, o2365-o2366.]); Lisgarten & Palmer (1989[Lisgarten, J. N. & Palmer, R. A. (1989). Acta Cryst. C45, 102-104.]); Tomlin et al. (1996[Tomlin, D. W., Bunning, T. J., Price, G. E., Fratini, A. V. & Adams, W. W. (1996). Acta Cryst. C52, 1000-1002.]). For picrate salts, see: Anitha et al. (2004[Anitha, K., Sridhar, B. & Rajaram, R. K. (2004). Acta Cryst. E60, o1530-o1532.]); Thanigaimani et al. (2009[Thanigaimani, K., Subashini, A., Muthiah, P. T., Lynch, D. E. & Butcher, R. J. (2009). Acta Cryst. C65, o42-o45.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • 2C11H15ClNO+·2C6H2N3O7·C2H6OS

  • Mr = 959.72

  • Monoclinic, P 21

  • a = 8.9207 (4) Å

  • b = 18.1230 (9) Å

  • c = 12.9886 (6) Å

  • β = 98.430 (1)°

  • V = 2077.18 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 100 K

  • 0.40 × 0.32 × 0.16 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.893, Tmax = 0.954

  • 25314 measured reflections

  • 15185 independent reflections

  • 13604 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.140

  • S = 1.11

  • 15185 reflections

  • 582 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.88 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1AB⋯O7Bi 0.90 2.44 3.030 (2) 123
N1A—H1AB⋯O8Bi 0.90 2.15 3.048 (2) 176
O1A—H1A⋯O1Bii 0.82 2.14 2.8642 (19) 148
O1B—H1B⋯O9iii 0.82 1.83 2.629 (2) 165
N1A—H1AC⋯O2A 0.90 1.83 2.704 (2) 162
N1A—H1AC⋯O3A 0.90 2.30 2.846 (2) 119
N1B—H1BB⋯O3Aiv 0.90 2.15 3.044 (2) 171
N1B—H1BB⋯O4Aiv 0.90 2.52 3.101 (2) 123
N1B—H1BC⋯O2B 0.90 1.84 2.714 (2) 162
C4A—H4AA⋯O4Av 0.93 2.51 3.311 (2) 145
C5A—H5AA⋯O1Bii 0.93 2.52 3.313 (2) 143
C8A—H8AA⋯O9vi 0.97 2.58 3.479 (2) 155
C9A—H9AB⋯O4Bvii 0.97 2.59 3.469 (3) 151
C11A—H11A⋯O2A 0.97 2.55 3.261 (2) 130
C11A—H11B⋯O4B 0.97 2.59 3.258 (3) 126
C2B—H2BA⋯O7Bv 0.93 2.60 3.361 (3) 140
C14B—H14B⋯O6Ai 0.93 2.45 3.335 (3) 160
C5B—H5BA⋯O3B 0.93 2.54 3.424 (2) 160
C16A—H16A⋯O5Biv 0.93 2.51 3.418 (3) 166
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z]; (ii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iii) x-1, y, z; (iv) [-x+1, y-{\script{1\over 2}}, -z]; (v) x, y, z+1; (vi) [-x+2, y+{\script{1\over 2}}, -z+1]; (vii) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

4-(4-Chlorophenyl)-4-hydroxypiperidine is used as an intermediate for the synthesis of pharmaceuticals such as haloperidol (a neuroleptic drug used to treat patients with psychotic illnesses, extreme agitation, or Tourette's syndrome) and loperamide which is a synthetic piperidine derivative and a drug effective against diarrhea resulting from gastroenteritis or inflammatory bowel disease. A review on the synthesis and biological activity of uncondensed cyclic derivatives of piperidine is available (Vartanyan, 1984). The crystal structures of 1,2,2,4,6,6- hexamethyl-4-piperidinol (Cygler et al., 1980), three isomers of (±)-1, 2,3-trimethyl-4-phenyl-4-piperidinol (Cygler & Ahmed, 1984), an anticonvulsant drug, 1-[6-(2-chlorophenyl)-3-pyridazinyl]piperidin-4-ol (Lisgarten & Palmer, 1989), three anticonvulsant compounds, viz., 1-[6-(4-chloro-2-methylphenyl) pyridazin-3-yl]piperidin-4-ol, 1-[6-(4-chlorophenyl)-1,2,4-triazin-3-yl]piperidin-4-ol and 1-[5-(4-methoxyphenyl)pyrimidin-2-yl]piperidin-4-ol (Georges et al., 1989), 1-(4-nitrophenyl)-4-piperidinol (Tomlin et al., 1996), 4-[(E)-(2,4-difluorophenyl) (hydroxyimino) methyl]piperidinium picrate (Jasinski et al., 2009), and (4-chlorophenyl)piperidin-4-ol (Dutkiewicz et al., 2010) have been reported. In view of the importance of piperidines, the paper reports the crystal structure of the title compound, (I).

The asymmetric unit of (I) (Fig.1), consists of two crystallographically independent 4-(4-chlorophenyl)-4-hydroxypiperidinium cations (A & B), two picrate anions (A & B) and a dimethylsulfoxide solvent molecule. In the piperidinium cations, bond lengths involving protonated atoms N1A and N1B are 1.507 (2) Å (N1A–C9A), 1.495 (2) Å (N1A–C10A);, 1.492 (3) Å (N1B–C9B) and 1.493 (2) Å (N1B–C10B), which are longer than those found in other structures and the value 1.469 Å given by Allen et al., (1987). In each cation, the piperidine ring adopts a chair conformation with puckering parameters Q = 0.582 (2) Å, Θ = 177.2 (2) ° and φ = 98 (3) ° for molecule A and Q = 0.584 (2) Å, Θ = 0.8 (2) ° and φ = 319 (9) ° for molecule B (Cremer & Pople, 1975).

During crystallization, the removal of the phenolic H atom leads to a shortening of the C12A–O2A = 1.246 (2) Å and C12B–O2B = 1.249 (2) Å bond lengths, indicating partial double bond character. This behaviour is similar to that observed in many picrate salts and is attributed to the loss of the hydroxyl proton at O2A and O2B, leading to the conversion of the neutral to an anionic state of the molecule. This leads to lengthening of the C12A–C13A = 1.454 (2) Å, C12A–C17A = 1.459 (3) Å (molecule A), C12B–C13B = 1.450 (3) Å and C12B–C17B = 1.454 (2) Å (molecule B) bonds compared to the remaining aromatic C–C distances in the picrate ions which has been observed in almost all picrate salts (Anitha et al., 2004; Thanigaimani et al., 2009).

The twist angles of the nitro groups of the each picrate anions shows that the ortho N2A and N4A nitro groups in molecule A and N2B and N4B groups in molecule B deviate from the benzene plane by 30.17 (11), 19.02 (11), 36.53 (11) and 19.73 (12) °, respectively.

In the crystal structure (Fig. 2), cations, anions and solvent molecules are connected by intermolecular N—H···O, O—H···O and C—H···O hydrogen bonds (Table 1), forming a three-dimensional network.

Related literature top

For background to the importance of piperidines, see: Vartanyan (1984). For related structures, see: Cygler et al. (1980); Cygler & Ahmed (1984); Dutkiewicz et al. (2010); Georges et al. (1989); Jasinski et al. (2009); Lisgarten & Palmer (1989); Tomlin et al. (1996). For picrate salts, see: Anitha et al. (2004); Thanigaimani et al. (2009). For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

(4-Chlorophenyl)piperidin-4-ol (2.12 g, 0.01 mol) and and picric acid (2.4 g, 0.01 mol) were each dissolved in methanol (25 ml). The solutions were mixed and stirred in a beaker at 323 K for 30 minutes. The mixture was kept aside for three days at room temperature. The formed salt was filtered & dried in vacuum desiccator over phosphorous pentoxide (m.pt. 403-405 K). The salt was recrystallized from dimethylsulfoxide by slow evaporation to yield the title compound.

Refinement top

All hydrogen atoms were positioned geometrically [O–H = 0.82 Å, N–H = 0.90 Å, and C–H = 0.93–0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). In the absence of significant anomalous dispersion, 6635 Friedel pairs were merged for the final refinement.

Structure description top

4-(4-Chlorophenyl)-4-hydroxypiperidine is used as an intermediate for the synthesis of pharmaceuticals such as haloperidol (a neuroleptic drug used to treat patients with psychotic illnesses, extreme agitation, or Tourette's syndrome) and loperamide which is a synthetic piperidine derivative and a drug effective against diarrhea resulting from gastroenteritis or inflammatory bowel disease. A review on the synthesis and biological activity of uncondensed cyclic derivatives of piperidine is available (Vartanyan, 1984). The crystal structures of 1,2,2,4,6,6- hexamethyl-4-piperidinol (Cygler et al., 1980), three isomers of (±)-1, 2,3-trimethyl-4-phenyl-4-piperidinol (Cygler & Ahmed, 1984), an anticonvulsant drug, 1-[6-(2-chlorophenyl)-3-pyridazinyl]piperidin-4-ol (Lisgarten & Palmer, 1989), three anticonvulsant compounds, viz., 1-[6-(4-chloro-2-methylphenyl) pyridazin-3-yl]piperidin-4-ol, 1-[6-(4-chlorophenyl)-1,2,4-triazin-3-yl]piperidin-4-ol and 1-[5-(4-methoxyphenyl)pyrimidin-2-yl]piperidin-4-ol (Georges et al., 1989), 1-(4-nitrophenyl)-4-piperidinol (Tomlin et al., 1996), 4-[(E)-(2,4-difluorophenyl) (hydroxyimino) methyl]piperidinium picrate (Jasinski et al., 2009), and (4-chlorophenyl)piperidin-4-ol (Dutkiewicz et al., 2010) have been reported. In view of the importance of piperidines, the paper reports the crystal structure of the title compound, (I).

The asymmetric unit of (I) (Fig.1), consists of two crystallographically independent 4-(4-chlorophenyl)-4-hydroxypiperidinium cations (A & B), two picrate anions (A & B) and a dimethylsulfoxide solvent molecule. In the piperidinium cations, bond lengths involving protonated atoms N1A and N1B are 1.507 (2) Å (N1A–C9A), 1.495 (2) Å (N1A–C10A);, 1.492 (3) Å (N1B–C9B) and 1.493 (2) Å (N1B–C10B), which are longer than those found in other structures and the value 1.469 Å given by Allen et al., (1987). In each cation, the piperidine ring adopts a chair conformation with puckering parameters Q = 0.582 (2) Å, Θ = 177.2 (2) ° and φ = 98 (3) ° for molecule A and Q = 0.584 (2) Å, Θ = 0.8 (2) ° and φ = 319 (9) ° for molecule B (Cremer & Pople, 1975).

During crystallization, the removal of the phenolic H atom leads to a shortening of the C12A–O2A = 1.246 (2) Å and C12B–O2B = 1.249 (2) Å bond lengths, indicating partial double bond character. This behaviour is similar to that observed in many picrate salts and is attributed to the loss of the hydroxyl proton at O2A and O2B, leading to the conversion of the neutral to an anionic state of the molecule. This leads to lengthening of the C12A–C13A = 1.454 (2) Å, C12A–C17A = 1.459 (3) Å (molecule A), C12B–C13B = 1.450 (3) Å and C12B–C17B = 1.454 (2) Å (molecule B) bonds compared to the remaining aromatic C–C distances in the picrate ions which has been observed in almost all picrate salts (Anitha et al., 2004; Thanigaimani et al., 2009).

The twist angles of the nitro groups of the each picrate anions shows that the ortho N2A and N4A nitro groups in molecule A and N2B and N4B groups in molecule B deviate from the benzene plane by 30.17 (11), 19.02 (11), 36.53 (11) and 19.73 (12) °, respectively.

In the crystal structure (Fig. 2), cations, anions and solvent molecules are connected by intermolecular N—H···O, O—H···O and C—H···O hydrogen bonds (Table 1), forming a three-dimensional network.

For background to the importance of piperidines, see: Vartanyan (1984). For related structures, see: Cygler et al. (1980); Cygler & Ahmed (1984); Dutkiewicz et al. (2010); Georges et al. (1989); Jasinski et al. (2009); Lisgarten & Palmer (1989); Tomlin et al. (1996). For picrate salts, see: Anitha et al. (2004); Thanigaimani et al. (2009). For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms are omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) network. H atoms are not involving the hydrogen bond interactions are omitted for clarity.
Bis[4-(4-chlorophenyl)-4-hydroxypiperidinium] dipicrate dimethyl sulfoxide solvate top
Crystal data top
2C11H15ClNO+·2C6H2N3O7·C2H6OSF(000) = 996
Mr = 959.72Dx = 1.533 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 9240 reflections
a = 8.9207 (4) Åθ = 2.6–34.7°
b = 18.1230 (9) ŵ = 0.29 mm1
c = 12.9886 (6) ÅT = 100 K
β = 98.430 (1)°Block, yellow
V = 2077.18 (17) Å30.40 × 0.32 × 0.16 mm
Z = 2
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
15185 independent reflections
Radiation source: fine-focus sealed tube13604 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 34.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1311
Tmin = 0.893, Tmax = 0.954k = 2528
25314 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0893P)2]
where P = (Fo2 + 2Fc2)/3
15185 reflections(Δ/σ)max < 0.001
582 parametersΔρmax = 0.83 e Å3
1 restraintΔρmin = 0.88 e Å3
Crystal data top
2C11H15ClNO+·2C6H2N3O7·C2H6OSV = 2077.18 (17) Å3
Mr = 959.72Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.9207 (4) ŵ = 0.29 mm1
b = 18.1230 (9) ÅT = 100 K
c = 12.9886 (6) Å0.40 × 0.32 × 0.16 mm
β = 98.430 (1)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
15185 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
13604 reflections with I > 2σ(I)
Tmin = 0.893, Tmax = 0.954Rint = 0.029
25314 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.140H-atom parameters constrained
S = 1.11Δρmax = 0.83 e Å3
15185 reflectionsΔρmin = 0.88 e Å3
582 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1A0.54080 (6)0.78062 (3)0.70106 (3)0.01956 (9)
O1A0.61893 (15)1.07386 (8)0.41761 (10)0.0143 (2)
H1A0.66711.07210.47640.021*
N1A0.66742 (19)1.05337 (9)0.15938 (12)0.0154 (3)
H1AB0.68071.08930.11370.019*
H1AC0.66381.01000.12540.019*
C1A0.4866 (2)0.89223 (11)0.43262 (14)0.0162 (3)
H1AA0.41880.89260.37100.019*
C2A0.4670 (2)0.84096 (12)0.51056 (15)0.0175 (3)
H2AA0.38690.80760.50120.021*
C3A0.5690 (2)0.84107 (11)0.60158 (14)0.0141 (3)
C4A0.6917 (2)0.88914 (12)0.61605 (14)0.0176 (3)
H4AA0.76090.88770.67700.021*
C5A0.7090 (2)0.93908 (11)0.53828 (14)0.0167 (3)
H5AA0.79110.97120.54750.020*
C6A0.60617 (19)0.94264 (11)0.44600 (13)0.0124 (3)
C7A0.62592 (19)1.00352 (10)0.36771 (13)0.0112 (3)
C8A0.77725 (19)0.99468 (11)0.32607 (14)0.0139 (3)
H8AA0.85950.99780.38370.017*
H8AB0.78100.94620.29490.017*
C9A0.8002 (2)1.05298 (11)0.24570 (14)0.0154 (3)
H9AA0.81031.10110.27860.019*
H9AB0.89261.04270.21720.019*
C10A0.5206 (2)1.06552 (12)0.19942 (14)0.0154 (3)
H10A0.43791.06550.14190.018*
H10B0.52211.11300.23390.018*
C11A0.4964 (2)1.00446 (11)0.27584 (13)0.0138 (3)
H11A0.49160.95720.24050.017*
H11B0.40081.01220.30150.017*
Cl1B0.08958 (5)0.91889 (3)0.68165 (4)0.02007 (9)
O1B0.13549 (15)0.60441 (8)0.41992 (10)0.0136 (2)
H1B0.05430.59280.43780.020*
N1B0.14188 (19)0.62391 (10)0.15802 (12)0.0149 (3)
H1BB0.15080.58820.11110.018*
H1BC0.13570.66750.12450.018*
C1B0.1208 (2)0.72111 (11)0.55239 (14)0.0171 (3)
H1BA0.13570.67270.57550.020*
C2B0.1142 (2)0.77734 (12)0.62472 (14)0.0179 (3)
H2BA0.12440.76670.69540.022*
C3B0.0925 (2)0.84893 (11)0.59017 (14)0.0149 (3)
C4B0.0750 (2)0.86606 (11)0.48428 (14)0.0161 (3)
H4BA0.06010.91460.46170.019*
C5B0.0803 (2)0.80906 (11)0.41349 (14)0.0148 (3)
H5BA0.06690.81970.34270.018*
C6B0.10545 (19)0.73598 (10)0.44641 (13)0.0118 (3)
C7B0.12034 (19)0.67426 (10)0.36860 (13)0.0117 (3)
C8B0.2656 (2)0.68375 (11)0.31946 (14)0.0141 (3)
H8BA0.26470.73180.28640.017*
H8BB0.35290.68170.37350.017*
C9B0.2793 (2)0.62363 (11)0.23875 (15)0.0160 (3)
H9BA0.36880.63230.20620.019*
H9BB0.28980.57580.27270.019*
C10B0.0000 (2)0.61169 (11)0.20400 (14)0.0147 (3)
H10C0.00400.56390.23800.018*
H10D0.08660.61200.14930.018*
C11B0.0179 (2)0.67201 (11)0.28259 (14)0.0133 (3)
H11C0.10880.66300.31350.016*
H11D0.02900.71940.24740.016*
O2A0.61771 (16)0.91428 (8)0.08706 (11)0.0167 (2)
O3A0.7941 (2)0.99873 (9)0.01439 (12)0.0238 (3)
O4A0.8540 (2)0.95285 (9)0.15570 (12)0.0232 (3)
O5A0.9570 (2)0.69858 (10)0.17516 (15)0.0323 (4)
O6A0.8761 (2)0.62139 (10)0.06713 (16)0.0306 (4)
O7A0.6214 (2)0.71007 (10)0.20625 (14)0.0265 (3)
O8A0.47444 (18)0.80551 (10)0.17469 (13)0.0243 (3)
N2A0.80695 (19)0.94537 (9)0.07213 (12)0.0148 (3)
N3A0.8834 (2)0.68406 (10)0.10369 (15)0.0206 (3)
N4A0.57910 (18)0.76640 (10)0.15561 (13)0.0162 (3)
C12A0.67605 (19)0.86314 (10)0.04248 (13)0.0125 (3)
C13A0.76790 (19)0.87243 (10)0.04033 (13)0.0123 (3)
C14A0.8299 (2)0.81494 (10)0.09002 (13)0.0131 (3)
H14A0.88530.82420.14400.016*
C15A0.8079 (2)0.74346 (11)0.05797 (14)0.0145 (3)
C16A0.7243 (2)0.72826 (11)0.02189 (14)0.0147 (3)
H16A0.71190.67990.04300.018*
C17A0.66026 (19)0.78560 (11)0.06925 (13)0.0132 (3)
O2B0.11214 (17)0.76690 (8)0.09635 (11)0.0175 (3)
O3B0.03236 (16)0.88222 (9)0.17146 (11)0.0191 (3)
O4B0.1375 (2)0.96634 (11)0.21473 (14)0.0286 (4)
O5B0.3832 (2)1.05229 (9)0.07138 (16)0.0295 (4)
O6B0.47519 (19)0.97024 (9)0.16764 (13)0.0230 (3)
O7B0.3277 (2)0.72048 (9)0.15469 (13)0.0277 (4)
O8B0.2714 (3)0.67703 (10)0.01198 (14)0.0320 (4)
N2B0.08429 (17)0.91522 (10)0.15888 (12)0.0145 (3)
N3B0.39467 (19)0.98818 (10)0.10184 (13)0.0170 (3)
N4B0.2868 (2)0.72954 (10)0.06939 (12)0.0157 (3)
C12B0.17235 (19)0.81592 (10)0.04862 (13)0.0127 (3)
C13B0.16278 (19)0.89373 (11)0.07279 (13)0.0123 (3)
C14B0.23231 (19)0.94922 (11)0.02524 (14)0.0141 (3)
H14B0.22590.99790.04660.017*
C15B0.3126 (2)0.93112 (10)0.05568 (14)0.0135 (3)
C16B0.32577 (19)0.85917 (11)0.08763 (13)0.0135 (3)
H16B0.37880.84800.14220.016*
C17B0.2583 (2)0.80354 (10)0.03668 (14)0.0129 (3)
S10.74330 (6)0.56505 (3)0.52501 (4)0.02135 (10)
O90.90638 (17)0.55756 (10)0.50845 (13)0.0231 (3)
C180.7073 (3)0.66185 (18)0.5327 (3)0.0446 (8)
H18A0.77940.68340.58650.067*
H18B0.60670.66940.54860.067*
H18C0.71660.68470.46720.067*
C190.6293 (2)0.54900 (15)0.40268 (18)0.0258 (4)
H19A0.64790.50010.37910.039*
H19B0.65440.58440.35290.039*
H19C0.52430.55390.41010.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.0259 (2)0.0181 (2)0.01581 (17)0.00290 (17)0.00703 (15)0.00415 (16)
O1A0.0171 (5)0.0120 (6)0.0136 (5)0.0012 (4)0.0020 (4)0.0027 (4)
N1A0.0225 (7)0.0125 (7)0.0123 (6)0.0006 (5)0.0061 (5)0.0002 (5)
C1A0.0156 (7)0.0174 (8)0.0153 (7)0.0051 (6)0.0016 (6)0.0013 (6)
C2A0.0166 (7)0.0186 (9)0.0172 (7)0.0067 (6)0.0023 (6)0.0021 (6)
C3A0.0172 (7)0.0135 (8)0.0124 (6)0.0003 (6)0.0050 (5)0.0022 (6)
C4A0.0206 (7)0.0175 (9)0.0139 (7)0.0032 (6)0.0008 (6)0.0015 (6)
C5A0.0171 (7)0.0152 (8)0.0167 (7)0.0053 (6)0.0006 (6)0.0019 (6)
C6A0.0132 (6)0.0120 (7)0.0125 (6)0.0017 (5)0.0033 (5)0.0002 (6)
C7A0.0123 (6)0.0090 (7)0.0123 (6)0.0007 (5)0.0023 (5)0.0013 (5)
C8A0.0144 (7)0.0126 (8)0.0154 (7)0.0006 (6)0.0044 (5)0.0013 (6)
C9A0.0163 (7)0.0142 (8)0.0170 (7)0.0014 (6)0.0065 (6)0.0006 (6)
C10A0.0186 (7)0.0140 (8)0.0137 (7)0.0006 (6)0.0031 (6)0.0011 (6)
C11A0.0147 (6)0.0145 (8)0.0121 (6)0.0021 (6)0.0016 (5)0.0006 (6)
Cl1B0.02299 (19)0.0197 (2)0.01767 (18)0.00048 (16)0.00359 (15)0.00778 (16)
O1B0.0165 (5)0.0100 (6)0.0146 (5)0.0016 (4)0.0036 (4)0.0029 (4)
N1B0.0226 (7)0.0115 (7)0.0120 (6)0.0004 (5)0.0069 (5)0.0014 (5)
C1B0.0264 (8)0.0142 (8)0.0107 (6)0.0005 (6)0.0032 (6)0.0010 (6)
C2B0.0252 (8)0.0173 (9)0.0118 (7)0.0010 (7)0.0043 (6)0.0001 (6)
C3B0.0157 (7)0.0147 (8)0.0146 (7)0.0004 (6)0.0030 (5)0.0041 (6)
C4B0.0197 (7)0.0131 (8)0.0153 (7)0.0027 (6)0.0015 (6)0.0001 (6)
C5B0.0195 (7)0.0133 (8)0.0116 (6)0.0029 (6)0.0018 (6)0.0011 (6)
C6B0.0131 (6)0.0113 (7)0.0109 (6)0.0006 (5)0.0020 (5)0.0003 (5)
C7B0.0144 (6)0.0096 (7)0.0112 (6)0.0003 (5)0.0026 (5)0.0012 (5)
C8B0.0143 (6)0.0129 (8)0.0158 (7)0.0001 (6)0.0051 (6)0.0005 (6)
C9B0.0176 (7)0.0151 (8)0.0170 (7)0.0005 (6)0.0079 (6)0.0010 (6)
C10B0.0177 (7)0.0141 (8)0.0123 (6)0.0020 (6)0.0026 (5)0.0003 (6)
C11B0.0141 (7)0.0118 (8)0.0138 (7)0.0000 (6)0.0011 (5)0.0005 (6)
O2A0.0194 (6)0.0141 (6)0.0181 (6)0.0003 (5)0.0073 (5)0.0033 (5)
O3A0.0447 (9)0.0107 (7)0.0189 (6)0.0030 (6)0.0144 (6)0.0030 (5)
O4A0.0412 (9)0.0140 (7)0.0179 (6)0.0003 (6)0.0166 (6)0.0008 (5)
O5A0.0469 (11)0.0186 (8)0.0383 (9)0.0048 (7)0.0293 (9)0.0016 (7)
O6A0.0434 (10)0.0113 (7)0.0423 (10)0.0027 (7)0.0233 (8)0.0029 (7)
O7A0.0287 (7)0.0238 (8)0.0286 (8)0.0038 (6)0.0097 (6)0.0132 (6)
O8A0.0204 (6)0.0275 (8)0.0269 (7)0.0030 (6)0.0104 (6)0.0050 (6)
N2A0.0209 (7)0.0109 (7)0.0129 (6)0.0001 (5)0.0040 (5)0.0013 (5)
N3A0.0262 (8)0.0112 (8)0.0273 (8)0.0017 (6)0.0134 (7)0.0002 (6)
N4A0.0150 (6)0.0165 (8)0.0172 (7)0.0035 (5)0.0030 (5)0.0021 (5)
C12A0.0131 (6)0.0126 (8)0.0119 (6)0.0006 (5)0.0017 (5)0.0007 (6)
C13A0.0160 (7)0.0082 (7)0.0126 (6)0.0006 (5)0.0021 (5)0.0008 (5)
C14A0.0160 (7)0.0121 (8)0.0117 (6)0.0000 (6)0.0036 (5)0.0000 (6)
C15A0.0174 (7)0.0098 (8)0.0169 (7)0.0007 (6)0.0047 (6)0.0012 (6)
C16A0.0154 (7)0.0111 (8)0.0178 (7)0.0008 (6)0.0034 (6)0.0019 (6)
C17A0.0135 (6)0.0128 (8)0.0136 (6)0.0008 (6)0.0028 (5)0.0019 (6)
O2B0.0205 (6)0.0141 (7)0.0196 (6)0.0002 (5)0.0090 (5)0.0018 (5)
O3B0.0157 (5)0.0243 (8)0.0185 (6)0.0011 (5)0.0065 (5)0.0018 (5)
O4B0.0245 (7)0.0317 (10)0.0308 (8)0.0068 (6)0.0081 (6)0.0191 (7)
O5B0.0408 (9)0.0094 (7)0.0430 (10)0.0026 (6)0.0213 (8)0.0013 (6)
O6B0.0284 (7)0.0187 (7)0.0247 (7)0.0026 (6)0.0131 (6)0.0006 (6)
O7B0.0472 (10)0.0157 (7)0.0261 (7)0.0023 (7)0.0250 (7)0.0028 (6)
O8B0.0656 (13)0.0120 (7)0.0245 (7)0.0037 (7)0.0269 (8)0.0035 (6)
N2B0.0133 (6)0.0169 (8)0.0133 (6)0.0024 (5)0.0014 (5)0.0020 (6)
N3B0.0186 (6)0.0126 (7)0.0208 (7)0.0013 (5)0.0058 (5)0.0025 (6)
N4B0.0240 (7)0.0115 (7)0.0122 (6)0.0007 (5)0.0050 (5)0.0003 (5)
C12B0.0139 (6)0.0122 (8)0.0119 (6)0.0006 (5)0.0016 (5)0.0004 (6)
C13B0.0121 (6)0.0128 (7)0.0123 (6)0.0015 (5)0.0025 (5)0.0007 (6)
C14B0.0136 (6)0.0121 (8)0.0167 (7)0.0010 (5)0.0022 (6)0.0003 (6)
C15B0.0144 (6)0.0106 (8)0.0157 (7)0.0005 (5)0.0032 (5)0.0015 (6)
C16B0.0152 (7)0.0125 (8)0.0128 (7)0.0005 (6)0.0024 (5)0.0013 (6)
C17B0.0165 (7)0.0097 (7)0.0130 (7)0.0010 (6)0.0035 (5)0.0004 (5)
S10.01909 (19)0.0257 (3)0.0210 (2)0.00352 (17)0.00883 (16)0.00180 (18)
O90.0174 (6)0.0231 (8)0.0303 (7)0.0003 (5)0.0083 (5)0.0068 (6)
C180.0301 (12)0.0316 (15)0.077 (2)0.0032 (10)0.0228 (13)0.0224 (15)
C190.0195 (8)0.0338 (13)0.0250 (9)0.0008 (8)0.0064 (7)0.0009 (8)
Geometric parameters (Å, º) top
Cl1A—C3A1.7402 (18)C9B—H9BA0.9700
O1A—C7A1.436 (2)C9B—H9BB0.9700
O1A—H1A0.8200C10B—C11B1.520 (3)
N1A—C10A1.495 (2)C10B—H10C0.9700
N1A—C9A1.507 (2)C10B—H10D0.9700
N1A—H1AB0.9000C11B—H11C0.9700
N1A—H1AC0.9000C11B—H11D0.9700
C1A—C6A1.396 (2)O2A—C12A1.246 (2)
C1A—C2A1.404 (3)O3A—N2A1.239 (2)
C1A—H1AA0.9300O4A—N2A1.227 (2)
C2A—C3A1.383 (3)O5A—N3A1.241 (2)
C2A—H2AA0.9300O6A—N3A1.236 (2)
C3A—C4A1.390 (3)O7A—N4A1.243 (2)
C4A—C5A1.382 (3)O8A—N4A1.226 (2)
C4A—H4AA0.9300N2A—C13A1.443 (3)
C5A—C6A1.400 (2)N3A—C15A1.443 (3)
C5A—H5AA0.9300N4A—C17A1.463 (2)
C6A—C7A1.528 (2)C12A—C13A1.454 (2)
C7A—C8A1.534 (2)C12A—C17A1.459 (3)
C7A—C11A1.535 (2)C13A—C14A1.383 (3)
C8A—C9A1.520 (3)C14A—C15A1.383 (3)
C8A—H8AA0.9700C14A—H14A0.9300
C8A—H8AB0.9700C15A—C16A1.391 (3)
C9A—H9AA0.9700C16A—C17A1.374 (3)
C9A—H9AB0.9700C16A—H16A0.9300
C10A—C11A1.523 (3)O2B—C12B1.249 (2)
C10A—H10A0.9700O3B—N2B1.232 (2)
C10A—H10B0.9700O4B—N2B1.228 (2)
C11A—H11A0.9700O5B—N3B1.236 (2)
C11A—H11B0.9700O6B—N3B1.238 (2)
Cl1B—C3B1.7405 (19)O7B—N4B1.227 (2)
O1B—C7B1.428 (2)O8B—N4B1.229 (2)
O1B—H1B0.8200N2B—C13B1.457 (2)
N1B—C9B1.492 (3)N3B—C15B1.447 (2)
N1B—C10B1.493 (2)N4B—C17B1.441 (3)
N1B—H1BB0.9000C12B—C13B1.450 (3)
N1B—H1BC0.9000C12B—C17B1.454 (2)
C1B—C6B1.390 (2)C13B—C14B1.375 (3)
C1B—C2B1.393 (3)C14B—C15B1.395 (3)
C1B—H1BA0.9300C14B—H14B0.9300
C2B—C3B1.377 (3)C15B—C16B1.379 (3)
C2B—H2BA0.9300C16B—C17B1.391 (3)
C3B—C4B1.396 (3)C16B—H16B0.9300
C4B—C5B1.388 (3)S1—O91.5076 (16)
C4B—H4BA0.9300S1—C191.780 (2)
C5B—C6B1.400 (3)S1—C181.789 (3)
C5B—H5BA0.9300C18—H18A0.9600
C6B—C7B1.526 (2)C18—H18B0.9600
C7B—C8B1.536 (2)C18—H18C0.9600
C7B—C11B1.538 (2)C19—H19A0.9600
C8B—C9B1.529 (3)C19—H19B0.9600
C8B—H8BA0.9700C19—H19C0.9600
C8B—H8BB0.9700
C7A—O1A—H1A109.5C7B—C8B—H8BB109.4
C10A—N1A—C9A112.02 (14)H8BA—C8B—H8BB108.0
C10A—N1A—H1AB109.2N1B—C9B—C8B109.85 (15)
C9A—N1A—H1AB109.2N1B—C9B—H9BA109.7
C10A—N1A—H1AC109.2C8B—C9B—H9BA109.7
C9A—N1A—H1AC109.2N1B—C9B—H9BB109.7
H1AB—N1A—H1AC107.9C8B—C9B—H9BB109.7
C6A—C1A—C2A121.15 (17)H9BA—C9B—H9BB108.2
C6A—C1A—H1AA119.4N1B—C10B—C11B109.90 (15)
C2A—C1A—H1AA119.4N1B—C10B—H10C109.7
C3A—C2A—C1A118.65 (17)C11B—C10B—H10C109.7
C3A—C2A—H2AA120.7N1B—C10B—H10D109.7
C1A—C2A—H2AA120.7C11B—C10B—H10D109.7
C2A—C3A—C4A121.56 (17)H10C—C10B—H10D108.2
C2A—C3A—Cl1A119.02 (14)C10B—C11B—C7B110.79 (15)
C4A—C3A—Cl1A119.41 (14)C10B—C11B—H11C109.5
C5A—C4A—C3A118.80 (17)C7B—C11B—H11C109.5
C5A—C4A—H4AA120.6C10B—C11B—H11D109.5
C3A—C4A—H4AA120.6C7B—C11B—H11D109.5
C4A—C5A—C6A121.80 (17)H11C—C11B—H11D108.1
C4A—C5A—H5AA119.1O4A—N2A—O3A121.54 (17)
C6A—C5A—H5AA119.1O4A—N2A—C13A118.85 (16)
C1A—C6A—C5A117.99 (16)O3A—N2A—C13A119.60 (15)
C1A—C6A—C7A123.39 (16)O6A—N3A—O5A123.05 (19)
C5A—C6A—C7A118.56 (16)O6A—N3A—C15A118.24 (17)
O1A—C7A—C6A108.89 (13)O5A—N3A—C15A118.66 (18)
O1A—C7A—C8A110.52 (14)O8A—N4A—O7A123.30 (17)
C6A—C7A—C8A110.63 (14)O8A—N4A—C17A119.63 (17)
O1A—C7A—C11A105.28 (14)O7A—N4A—C17A117.07 (17)
C6A—C7A—C11A112.23 (14)O2A—C12A—C13A125.20 (17)
C8A—C7A—C11A109.16 (14)O2A—C12A—C17A122.95 (16)
C9A—C8A—C7A112.54 (15)C13A—C12A—C17A111.85 (15)
C9A—C8A—H8AA109.1C14A—C13A—N2A115.26 (15)
C7A—C8A—H8AA109.1C14A—C13A—C12A124.41 (17)
C9A—C8A—H8AB109.1N2A—C13A—C12A120.24 (16)
C7A—C8A—H8AB109.1C13A—C14A—C15A118.76 (16)
H8AA—C8A—H8AB107.8C13A—C14A—H14A120.6
N1A—C9A—C8A110.14 (15)C15A—C14A—H14A120.6
N1A—C9A—H9AA109.6C14A—C15A—C16A121.66 (17)
C8A—C9A—H9AA109.6C14A—C15A—N3A118.66 (16)
N1A—C9A—H9AB109.6C16A—C15A—N3A119.52 (17)
C8A—C9A—H9AB109.6C17A—C16A—C15A119.20 (17)
H9AA—C9A—H9AB108.1C17A—C16A—H16A120.4
N1A—C10A—C11A109.57 (16)C15A—C16A—H16A120.4
N1A—C10A—H10A109.8C16A—C17A—C12A124.09 (16)
C11A—C10A—H10A109.8C16A—C17A—N4A116.64 (17)
N1A—C10A—H10B109.8C12A—C17A—N4A119.17 (16)
C11A—C10A—H10B109.8O4B—N2B—O3B123.28 (17)
H10A—C10A—H10B108.2O4B—N2B—C13B117.86 (16)
C10A—C11A—C7A110.63 (15)O3B—N2B—C13B118.85 (16)
C10A—C11A—H11A109.5O5B—N3B—O6B123.47 (18)
C7A—C11A—H11A109.5O5B—N3B—C15B117.93 (17)
C10A—C11A—H11B109.5O6B—N3B—C15B118.58 (17)
C7A—C11A—H11B109.5O7B—N4B—O8B121.23 (18)
H11A—C11A—H11B108.1O7B—N4B—C17B118.65 (16)
C7B—O1B—H1B109.5O8B—N4B—C17B120.11 (15)
C9B—N1B—C10B112.08 (14)O2B—C12B—C13B122.76 (16)
C9B—N1B—H1BB109.2O2B—C12B—C17B125.56 (17)
C10B—N1B—H1BB109.2C13B—C12B—C17B111.68 (15)
C9B—N1B—H1BC109.2C14B—C13B—C12B124.71 (16)
C10B—N1B—H1BC109.2C14B—C13B—N2B116.66 (17)
H1BB—N1B—H1BC107.9C12B—C13B—N2B118.45 (16)
C6B—C1B—C2B121.22 (18)C13B—C14B—C15B118.81 (17)
C6B—C1B—H1BA119.4C13B—C14B—H14B120.6
C2B—C1B—H1BA119.4C15B—C14B—H14B120.6
C3B—C2B—C1B119.16 (17)C16B—C15B—C14B121.65 (17)
C3B—C2B—H2BA120.4C16B—C15B—N3B118.75 (16)
C1B—C2B—H2BA120.4C14B—C15B—N3B119.41 (17)
C2B—C3B—C4B121.36 (17)C15B—C16B—C17B118.73 (16)
C2B—C3B—Cl1B118.64 (14)C15B—C16B—H16B120.6
C4B—C3B—Cl1B119.99 (15)C17B—C16B—H16B120.6
C5B—C4B—C3B118.51 (18)C16B—C17B—N4B115.28 (15)
C5B—C4B—H4BA120.7C16B—C17B—C12B124.34 (17)
C3B—C4B—H4BA120.7N4B—C17B—C12B120.27 (16)
C4B—C5B—C6B121.41 (16)O9—S1—C19107.14 (10)
C4B—C5B—H5BA119.3O9—S1—C18106.33 (12)
C6B—C5B—H5BA119.3C19—S1—C1897.27 (15)
C1B—C6B—C5B118.31 (17)S1—C18—H18A109.5
C1B—C6B—C7B120.55 (16)S1—C18—H18B109.5
C5B—C6B—C7B121.12 (15)H18A—C18—H18B109.5
O1B—C7B—C6B110.62 (14)S1—C18—H18C109.5
O1B—C7B—C8B105.39 (14)H18A—C18—H18C109.5
C6B—C7B—C8B110.72 (14)H18B—C18—H18C109.5
O1B—C7B—C11B109.05 (14)S1—C19—H19A109.5
C6B—C7B—C11B111.22 (14)S1—C19—H19B109.5
C8B—C7B—C11B109.66 (14)H19A—C19—H19B109.5
C9B—C8B—C7B111.24 (15)S1—C19—H19C109.5
C9B—C8B—H8BA109.4H19A—C19—H19C109.5
C7B—C8B—H8BA109.4H19B—C19—H19C109.5
C9B—C8B—H8BB109.4
C6A—C1A—C2A—C3A0.1 (3)O4A—N2A—C13A—C12A163.82 (17)
C1A—C2A—C3A—C4A1.7 (3)O3A—N2A—C13A—C12A17.0 (3)
C1A—C2A—C3A—Cl1A177.09 (15)O2A—C12A—C13A—C14A178.98 (18)
C2A—C3A—C4A—C5A1.7 (3)C17A—C12A—C13A—C14A1.6 (2)
Cl1A—C3A—C4A—C5A177.14 (16)O2A—C12A—C13A—N2A4.4 (3)
C3A—C4A—C5A—C6A0.3 (3)C17A—C12A—C13A—N2A175.00 (15)
C2A—C1A—C6A—C5A2.0 (3)N2A—C13A—C14A—C15A174.83 (16)
C2A—C1A—C6A—C7A175.00 (18)C12A—C13A—C14A—C15A1.9 (3)
C4A—C5A—C6A—C1A2.1 (3)C13A—C14A—C15A—C16A0.6 (3)
C4A—C5A—C6A—C7A175.07 (18)C13A—C14A—C15A—N3A174.74 (17)
C1A—C6A—C7A—O1A118.45 (19)O6A—N3A—C15A—C14A172.6 (2)
C5A—C6A—C7A—O1A58.5 (2)O5A—N3A—C15A—C14A4.8 (3)
C1A—C6A—C7A—C8A119.90 (19)O6A—N3A—C15A—C16A2.9 (3)
C5A—C6A—C7A—C8A63.1 (2)O5A—N3A—C15A—C16A179.7 (2)
C1A—C6A—C7A—C11A2.3 (2)C14A—C15A—C16A—C17A0.9 (3)
C5A—C6A—C7A—C11A174.66 (16)N3A—C15A—C16A—C17A176.16 (17)
O1A—C7A—C8A—C9A60.77 (19)C15A—C16A—C17A—C12A1.1 (3)
C6A—C7A—C8A—C9A178.54 (15)C15A—C16A—C17A—N4A177.49 (16)
C11A—C7A—C8A—C9A54.6 (2)O2A—C12A—C17A—C16A179.49 (18)
C10A—N1A—C9A—C8A56.6 (2)C13A—C12A—C17A—C16A0.0 (2)
C7A—C8A—C9A—N1A54.3 (2)O2A—C12A—C17A—N4A3.2 (3)
C9A—N1A—C10A—C11A59.5 (2)C13A—C12A—C17A—N4A176.24 (15)
N1A—C10A—C11A—C7A59.51 (19)O8A—N4A—C17A—C16A151.85 (18)
O1A—C7A—C11A—C10A61.98 (18)O7A—N4A—C17A—C16A28.1 (2)
C6A—C7A—C11A—C10A179.71 (15)O8A—N4A—C17A—C12A31.6 (2)
C8A—C7A—C11A—C10A56.7 (2)O7A—N4A—C17A—C12A148.48 (18)
C6B—C1B—C2B—C3B0.2 (3)O2B—C12B—C13B—C14B177.23 (18)
C1B—C2B—C3B—C4B0.8 (3)C17B—C12B—C13B—C14B3.2 (2)
C1B—C2B—C3B—Cl1B178.29 (15)O2B—C12B—C13B—N2B2.3 (3)
C2B—C3B—C4B—C5B0.2 (3)C17B—C12B—C13B—N2B178.07 (14)
Cl1B—C3B—C4B—C5B178.96 (14)O4B—N2B—C13B—C14B33.8 (2)
C3B—C4B—C5B—C6B1.2 (3)O3B—N2B—C13B—C14B145.35 (18)
C2B—C1B—C6B—C5B1.1 (3)O4B—N2B—C13B—C12B141.56 (19)
C2B—C1B—C6B—C7B177.12 (17)O3B—N2B—C13B—C12B39.3 (2)
C4B—C5B—C6B—C1B1.8 (3)C12B—C13B—C14B—C15B3.2 (3)
C4B—C5B—C6B—C7B176.40 (16)N2B—C13B—C14B—C15B178.19 (15)
C1B—C6B—C7B—O1B5.6 (2)C13B—C14B—C15B—C16B1.1 (3)
C5B—C6B—C7B—O1B176.22 (15)C13B—C14B—C15B—N3B175.95 (16)
C1B—C6B—C7B—C8B110.87 (19)O5B—N3B—C15B—C16B179.11 (19)
C5B—C6B—C7B—C8B67.3 (2)O6B—N3B—C15B—C16B0.8 (3)
C1B—C6B—C7B—C11B126.93 (18)O5B—N3B—C15B—C14B4.1 (3)
C5B—C6B—C7B—C11B54.9 (2)O6B—N3B—C15B—C14B174.24 (18)
O1B—C7B—C8B—C9B62.18 (18)C14B—C15B—C16B—C17B0.7 (3)
C6B—C7B—C8B—C9B178.17 (15)N3B—C15B—C16B—C17B174.20 (16)
C11B—C7B—C8B—C9B55.1 (2)C15B—C16B—C17B—N4B175.51 (16)
C10B—N1B—C9B—C8B58.6 (2)C15B—C16B—C17B—C12B0.5 (3)
C7B—C8B—C9B—N1B56.3 (2)O7B—N4B—C17B—C16B20.3 (3)
C9B—N1B—C10B—C11B59.6 (2)O8B—N4B—C17B—C16B159.0 (2)
N1B—C10B—C11B—C7B57.6 (2)O7B—N4B—C17B—C12B163.47 (18)
O1B—C7B—C11B—C10B59.23 (19)O8B—N4B—C17B—C12B17.2 (3)
C6B—C7B—C11B—C10B178.51 (14)O2B—C12B—C17B—C16B179.16 (18)
C8B—C7B—C11B—C10B55.7 (2)C13B—C12B—C17B—C16B1.2 (2)
O4A—N2A—C13A—C14A19.3 (2)O2B—C12B—C17B—N4B3.3 (3)
O3A—N2A—C13A—C14A159.87 (18)C13B—C12B—C17B—N4B177.10 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1AB···O7Bi0.902.443.030 (2)123
N1A—H1AB···O8Bi0.902.153.048 (2)176
O1A—H1A···O1Bii0.822.142.8642 (19)148
O1B—H1B···O9iii0.821.832.629 (2)165
N1A—H1AC···O2A0.901.832.704 (2)162
N1A—H1AC···O3A0.902.302.846 (2)119
N1B—H1BB···O3Aiv0.902.153.044 (2)171
N1B—H1BB···O4Aiv0.902.523.101 (2)123
N1B—H1BC···O2B0.901.842.714 (2)162
C4A—H4AA···O4Av0.932.513.311 (2)145
C5A—H5AA···O1Bii0.932.523.313 (2)143
C8A—H8AA···O9vi0.972.583.479 (2)155
C9A—H9AB···O4Bvii0.972.593.469 (3)151
C11A—H11A···O2A0.972.553.261 (2)130
C11A—H11B···O4B0.972.593.258 (3)126
C2B—H2BA···O7Bv0.932.603.361 (3)140
C14B—H14B···O6Ai0.932.453.335 (3)160
C5B—H5BA···O3B0.932.543.424 (2)160
C16A—H16A···O5Biv0.932.513.418 (3)166
Symmetry codes: (i) x+1, y+1/2, z; (ii) x+1, y+1/2, z+1; (iii) x1, y, z; (iv) x+1, y1/2, z; (v) x, y, z+1; (vi) x+2, y+1/2, z+1; (vii) x+1, y, z.

Experimental details

Crystal data
Chemical formula2C11H15ClNO+·2C6H2N3O7·C2H6OS
Mr959.72
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)8.9207 (4), 18.1230 (9), 12.9886 (6)
β (°) 98.430 (1)
V3)2077.18 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.40 × 0.32 × 0.16
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.893, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
25314, 15185, 13604
Rint0.029
(sin θ/λ)max1)0.787
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.140, 1.11
No. of reflections15185
No. of parameters582
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.83, 0.88

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1AB···O7Bi0.902.443.030 (2)123
N1A—H1AB···O8Bi0.902.153.048 (2)176
O1A—H1A···O1Bii0.822.142.8642 (19)148
O1B—H1B···O9iii0.821.832.629 (2)165
N1A—H1AC···O2A0.901.832.704 (2)162
N1A—H1AC···O3A0.902.302.846 (2)119
N1B—H1BB···O3Aiv0.902.153.044 (2)171
N1B—H1BB···O4Aiv0.902.523.101 (2)123
N1B—H1BC···O2B0.901.842.714 (2)162
C4A—H4AA···O4Av0.932.513.311 (2)145
C5A—H5AA···O1Bii0.932.523.313 (2)143
C8A—H8AA···O9vi0.972.583.479 (2)155
C9A—H9AB···O4Bvii0.972.593.469 (3)151
C11A—H11A···O2A0.972.553.261 (2)130
C11A—H11B···O4B0.972.593.258 (3)126
C2B—H2BA···O7Bv0.932.603.361 (3)140
C14B—H14B···O6Ai0.932.453.335 (3)160
C5B—H5BA···O3B0.932.543.424 (2)160
C16A—H16A···O5Biv0.932.513.418 (3)166
Symmetry codes: (i) x+1, y+1/2, z; (ii) x+1, y+1/2, z+1; (iii) x1, y, z; (iv) x+1, y1/2, z; (v) x, y, z+1; (vi) x+2, y+1/2, z+1; (vii) x+1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: mhemamalini2k3@yahoo.co.in.

Additional correspondence author, e-mail: bpsiddaraju@yahoo.co.in.

‡‡Additional correspondence author, e-mail: yathirajan@hotmail.com.

Acknowledgements

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HSY thanks University of Mysore for research facilities and for sabbatical leave.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAnitha, K., Sridhar, B. & Rajaram, R. K. (2004). Acta Cryst. E60, o1530–o1532.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationCygler, M. & Ahmed, F. R. (1984). Acta Cryst. B40, 436–440.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCygler, M., Skarżyński, T., Skolimowski, J. & Thozet, A. (1980). Acta Cryst. B36, 2481–2483.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDutkiewicz, G., Siddaraju, B. P., Yathirajan, H. S., Siddegowda, M. S. & Kubicki, M. (2010). Acta Cryst. E66, o562.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGeorges, G., Vercauteren, D. P., Evrard, G. & Durant, F. (1989). J. Chem. Soc. Perkin Trans. 2, pp. 449–455.  CrossRef Google Scholar
First citationJasinski, J. P., Butcher, R. J., Yathirajan, H. S., Mallesha, L. & Mohana, K. N. (2009). Acta Cryst. E65, o2365–o2366.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLisgarten, J. N. & Palmer, R. A. (1989). Acta Cryst. C45, 102–104.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThanigaimani, K., Subashini, A., Muthiah, P. T., Lynch, D. E. & Butcher, R. J. (2009). Acta Cryst. C65, o42–o45.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTomlin, D. W., Bunning, T. J., Price, G. E., Fratini, A. V. & Adams, W. W. (1996). Acta Cryst. C52, 1000–1002.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationVartanyan, R. S. (1984). Pharm. Chem. J. 18, 736–749.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds