organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Chloro-8-methyl-4H-3,1-benzoxazine-2,4(1H)-dione

aDepartment of Life Science, Northeast Forestry University, Harbin 150040, People's Republic of China, and bGraduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
*Correspondence e-mail: ylzhou0000@163.com

(Received 16 March 2010; accepted 10 April 2010; online 21 April 2010)

The two mol­ecules in the asymmetric unit of the title compound, C9H6ClNO3, are nearly planar, with r.m.s. deviations of 0.034 and 0.037 Å. The crystal structure is stabilized by two weak inter­molecular N—H⋯O inter­actions.

Related literature

For background to isatoic anhydrides, see: Miyamae (1996[Miyamae, T. (1996). Microbiol. Immunol. 40, 761-766.]); Nawrot et al. (1997[Nawrot, B., Milius, W., Ejchart, A., Limmer, St. & Sprinz, M. (1997). Nucleic Acids Res. 25, 948-954.]); Nawrot & Sprinz (1998[Nawrot, B. & Sprinz, M. (1998). Nucleosides Nucleotides Nucleic Acids, 17, 815-829.]); Deifel et al. (2010[Deifel, N. P., Cherney, E., Hunt, D. A. & Chan, B. C. (2010). Acta Cryst. E66, o665.]); Ren et al. (1996[Ren, J. & Goss, D. J. (1996). Nucleic Acids Res. 24, 3629-3634.]). For the preparation, see: Coppola (1980[Coppola, G. M. (1980). Synthesis, 7, 505-536.]).

[Scheme 1]

Experimental

Crystal data
  • C9H6ClNO3

  • Mr = 211.60

  • Monoclinic, P 21 /n

  • a = 8.3019 (12) Å

  • b = 13.1322 (18) Å

  • c = 15.742 (2) Å

  • β = 99.675 (9)°

  • V = 1691.8 (4) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 3.85 mm−1

  • T = 173 K

  • 0.22 × 0.22 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID IP area-detector diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.485, Tmax = 0.596

  • 11524 measured reflections

  • 3050 independent reflections

  • 2280 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.107

  • S = 1.01

  • 3050 reflections

  • 256 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O6i 0.88 1.99 2.846 (3) 163
N2—H2A⋯O3ii 0.88 2.01 2.850 (2) 160
Symmetry codes: (i) x, y, z+1; (ii) x, y, z-1.

Data collection: RAPID-AUTO (Rigaku, 2001[Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Isatoic anhydride derivatives are generally used as intermediates in the synthesis of heterocyclic compounds, such as agricultural chemicals, medicines, pharmaceuticals, quinazolinones, quinazolones, benzimidazolones, phthalimides, pyrroloquinazolones, quinazolinediones and in the fluorescent labeling of mRNAand tRNA (Miyamae, 1996; Nawrot et al., 1997; Nawrot et al., 1998; Deifel et al., 2010; Ren et al., 1996).

The title compound is a nearly planar molecule (Fig. 1). The bond distances are consistent with an aromatic system. There are two molecules in the asymmetric unit of the title compound. The molecular structure is stabilized by two weak intermolecular N–H···O interactions resulting in the formation of dimers.

Related literature top

For background to isatoic anhydrides, see: Miyamae (1996); Nawrot et al. (1997); Nawrot & Sprinz (1998); Deifel et al. (2010); Ren et al. (1996). For the preparation, see: Coppola (1980).

Experimental top

The isatoic anhydride was prepared by reaction of anthranilic acid with triphosgene in good yield (Coppola, 1980). The title compound (0.2 g) was dissolved in ethanol (50 ml) at room temperature. Colourless blocks of (I) were obtained through slow evaporation after two weeks.

Refinement top

The H atoms were placed at calculated positions, with C—H = 0.93–0.98 Å, and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Structure description top

Isatoic anhydride derivatives are generally used as intermediates in the synthesis of heterocyclic compounds, such as agricultural chemicals, medicines, pharmaceuticals, quinazolinones, quinazolones, benzimidazolones, phthalimides, pyrroloquinazolones, quinazolinediones and in the fluorescent labeling of mRNAand tRNA (Miyamae, 1996; Nawrot et al., 1997; Nawrot et al., 1998; Deifel et al., 2010; Ren et al., 1996).

The title compound is a nearly planar molecule (Fig. 1). The bond distances are consistent with an aromatic system. There are two molecules in the asymmetric unit of the title compound. The molecular structure is stabilized by two weak intermolecular N–H···O interactions resulting in the formation of dimers.

For background to isatoic anhydrides, see: Miyamae (1996); Nawrot et al. (1997); Nawrot & Sprinz (1998); Deifel et al. (2010); Ren et al. (1996). For the preparation, see: Coppola (1980).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2001); cell refinement: RAPID-AUTO (Rigaku, 2001); data reduction: RAPID-AUTO (Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids and atom-numbering scheme.
6-Chloro-8-methyl-4H-3,1-benzoxazine-2,4(1H)-dione top
Crystal data top
C9H6ClNO3F(000) = 864
Mr = 211.60Dx = 1.661 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54186 Å
Hall symbol: -P 2ynCell parameters from 687 reflections
a = 8.3019 (12) Åθ = 3.1–68.2°
b = 13.1322 (18) ŵ = 3.85 mm1
c = 15.742 (2) ÅT = 173 K
β = 99.675 (9)°Plate, colorless
V = 1691.8 (4) Å30.22 × 0.22 × 0.15 mm
Z = 8
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
3050 independent reflections
Radiation source: rotating anode2280 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ω scansθmax = 68.2°, θmin = 4.4°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 109
Tmin = 0.485, Tmax = 0.596k = 1515
11524 measured reflectionsl = 1817
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0569P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3050 reflectionsΔρmax = 0.49 e Å3
256 parametersΔρmin = 0.29 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0023 (3)
Crystal data top
C9H6ClNO3V = 1691.8 (4) Å3
Mr = 211.60Z = 8
Monoclinic, P21/nCu Kα radiation
a = 8.3019 (12) ŵ = 3.85 mm1
b = 13.1322 (18) ÅT = 173 K
c = 15.742 (2) Å0.22 × 0.22 × 0.15 mm
β = 99.675 (9)°
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
3050 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
2280 reflections with I > 2σ(I)
Tmin = 0.485, Tmax = 0.596Rint = 0.054
11524 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.01Δρmax = 0.49 e Å3
3050 reflectionsΔρmin = 0.29 e Å3
256 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.74255 (7)0.37308 (4)0.31233 (4)0.03722 (19)
Cl20.15868 (6)0.36329 (4)0.20423 (3)0.03096 (18)
O10.15834 (17)0.35341 (10)0.42141 (10)0.0352 (4)
O20.21462 (17)0.36049 (9)0.56311 (10)0.0292 (4)
O30.25940 (17)0.36009 (10)0.70532 (10)0.0343 (4)
O40.74385 (17)0.36875 (10)0.09544 (10)0.0325 (4)
O50.68671 (17)0.37641 (10)0.04621 (9)0.0281 (4)
O60.64195 (17)0.37865 (10)0.18829 (10)0.0342 (4)
N10.4795 (2)0.37337 (11)0.63750 (11)0.0263 (4)
H1A0.54720.37890.68670.032*
N20.4212 (2)0.38050 (11)0.12090 (11)0.0248 (4)
H2A0.35310.38360.17010.030*
C10.6645 (3)0.37491 (14)0.40801 (14)0.0287 (5)
C20.4986 (3)0.36648 (13)0.40569 (14)0.0265 (5)
H2B0.42610.36070.35240.032*
C30.4396 (3)0.36668 (13)0.48353 (14)0.0251 (5)
C40.5457 (3)0.37476 (13)0.56177 (13)0.0232 (5)
C50.7156 (3)0.38488 (13)0.56459 (14)0.0255 (5)
C60.7711 (3)0.38478 (13)0.48592 (14)0.0270 (5)
H6A0.88490.39160.48540.032*
C70.2637 (3)0.35950 (14)0.48294 (14)0.0262 (5)
C80.3186 (3)0.36409 (14)0.64046 (15)0.0277 (5)
C90.8305 (2)0.39789 (15)0.64787 (13)0.0297 (5)
H9A0.94270.40320.63650.045*
H9B0.82170.33900.68510.045*
H9C0.80230.46000.67660.045*
C100.2366 (3)0.37177 (13)0.10859 (14)0.0260 (5)
C110.4028 (2)0.36882 (13)0.11139 (14)0.0250 (5)
H11A0.47540.36410.16480.030*
C120.4623 (3)0.37296 (13)0.03310 (14)0.0245 (5)
C130.3552 (3)0.37864 (12)0.04491 (13)0.0226 (5)
C140.1853 (2)0.38394 (14)0.04755 (14)0.0248 (5)
C150.1296 (3)0.38043 (12)0.03084 (14)0.0249 (5)
H15A0.01550.38410.03130.030*
C160.6380 (3)0.37193 (13)0.03436 (14)0.0252 (5)
C170.5828 (3)0.37785 (14)0.12356 (15)0.0278 (5)
C180.0708 (2)0.39453 (15)0.13148 (14)0.0299 (5)
H18A0.04210.39580.12080.045*
H18B0.08520.33670.16880.045*
H18C0.09440.45800.15970.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0344 (3)0.0529 (4)0.0255 (3)0.0024 (2)0.0083 (3)0.0006 (2)
Cl20.0292 (3)0.0399 (3)0.0246 (3)0.0011 (2)0.0072 (2)0.0001 (2)
O10.0251 (8)0.0467 (9)0.0321 (10)0.0004 (7)0.0004 (8)0.0003 (7)
O20.0202 (7)0.0424 (9)0.0244 (9)0.0006 (6)0.0020 (7)0.0030 (6)
O30.0242 (8)0.0540 (10)0.0252 (9)0.0013 (7)0.0053 (7)0.0004 (7)
O40.0222 (8)0.0449 (9)0.0287 (9)0.0000 (6)0.0012 (8)0.0026 (7)
O50.0178 (7)0.0407 (8)0.0252 (9)0.0001 (6)0.0019 (7)0.0038 (6)
O60.0220 (8)0.0575 (10)0.0240 (9)0.0022 (6)0.0062 (7)0.0037 (7)
N10.0210 (9)0.0348 (10)0.0225 (10)0.0011 (7)0.0016 (8)0.0008 (7)
N20.0177 (9)0.0349 (9)0.0209 (10)0.0006 (7)0.0007 (8)0.0000 (7)
C10.0324 (12)0.0304 (11)0.0236 (13)0.0030 (9)0.0059 (10)0.0010 (8)
C20.0259 (11)0.0275 (11)0.0250 (12)0.0030 (8)0.0007 (10)0.0010 (8)
C30.0236 (11)0.0251 (10)0.0257 (12)0.0007 (8)0.0015 (10)0.0004 (8)
C40.0228 (11)0.0213 (10)0.0249 (12)0.0001 (7)0.0025 (10)0.0008 (8)
C50.0244 (11)0.0245 (10)0.0268 (13)0.0015 (8)0.0021 (10)0.0015 (8)
C60.0222 (11)0.0300 (11)0.0289 (13)0.0005 (8)0.0047 (10)0.0005 (9)
C70.0232 (11)0.0278 (11)0.0258 (13)0.0001 (8)0.0015 (10)0.0006 (8)
C80.0247 (11)0.0280 (11)0.0292 (13)0.0015 (8)0.0009 (10)0.0037 (9)
C90.0222 (11)0.0388 (12)0.0272 (13)0.0023 (9)0.0019 (10)0.0019 (9)
C100.0275 (11)0.0256 (10)0.0253 (13)0.0024 (8)0.0060 (10)0.0020 (8)
C110.0230 (11)0.0282 (11)0.0230 (12)0.0003 (8)0.0012 (10)0.0004 (8)
C120.0206 (10)0.0240 (10)0.0284 (13)0.0015 (8)0.0028 (10)0.0013 (8)
C130.0231 (11)0.0223 (10)0.0224 (12)0.0011 (8)0.0037 (10)0.0001 (8)
C140.0206 (10)0.0240 (10)0.0288 (13)0.0004 (8)0.0011 (10)0.0003 (8)
C150.0197 (10)0.0259 (10)0.0286 (13)0.0006 (8)0.0030 (9)0.0007 (8)
C160.0219 (11)0.0261 (10)0.0265 (13)0.0006 (8)0.0012 (10)0.0006 (8)
C170.0250 (11)0.0300 (11)0.0277 (13)0.0018 (8)0.0022 (10)0.0039 (9)
C180.0205 (11)0.0381 (12)0.0304 (13)0.0020 (9)0.0020 (10)0.0008 (9)
Geometric parameters (Å, º) top
Cl1—C11.737 (2)C3—C71.462 (3)
Cl2—C101.739 (2)C4—C51.410 (3)
O1—C71.194 (2)C5—C61.392 (3)
O2—C81.370 (3)C5—C91.496 (3)
O2—C71.390 (3)C6—H6A0.9500
O3—C81.206 (2)C9—H9A0.9800
O4—C161.189 (3)C9—H9B0.9800
O5—C171.369 (3)C9—H9C0.9800
O5—C161.396 (3)C10—C111.374 (3)
O6—C171.203 (2)C10—C151.391 (3)
N1—C81.350 (3)C11—C121.403 (3)
N1—C41.394 (3)C11—H11A0.9500
N1—H1A0.8800C12—C131.392 (3)
N2—C171.349 (3)C12—C161.456 (3)
N2—C131.397 (3)C13—C141.406 (3)
N2—H2A0.8800C14—C151.389 (3)
C1—C21.376 (3)C14—C181.499 (3)
C1—C61.393 (3)C15—H15A0.9500
C2—C31.394 (3)C18—H18A0.9800
C2—H2B0.9500C18—H18B0.9800
C3—C41.393 (3)C18—H18C0.9800
C8—O2—C7124.77 (17)H9A—C9—H9B109.5
C17—O5—C16124.97 (17)C5—C9—H9C109.5
C8—N1—C4124.42 (19)H9A—C9—H9C109.5
C8—N1—H1A117.8H9B—C9—H9C109.5
C4—N1—H1A117.8C11—C10—C15121.3 (2)
C17—N2—C13124.13 (18)C11—C10—Cl2119.22 (17)
C17—N2—H2A117.9C15—C10—Cl2119.45 (17)
C13—N2—H2A117.9C10—C11—C12118.0 (2)
C2—C1—C6121.1 (2)C10—C11—H11A121.0
C2—C1—Cl1119.58 (18)C12—C11—H11A121.0
C6—C1—Cl1119.34 (17)C13—C12—C11120.68 (19)
C1—C2—C3118.3 (2)C13—C12—C16120.2 (2)
C1—C2—H2B120.8C11—C12—C16119.14 (19)
C3—C2—H2B120.8C12—C13—N2118.17 (19)
C4—C3—C2120.9 (2)C12—C13—C14121.2 (2)
C4—C3—C7119.6 (2)N2—C13—C14120.65 (19)
C2—C3—C7119.51 (19)C15—C14—C13116.99 (19)
C3—C4—N1118.26 (19)C15—C14—C18121.99 (19)
C3—C4—C5121.1 (2)C13—C14—C18121.01 (19)
N1—C4—C5120.68 (19)C14—C15—C10121.7 (2)
C6—C5—C4116.81 (19)C14—C15—H15A119.1
C6—C5—C9121.48 (19)C10—C15—H15A119.1
C4—C5—C9121.69 (19)O4—C16—O5116.66 (19)
C5—C6—C1121.8 (2)O4—C16—C12127.9 (2)
C5—C6—H6A119.1O5—C16—C12115.46 (18)
C1—C6—H6A119.1O6—C17—N2125.1 (2)
O1—C7—O2116.79 (19)O6—C17—O5117.84 (19)
O1—C7—C3127.2 (2)N2—C17—O5117.00 (19)
O2—C7—C3116.02 (18)C14—C18—H18A109.5
O3—C8—N1125.4 (2)C14—C18—H18B109.5
O3—C8—O2117.74 (19)H18A—C18—H18B109.5
N1—C8—O2116.9 (2)C14—C18—H18C109.5
C5—C9—H9A109.5H18A—C18—H18C109.5
C5—C9—H9B109.5H18B—C18—H18C109.5
C6—C1—C2—C30.8 (3)C15—C10—C11—C121.1 (3)
Cl1—C1—C2—C3179.08 (13)Cl2—C10—C11—C12178.26 (12)
C1—C2—C3—C40.3 (3)C10—C11—C12—C130.7 (3)
C1—C2—C3—C7179.00 (16)C10—C11—C12—C16178.83 (16)
C2—C3—C4—N1179.29 (15)C11—C12—C13—N2178.74 (15)
C7—C3—C4—N11.4 (2)C16—C12—C13—N21.7 (2)
C2—C3—C4—C51.2 (3)C11—C12—C13—C142.2 (3)
C7—C3—C4—C5178.09 (17)C16—C12—C13—C14177.37 (16)
C8—N1—C4—C30.4 (3)C17—N2—C13—C120.5 (3)
C8—N1—C4—C5179.93 (17)C17—N2—C13—C14178.58 (16)
C3—C4—C5—C60.9 (3)C12—C13—C14—C151.7 (3)
N1—C4—C5—C6179.55 (15)N2—C13—C14—C15179.27 (15)
C3—C4—C5—C9177.47 (16)C12—C13—C14—C18177.37 (16)
N1—C4—C5—C92.0 (3)N2—C13—C14—C181.7 (3)
C4—C5—C6—C10.2 (3)C13—C14—C15—C100.2 (3)
C9—C5—C6—C1178.58 (16)C18—C14—C15—C10179.25 (16)
C2—C1—C6—C51.1 (3)C11—C10—C15—C141.6 (3)
Cl1—C1—C6—C5178.84 (14)Cl2—C10—C15—C14177.76 (13)
C8—O2—C7—O1178.00 (15)C17—O5—C16—O4178.23 (15)
C8—O2—C7—C32.3 (2)C17—O5—C16—C122.5 (2)
C4—C3—C7—O1179.09 (18)C13—C12—C16—O4178.89 (18)
C2—C3—C7—O10.2 (3)C11—C12—C16—O40.7 (3)
C4—C3—C7—O20.5 (2)C13—C12—C16—O50.3 (2)
C2—C3—C7—O2179.82 (15)C11—C12—C16—O5179.91 (14)
C4—N1—C8—O3177.97 (17)C13—N2—C17—O6179.44 (17)
C4—N1—C8—O23.1 (3)C13—N2—C17—O52.1 (3)
C7—O2—C8—O3176.85 (16)C16—O5—C17—O6177.76 (16)
C7—O2—C8—N14.1 (2)C16—O5—C17—N23.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O6i0.881.992.846 (3)163
N2—H2A···O3ii0.882.012.850 (2)160
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC9H6ClNO3
Mr211.60
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)8.3019 (12), 13.1322 (18), 15.742 (2)
β (°) 99.675 (9)
V3)1691.8 (4)
Z8
Radiation typeCu Kα
µ (mm1)3.85
Crystal size (mm)0.22 × 0.22 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID IP area-detector
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.485, 0.596
No. of measured, independent and
observed [I > 2σ(I)] reflections
11524, 3050, 2280
Rint0.054
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.107, 1.01
No. of reflections3050
No. of parameters256
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.29

Computer programs: RAPID-AUTO (Rigaku, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O6i0.881.992.846 (3)163.0
N2—H2A···O3ii0.882.012.850 (2)159.9
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1.
 

Acknowledgements

This work was supported by the Northeast Forestry University Youth Research Fund (09054).

References

First citationCoppola, G. M. (1980). Synthesis, 7, 505–536.  CrossRef Google Scholar
First citationDeifel, N. P., Cherney, E., Hunt, D. A. & Chan, B. C. (2010). Acta Cryst. E66, o665.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMiyamae, T. (1996). Microbiol. Immunol. 40, 761–766.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNawrot, B., Milius, W., Ejchart, A., Limmer, St. & Sprinz, M. (1997). Nucleic Acids Res. 25, 948–954.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationNawrot, B. & Sprinz, M. (1998). Nucleosides Nucleotides Nucleic Acids, 17, 815–829.  CrossRef CAS Google Scholar
First citationRen, J. & Goss, D. J. (1996). Nucleic Acids Res. 24, 3629–3634.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds