organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(Bi­phenyl-4-ylmethyl­­idene)thio­semicarbazide monohydrate

aDepartamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, C/ Julián Clavería, 8, 33006 Oviedo (Asturias), Spain
*Correspondence e-mail: sgg@uniovi.es

(Received 19 March 2010; accepted 29 March 2010; online 10 April 2010)

In the title compound, C14H13N3S·H2O, the thio­semicarbazide group is nearly planar, with a maximum deviation of 0.072 (2) Å from the ideal least-squares plane, and shows an E conformation. In the crystal packing, the water mol­ecules are involved in an extensive inter­molecular N—H⋯O hydrogen-bond network, assisted by O—H⋯S inter­actions, which link the independent mol­ecules into chains extended along b axis. An intra­molecular hydrogen N—H⋯N bond helps to stabilize the mol­ecular conformation.

Related literature

For the biological activity and potential medical applications of thio­semicarbazides, see: West et al. (1991[West, D., Padhye, S. B. & Sonawane, P. S. (1991). Struct. Bond. 76, 1-50.]). For thio­semicarbazides as ligands, see: Kowol et al. (2007[Kowol, C. R., Berger, R., Eichinger, R., Roller, A., Jakupec, M., Schmid, P., Vladimir, B. A. & Keppler, B. (2007). J. Med. Chem. 50, 1254-1265.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13N3S·H2O

  • Mr = 273.36

  • Monoclinic, P 21 /c

  • a = 14.428 (5) Å

  • b = 6.350 (5) Å

  • c = 15.276 (4) Å

  • β = 99.750 (5)°

  • V = 1379.3 (12) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.05 mm−1

  • T = 293 K

  • 0.28 × 0.22 × 0.19 mm

Data collection
  • Oxford Diffraction Xcalibur Gemini S diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.659, Tmax = 1.000

  • 8823 measured reflections

  • 2652 independent reflections

  • 2208 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.145

  • S = 1.12

  • 2652 reflections

  • 233 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H14⋯O1 0.92 (3) 1.91 (3) 2.819 (3) 172 (3)
N3—H15⋯N1 0.91 (3) 2.14 (3) 2.585 (3) 110 (2)
N3—H16⋯S1i 0.86 (4) 2.59 (4) 3.422 (3) 163 (3)
O1—H17⋯S1ii 0.86 (5) 2.44 (5) 3.287 (3) 169 (4)
O1—H18⋯S1iii 0.77 (5) 2.60 (5) 3.352 (3) 164 (5)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) -x+2, -y, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Thiosemicarbazides, a class of compounds possessing a wide spectrum of potential medicinal applications, have been studied for their antitumoral, antiviral, antibacterial, antimalarial, antifungal, anti-inflammatory and anti-HIV activities (West et al., 1991). These properties are thought to arise from the metal-chelating ability of these ligands. In almost all cases, the ligands are bidentate and bind to the metal through the S and hydrazinic N atoms, although there are examples of them acting as monodentate ligands binding only through sulfur (Kowol et al., 2007).

The title compound C14H13N3S.H2O was synthesized and its crystal structure is reported here. This compound is likely to have biomedical properties similar to other nitrogen-sulfur donor ligands. The asymmetric unit consists of a single molecule (I), shown in Figure 1. The thiosemicarbazide adopts an E conformation with a trans configuration observed about the C=N bond. The thiosemicarbazide moiety is planar, the C(14)—N(2) (1.341 (3) Å) and N(1)—N(2) (1.371 (3) Å) bond lengths imply significant electron delocalization and the C13/N1/N2/C14/S1 fragment is close to planar (max. deviation = 0.072 (2) Å). The dihedral angle between benzene ring C7/C8/C9/C10/C11/C12 and the moiety C13/N1/N2/C14/S1 is 4.67 (1)°. This value suggests that they are nearly coplanar, and π-electrons are delocalized in the benzaldehyde thiosemicarbazide fragment.

The water molecules are involved in an extensive intermolecular N(2)—H(14)···O(1) hydrogen bonds and O(1)—H(17)···S(1) interactions (Table 1), which link the molecules into chains extended along the b axis. Sulfur atom S(1) is also involved in N(3)—H(16)···S(1) intermolecular interactions, favoring the crystal grown in the ac plane. An intramolecular N(3)—H(15)···N(1) hydrogen bond (Table 1) contributes to stabilize the molecular conformation. The intermolecular distance value between ring centroids in the b axis direction (6.350 Å), suggests that there is no π-stacking interaction between parallel molecules (Figure 2).

Related literature top

For the biological activity and potential medical applications of thiosemicarbazides, see: West et al. (1991). For thiosemicarbazides as ligands, see: Kowol et al. (2007).

Experimental top

A solution of 4-biphenylcarboxaldehyde (1.822 g, 0.01 mol) and thiosemicarbazide (0.91 g, 0.01 mol) in absolute methanol (50 ml) was refluxing for 4 h, in the presence of p-toluenesulfonic acid (0.005 g) as catalyst, with continuous stirring. Completeness of the reaction was TLC controlled indicating the disappearance of the aldehyde spot. On cooling to room temperature the precipitate was filtered off, washed with copious cold methanol and dried in air (yield: 1.581 g, 61%; m.p. 475 K). Yellow single crystals compound were obtained after recrystallization from a solution of chloroform/methanol (3:7 v/v) after 10 days at room temperature.

Refinement top

At the end of the refinement the highest peak in the electron density was 0.3350 e Å -3, while the deepest hole was -0.3210 e Å -3.

Structure description top

Thiosemicarbazides, a class of compounds possessing a wide spectrum of potential medicinal applications, have been studied for their antitumoral, antiviral, antibacterial, antimalarial, antifungal, anti-inflammatory and anti-HIV activities (West et al., 1991). These properties are thought to arise from the metal-chelating ability of these ligands. In almost all cases, the ligands are bidentate and bind to the metal through the S and hydrazinic N atoms, although there are examples of them acting as monodentate ligands binding only through sulfur (Kowol et al., 2007).

The title compound C14H13N3S.H2O was synthesized and its crystal structure is reported here. This compound is likely to have biomedical properties similar to other nitrogen-sulfur donor ligands. The asymmetric unit consists of a single molecule (I), shown in Figure 1. The thiosemicarbazide adopts an E conformation with a trans configuration observed about the C=N bond. The thiosemicarbazide moiety is planar, the C(14)—N(2) (1.341 (3) Å) and N(1)—N(2) (1.371 (3) Å) bond lengths imply significant electron delocalization and the C13/N1/N2/C14/S1 fragment is close to planar (max. deviation = 0.072 (2) Å). The dihedral angle between benzene ring C7/C8/C9/C10/C11/C12 and the moiety C13/N1/N2/C14/S1 is 4.67 (1)°. This value suggests that they are nearly coplanar, and π-electrons are delocalized in the benzaldehyde thiosemicarbazide fragment.

The water molecules are involved in an extensive intermolecular N(2)—H(14)···O(1) hydrogen bonds and O(1)—H(17)···S(1) interactions (Table 1), which link the molecules into chains extended along the b axis. Sulfur atom S(1) is also involved in N(3)—H(16)···S(1) intermolecular interactions, favoring the crystal grown in the ac plane. An intramolecular N(3)—H(15)···N(1) hydrogen bond (Table 1) contributes to stabilize the molecular conformation. The intermolecular distance value between ring centroids in the b axis direction (6.350 Å), suggests that there is no π-stacking interaction between parallel molecules (Figure 2).

For the biological activity and potential medical applications of thiosemicarbazides, see: West et al. (1991). For thiosemicarbazides as ligands, see: Kowol et al. (2007).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009)'.

Figures top
[Figure 1] Fig. 1. A view of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram viewed parallel to the b axis. Hydrogen bonds and other intermolecular interactions are indicated by dashed lines.
1-(Biphenyl-4-ylmethylidene)thiosemicarbazide monohydrate top
Crystal data top
C14H13N3S·H2OF(000) = 576
Mr = 273.36Dx = 1.316 Mg m3
Monoclinic, P21/cMelting point: 475 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54180 Å
a = 14.428 (5) ÅCell parameters from 3594 reflections
b = 6.350 (5) Åθ = 3.9–71.2°
c = 15.276 (4) ŵ = 2.05 mm1
β = 99.750 (5)°T = 293 K
V = 1379.3 (12) Å3Needle, yellow
Z = 40.28 × 0.22 × 0.19 mm
Data collection top
Oxford Diffraction Xcalibur Gemini S
diffractometer
2652 independent reflections
Radiation source: Enhance (Cu) X-ray Source2208 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 10.2673 pixels mm-1θmax = 71.3°, θmin = 5.9°
ω scansh = 1717
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 67
Tmin = 0.659, Tmax = 1.000l = 1718
8823 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0724P)2 + 0.4128P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
2652 reflectionsΔρmax = 0.34 e Å3
233 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0022 (5)
Crystal data top
C14H13N3S·H2OV = 1379.3 (12) Å3
Mr = 273.36Z = 4
Monoclinic, P21/cCu Kα radiation
a = 14.428 (5) ŵ = 2.05 mm1
b = 6.350 (5) ÅT = 293 K
c = 15.276 (4) Å0.28 × 0.22 × 0.19 mm
β = 99.750 (5)°
Data collection top
Oxford Diffraction Xcalibur Gemini S
diffractometer
2652 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2208 reflections with I > 2σ(I)
Tmin = 0.659, Tmax = 1.000Rint = 0.035
8823 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.34 e Å3
2652 reflectionsΔρmin = 0.32 e Å3
233 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.9 (release 08-12-2009 CrysAlis171 .NET)(compiled Dec 8 2009,17:31:18). Empirical absorption correction using spherical harmonics,implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.03245 (4)0.35800 (9)0.35948 (4)0.0569 (2)
N20.87783 (13)0.1308 (3)0.31541 (13)0.0506 (5)
N10.79162 (12)0.0958 (3)0.26420 (12)0.0512 (5)
O10.95339 (19)0.1981 (4)0.42955 (18)0.0826 (7)
C90.62409 (16)0.3346 (4)0.22359 (17)0.0554 (6)
C140.92353 (15)0.3091 (4)0.30268 (15)0.0518 (5)
N30.87879 (17)0.4428 (4)0.24280 (16)0.0687 (6)
C70.48473 (14)0.2361 (4)0.12056 (15)0.0490 (5)
C130.75391 (15)0.0839 (4)0.27165 (16)0.0526 (5)
C100.66283 (15)0.1342 (3)0.21913 (15)0.0506 (5)
C110.61170 (16)0.0131 (4)0.16261 (17)0.0546 (5)
C80.53638 (16)0.3841 (4)0.17552 (16)0.0543 (6)
C60.39026 (15)0.2860 (4)0.07042 (15)0.0516 (5)
C120.52453 (16)0.0367 (4)0.11508 (16)0.0545 (6)
C50.36951 (18)0.4859 (4)0.03497 (19)0.0639 (6)
C10.31911 (17)0.1354 (4)0.05726 (18)0.0609 (6)
C20.22957 (19)0.1843 (5)0.01258 (19)0.0707 (7)
C40.2796 (2)0.5341 (5)0.0100 (2)0.0748 (8)
C30.2100 (2)0.3841 (6)0.02047 (18)0.0728 (8)
H80.5121 (18)0.525 (5)0.1814 (18)0.063 (7)*
H120.4912 (18)0.064 (4)0.0746 (17)0.060 (7)*
H50.421 (2)0.590 (5)0.041 (2)0.078 (9)*
H10.3329 (17)0.005 (4)0.0831 (18)0.060 (7)*
H90.6583 (17)0.436 (4)0.2642 (17)0.057 (7)*
H130.7819 (17)0.187 (4)0.3128 (17)0.052 (6)*
H110.638 (2)0.147 (4)0.1583 (19)0.066 (8)*
H30.146 (2)0.420 (5)0.053 (2)0.085 (9)*
H40.267 (2)0.679 (6)0.036 (2)0.094 (10)*
H20.180 (2)0.076 (6)0.004 (2)0.094 (11)*
H140.907 (2)0.033 (5)0.3552 (19)0.066 (8)*
H150.825 (2)0.392 (5)0.211 (2)0.072 (8)*
H160.907 (2)0.553 (6)0.229 (2)0.082 (9)*
H170.975 (3)0.304 (8)0.404 (3)0.129 (16)*
H180.959 (3)0.210 (7)0.481 (3)0.120 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0468 (3)0.0545 (4)0.0666 (4)0.0023 (2)0.0016 (3)0.0058 (3)
N20.0410 (9)0.0526 (10)0.0555 (11)0.0008 (8)0.0005 (8)0.0025 (8)
N10.0417 (9)0.0596 (11)0.0509 (10)0.0024 (8)0.0035 (7)0.0017 (8)
O10.1079 (17)0.0666 (12)0.0679 (14)0.0285 (12)0.0003 (12)0.0015 (11)
C90.0459 (12)0.0556 (13)0.0621 (14)0.0015 (10)0.0020 (10)0.0123 (11)
C140.0498 (12)0.0509 (12)0.0562 (13)0.0018 (9)0.0134 (10)0.0014 (10)
N30.0610 (13)0.0635 (14)0.0759 (15)0.0105 (11)0.0048 (11)0.0176 (11)
C70.0431 (10)0.0533 (12)0.0500 (11)0.0014 (9)0.0066 (9)0.0015 (9)
C130.0444 (11)0.0564 (13)0.0560 (13)0.0008 (10)0.0052 (9)0.0058 (11)
C100.0422 (11)0.0541 (12)0.0552 (12)0.0006 (9)0.0073 (9)0.0027 (10)
C110.0490 (12)0.0500 (12)0.0630 (14)0.0034 (10)0.0046 (10)0.0039 (10)
C80.0485 (12)0.0516 (13)0.0614 (14)0.0038 (10)0.0057 (10)0.0061 (10)
C60.0457 (11)0.0598 (13)0.0490 (12)0.0023 (10)0.0067 (9)0.0032 (10)
C120.0491 (12)0.0536 (13)0.0577 (13)0.0037 (10)0.0004 (10)0.0081 (10)
C50.0558 (14)0.0617 (15)0.0714 (16)0.0053 (12)0.0030 (11)0.0020 (12)
C10.0488 (12)0.0681 (16)0.0627 (15)0.0034 (11)0.0007 (10)0.0016 (12)
C20.0510 (14)0.092 (2)0.0656 (16)0.0049 (14)0.0009 (11)0.0072 (14)
C40.0709 (17)0.0776 (19)0.0721 (18)0.0199 (15)0.0007 (13)0.0035 (14)
C30.0559 (15)0.102 (2)0.0566 (15)0.0155 (15)0.0005 (11)0.0039 (14)
Geometric parameters (Å, º) top
S1—C141.690 (2)C13—H130.95 (3)
N2—C141.341 (3)C10—C111.396 (3)
N2—N11.371 (3)C11—C121.378 (3)
N2—H140.92 (3)C11—H110.94 (3)
N1—C131.278 (3)C8—H80.97 (3)
O1—H170.86 (5)C6—C11.393 (4)
O1—H180.77 (5)C6—C51.393 (4)
C9—C81.387 (3)C12—H120.96 (3)
C9—C101.397 (3)C5—C41.396 (4)
C9—H90.97 (3)C5—H50.98 (3)
C14—N31.332 (3)C1—C21.390 (4)
N3—H150.90 (3)C1—H10.98 (3)
N3—H160.86 (4)C2—C31.377 (5)
C7—C81.390 (3)C2—H20.98 (4)
C7—C121.399 (3)C4—C31.374 (5)
C7—C61.480 (3)C4—H41.01 (4)
C13—C101.454 (3)C3—H30.99 (3)
C14—N2—N1118.4 (2)C10—C11—H11118.6 (17)
C14—N2—H14119.4 (17)C9—C8—C7121.0 (2)
N1—N2—H14122.1 (17)C9—C8—H8118.1 (16)
C13—N1—N2116.9 (2)C7—C8—H8120.9 (16)
H17—O1—H18113 (4)C1—C6—C5117.7 (2)
C8—C9—C10121.1 (2)C1—C6—C7121.3 (2)
C8—C9—H9120.6 (15)C5—C6—C7121.0 (2)
C10—C9—H9118.1 (15)C11—C12—C7121.5 (2)
N3—C14—N2116.4 (2)C11—C12—H12120.0 (16)
N3—C14—S1122.39 (19)C7—C12—H12118.4 (16)
N2—C14—S1121.19 (18)C6—C5—C4120.8 (3)
C14—N3—H15114.4 (19)C6—C5—H5118.1 (18)
C14—N3—H16120 (2)C4—C5—H5121.1 (18)
H15—N3—H16124 (3)C2—C1—C6121.2 (3)
C8—C7—C12117.7 (2)C2—C1—H1120.6 (15)
C8—C7—C6121.3 (2)C6—C1—H1118.1 (15)
C12—C7—C6121.0 (2)C3—C2—C1120.1 (3)
N1—C13—C10120.4 (2)C3—C2—H2120 (2)
N1—C13—H13122.5 (15)C1—C2—H2120 (2)
C10—C13—H13117.1 (15)C3—C4—C5120.4 (3)
C11—C10—C9117.8 (2)C3—C4—H4121 (2)
C11—C10—C13121.9 (2)C5—C4—H4119 (2)
C9—C10—C13120.3 (2)C4—C3—C2119.7 (3)
C12—C11—C10120.8 (2)C4—C3—H3119.5 (19)
C12—C11—H11120.6 (17)C2—C3—H3120.8 (19)
C14—N2—N1—C13173.4 (2)C12—C7—C6—C135.4 (3)
N1—N2—C14—N32.6 (3)C8—C7—C6—C536.1 (3)
N1—N2—C14—S1176.85 (16)C12—C7—C6—C5144.8 (3)
N2—N1—C13—C10179.54 (19)C10—C11—C12—C70.9 (4)
C8—C9—C10—C111.9 (4)C8—C7—C12—C110.3 (4)
C8—C9—C10—C13178.5 (2)C6—C7—C12—C11178.8 (2)
N1—C13—C10—C113.1 (4)C1—C6—C5—C41.7 (4)
N1—C13—C10—C9176.4 (2)C7—C6—C5—C4178.1 (2)
C9—C10—C11—C122.0 (4)C5—C6—C1—C21.9 (4)
C13—C10—C11—C12178.5 (2)C7—C6—C1—C2177.9 (2)
C10—C9—C8—C70.7 (4)C6—C1—C2—C30.7 (4)
C12—C7—C8—C90.4 (4)C6—C5—C4—C30.3 (4)
C6—C7—C8—C9178.8 (2)C5—C4—C3—C21.0 (4)
C8—C7—C6—C1143.7 (2)C1—C2—C3—C40.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H14···O10.92 (3)1.91 (3)2.819 (3)172 (3)
N3—H15···N10.91 (3)2.14 (3)2.585 (3)110 (2)
N3—H16···S1i0.86 (4)2.59 (4)3.422 (3)163 (3)
O1—H17···S1ii0.86 (5)2.44 (5)3.287 (3)169 (4)
O1—H18···S1iii0.77 (5)2.60 (5)3.352 (3)164 (5)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x, y+1, z; (iii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC14H13N3S·H2O
Mr273.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.428 (5), 6.350 (5), 15.276 (4)
β (°) 99.750 (5)
V3)1379.3 (12)
Z4
Radiation typeCu Kα
µ (mm1)2.05
Crystal size (mm)0.28 × 0.22 × 0.19
Data collection
DiffractometerOxford Diffraction Xcalibur Gemini S
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.659, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8823, 2652, 2208
Rint0.035
(sin θ/λ)max1)0.614
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.145, 1.12
No. of reflections2652
No. of parameters233
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.32

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009)'.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H14···O10.92 (3)1.91 (3)2.819 (3)172 (3)
N3—H15···N10.91 (3)2.14 (3)2.585 (3)110 (2)
N3—H16···S1i0.86 (4)2.59 (4)3.422 (3)163 (3)
O1—H17···S1ii0.86 (5)2.44 (5)3.287 (3)169 (4)
O1—H18···S1iii0.77 (5)2.60 (5)3.352 (3)164 (5)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x, y+1, z; (iii) x+2, y, z+1.
 

Acknowledgements

Financial support by the Agencia Española de Cooperación Inter­nacional y Desarrollo (AECID), FEDER funding, Spanish MICINN (MAT2006–01997 and Factoría de Cristalización Consolider Ingenio 2010), Gobierno del Principado de Asturias (PCTI) and Banco Santander is acknowledged. Special thanks go to Professor José Manuel Concellón for his support and scientific advice.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKowol, C. R., Berger, R., Eichinger, R., Roller, A., Jakupec, M., Schmid, P., Vladimir, B. A. & Keppler, B. (2007). J. Med. Chem. 50, 1254–1265.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWest, D., Padhye, S. B. & Sonawane, P. S. (1991). Struct. Bond. 76, 1–50.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds