organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,6-Di­methyl­phen­yl)-4-methyl­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 8 April 2010; accepted 20 April 2010; online 24 April 2010)

In the title compound, C15H17NO2S, the mol­ecule is bent at the S atom, the C—SO2—NH—C torsion angle being 88.0 (2)°. The dihedral angle between the two aromatic rings is 49.8 (1)°. In the crystal, mol­ecules are linked into zigzag chains parallel to the a axis via N—H⋯O hydrogen bonds.

Related literature

For the preparation of the title compound, see: Shetty & Gowda (2005[Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113-120.]). For our study of the effect of substituents on the structures of N-(ar­yl)-aryl­sulfonamides, see: Gowda et al. (2008[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1691.], 2009[Gowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o1219.], 2010[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o144.]). For related structures, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17NO2S

  • Mr = 275.36

  • Monoclinic, P 21 /n

  • a = 5.1412 (5) Å

  • b = 17.310 (2) Å

  • c = 16.429 (2) Å

  • β = 96.65 (1)°

  • V = 1452.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 299 K

  • 0.46 × 0.32 × 0.14 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD Detector.

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.906, Tmax = 0.970

  • 7741 measured reflections

  • 2580 independent reflections

  • 2090 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.116

  • S = 1.04

  • 2580 reflections

  • 178 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.85 (1) 2.20 (1) 3.040 (2) 169 (2)
Symmetry code: (i) x-1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, as part of a study of the effect of substituents on the crystal structures of N-(aryl)-arylsulfonamides (Gowda et al., 2008, 2009, 2010), the structure of N-(2,6-dimethylphenyl)-4-methylbenzenesulfonamide (I) has been determined. The molecule is bent at the S atom (Fig. 1) with the C1—SO2—NH—C7 torsion angle of 88.0 (2)°, compared to the values of -51.6 (3)° in N-(phenyl)4-methylbenzenesulfonamide (II) (Gowda et al., 2009), -78.7 (2)° in N-(2,6-dimethylphenyl)- benzenesulfonamide (III) (Gowda et al., 2008) and -61.0 (2)° in N-(2,5-dimethylphenyl)-4-methylbenzenesulfonamide (IV), -61.8 (2)° in N-(3,4-dimethylphenyl)-4-methylbenzenesulfonamide (V) and 56.8 (2)° in N-(3,5-dimethylphenyl)-4-methylbenzenesulfonamide (VI)(Gowda et al., 2010).

The two benzene rings in (I) are tilted relative to each other by 49.8 (1)°, compared to the values of 68.4 (1)° in (II), 44.9 (1)° in (III), 49.4 (1)° in (IV), 47.8 (1)° in (V) and 53.9 (1)° in (VI). The other bond parameters are similar to those observed in (II), (III), (IV), (V), (VI) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

In the crystal structure, the intermolecular N–H···O hydrogen bonds (Table 1) link the molecules into infinite zig-zag chains running parallel to the a-axis. Part of the crystal structure is shown in Fig. 2.

Related literature top

For the preparation of the title compound, see: Shetty & Gowda (2005). For our study of the effect of substituents on the structures of N-(aryl)-arylsulfonamides, see: Gowda et al. (2008, 2009, 2010). For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006)

Experimental top

4-Methylbenzenesulfonylchloride was obtained by treating the solution of toluene (10 ml) in chloroform (40 ml) with chlorosulfonic acid (25 ml) by the procedure reported earlier (Gowda et al., 2010). 4-Methylbenzenesulfonylchloride was then treated with 2,6-dimethylaniline in the stoichiometric ratio to obtain N-(2,6-dimethylphenyl)- 4-methylbenzenesulfonamide. The latter was recrystallized to constant melting point (110 °C) from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Shetty & Gowda, 2005).

The prism like single crystals used in X-ray diffraction studies were grown in ethanolic solution by a slow evaporation at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and later restrained to N—H = 0.86 (1) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Structure description top

In the present work, as part of a study of the effect of substituents on the crystal structures of N-(aryl)-arylsulfonamides (Gowda et al., 2008, 2009, 2010), the structure of N-(2,6-dimethylphenyl)-4-methylbenzenesulfonamide (I) has been determined. The molecule is bent at the S atom (Fig. 1) with the C1—SO2—NH—C7 torsion angle of 88.0 (2)°, compared to the values of -51.6 (3)° in N-(phenyl)4-methylbenzenesulfonamide (II) (Gowda et al., 2009), -78.7 (2)° in N-(2,6-dimethylphenyl)- benzenesulfonamide (III) (Gowda et al., 2008) and -61.0 (2)° in N-(2,5-dimethylphenyl)-4-methylbenzenesulfonamide (IV), -61.8 (2)° in N-(3,4-dimethylphenyl)-4-methylbenzenesulfonamide (V) and 56.8 (2)° in N-(3,5-dimethylphenyl)-4-methylbenzenesulfonamide (VI)(Gowda et al., 2010).

The two benzene rings in (I) are tilted relative to each other by 49.8 (1)°, compared to the values of 68.4 (1)° in (II), 44.9 (1)° in (III), 49.4 (1)° in (IV), 47.8 (1)° in (V) and 53.9 (1)° in (VI). The other bond parameters are similar to those observed in (II), (III), (IV), (V), (VI) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

In the crystal structure, the intermolecular N–H···O hydrogen bonds (Table 1) link the molecules into infinite zig-zag chains running parallel to the a-axis. Part of the crystal structure is shown in Fig. 2.

For the preparation of the title compound, see: Shetty & Gowda (2005). For our study of the effect of substituents on the structures of N-(aryl)-arylsulfonamides, see: Gowda et al. (2008, 2009, 2010). For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006)

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
N-(2,6-Dimethylphenyl)-4-methylbenzenesulfonamide top
Crystal data top
C15H17NO2SF(000) = 584
Mr = 275.36Dx = 1.259 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2102 reflections
a = 5.1412 (5) Åθ = 2.5–27.7°
b = 17.310 (2) ŵ = 0.22 mm1
c = 16.429 (2) ÅT = 299 K
β = 96.65 (1)°Prism, colourless
V = 1452.2 (3) Å30.46 × 0.32 × 0.14 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD Detector.
2580 independent reflections
Radiation source: fine-focus sealed tube2090 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Rotation method data acquisition using ω and phi scans.θmax = 25.4°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 66
Tmin = 0.906, Tmax = 0.970k = 2020
7741 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0536P)2 + 0.6128P]
where P = (Fo2 + 2Fc2)/3
2580 reflections(Δ/σ)max = 0.011
178 parametersΔρmax = 0.25 e Å3
1 restraintΔρmin = 0.36 e Å3
Crystal data top
C15H17NO2SV = 1452.2 (3) Å3
Mr = 275.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.1412 (5) ŵ = 0.22 mm1
b = 17.310 (2) ÅT = 299 K
c = 16.429 (2) Å0.46 × 0.32 × 0.14 mm
β = 96.65 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD Detector.
2580 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2090 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 0.970Rint = 0.052
7741 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.25 e Å3
2580 reflectionsΔρmin = 0.36 e Å3
178 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0076 (4)0.79081 (11)0.32294 (13)0.0373 (5)
C20.1791 (5)0.79695 (14)0.39383 (14)0.0499 (6)
H20.31730.83190.39710.060*
C30.1426 (5)0.75041 (15)0.45988 (15)0.0571 (6)
H30.25730.75460.50780.069*
C40.0596 (5)0.69793 (14)0.45655 (15)0.0537 (6)
C50.2303 (5)0.69408 (15)0.38508 (17)0.0580 (7)
H50.37060.65990.38210.070*
C60.1976 (4)0.73955 (13)0.31845 (15)0.0487 (5)
H60.31330.73570.27070.058*
C70.0218 (4)0.99486 (12)0.27900 (14)0.0416 (5)
C80.1053 (4)1.01478 (14)0.35381 (15)0.0499 (6)
C90.0115 (6)1.08314 (17)0.39028 (19)0.0747 (8)
H90.06661.09820.43980.090*
C100.1617 (7)1.12894 (18)0.3544 (3)0.0913 (11)
H100.22741.17360.38070.110*
C110.2372 (6)1.10901 (16)0.2804 (3)0.0823 (10)
H110.35371.14070.25670.099*
C120.1440 (5)1.04222 (13)0.23938 (18)0.0575 (7)
C130.0937 (7)0.6450 (2)0.5270 (2)0.0861 (10)
H13A0.02070.66870.57730.103*
H13B0.00540.59700.51980.103*
H13C0.27680.63530.52890.103*
C140.2972 (5)0.96625 (16)0.39423 (16)0.0607 (7)
H14A0.24350.91310.39450.073*
H14B0.46830.97120.36440.073*
H14C0.30210.98360.44950.073*
C150.2180 (6)1.02526 (17)0.1559 (2)0.0785 (9)
H15A0.07141.00270.12280.094*
H15B0.36260.98980.16030.094*
H15C0.26751.07240.13090.094*
N10.1189 (3)0.92553 (10)0.23762 (11)0.0406 (4)
H1N0.281 (2)0.9160 (14)0.2363 (14)0.049*
O10.3230 (3)0.86960 (9)0.24338 (10)0.0492 (4)
O20.0551 (3)0.80389 (9)0.16625 (10)0.0554 (4)
S10.05387 (10)0.84674 (3)0.23607 (3)0.03851 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0356 (11)0.0335 (10)0.0442 (11)0.0020 (9)0.0100 (8)0.0017 (9)
C20.0488 (13)0.0495 (13)0.0513 (13)0.0121 (11)0.0052 (10)0.0000 (11)
C30.0612 (15)0.0641 (15)0.0454 (13)0.0033 (13)0.0033 (11)0.0023 (12)
C40.0602 (15)0.0513 (14)0.0529 (14)0.0018 (12)0.0212 (11)0.0051 (11)
C50.0527 (14)0.0510 (14)0.0727 (17)0.0149 (12)0.0175 (12)0.0064 (13)
C60.0434 (12)0.0475 (12)0.0550 (14)0.0075 (11)0.0049 (10)0.0010 (11)
C70.0352 (11)0.0332 (10)0.0554 (13)0.0062 (9)0.0011 (9)0.0055 (9)
C80.0462 (13)0.0463 (13)0.0551 (14)0.0088 (11)0.0037 (10)0.0043 (11)
C90.081 (2)0.0580 (16)0.080 (2)0.0120 (16)0.0092 (16)0.0198 (15)
C100.090 (2)0.0443 (16)0.132 (3)0.0081 (16)0.018 (2)0.0160 (19)
C110.0689 (19)0.0416 (15)0.136 (3)0.0097 (14)0.0094 (19)0.0171 (18)
C120.0478 (14)0.0377 (12)0.0872 (19)0.0043 (11)0.0088 (12)0.0190 (12)
C130.103 (2)0.090 (2)0.0696 (19)0.0100 (19)0.0280 (17)0.0248 (17)
C140.0623 (16)0.0715 (17)0.0504 (14)0.0100 (13)0.0157 (11)0.0022 (13)
C150.082 (2)0.0637 (17)0.098 (2)0.0144 (15)0.0422 (17)0.0360 (17)
N10.0308 (8)0.0399 (9)0.0509 (10)0.0004 (8)0.0039 (8)0.0021 (8)
O10.0343 (8)0.0494 (9)0.0662 (10)0.0025 (7)0.0162 (7)0.0091 (8)
O20.0681 (11)0.0544 (10)0.0442 (9)0.0033 (8)0.0087 (7)0.0100 (8)
S10.0364 (3)0.0375 (3)0.0431 (3)0.0002 (2)0.0108 (2)0.0002 (2)
Geometric parameters (Å, º) top
C1—C61.374 (3)C10—C111.362 (5)
C1—C21.381 (3)C10—H100.9300
C1—S11.763 (2)C11—C121.395 (4)
C2—C31.382 (3)C11—H110.9300
C2—H20.9300C12—C151.495 (4)
C3—C41.377 (3)C13—H13A0.9600
C3—H30.9300C13—H13B0.9600
C4—C51.384 (4)C13—H13C0.9600
C4—C131.503 (4)C14—H14A0.9600
C5—C61.374 (3)C14—H14B0.9600
C5—H50.9300C14—H14C0.9600
C6—H60.9300C15—H15A0.9600
C7—C81.391 (3)C15—H15B0.9600
C7—C121.397 (3)C15—H15C0.9600
C7—N11.440 (3)N1—S11.6294 (18)
C8—C91.387 (4)N1—H1N0.848 (10)
C8—C141.507 (3)O1—S11.4308 (15)
C9—C101.375 (5)O2—S11.4251 (16)
C9—H90.9300
C6—C1—C2120.4 (2)C12—C11—H11119.2
C6—C1—S1119.08 (17)C11—C12—C7117.1 (3)
C2—C1—S1120.50 (16)C11—C12—C15119.8 (3)
C1—C2—C3119.1 (2)C7—C12—C15123.1 (2)
C1—C2—H2120.5C4—C13—H13A109.5
C3—C2—H2120.5C4—C13—H13B109.5
C4—C3—C2121.6 (2)H13A—C13—H13B109.5
C4—C3—H3119.2C4—C13—H13C109.5
C2—C3—H3119.2H13A—C13—H13C109.5
C3—C4—C5117.9 (2)H13B—C13—H13C109.5
C3—C4—C13121.8 (3)C8—C14—H14A109.5
C5—C4—C13120.3 (2)C8—C14—H14B109.5
C6—C5—C4121.6 (2)H14A—C14—H14B109.5
C6—C5—H5119.2C8—C14—H14C109.5
C4—C5—H5119.2H14A—C14—H14C109.5
C1—C6—C5119.4 (2)H14B—C14—H14C109.5
C1—C6—H6120.3C12—C15—H15A109.5
C5—C6—H6120.3C12—C15—H15B109.5
C8—C7—C12122.2 (2)H15A—C15—H15B109.5
C8—C7—N1119.88 (19)C12—C15—H15C109.5
C12—C7—N1117.8 (2)H15A—C15—H15C109.5
C9—C8—C7117.8 (3)H15B—C15—H15C109.5
C9—C8—C14119.8 (2)C7—N1—S1123.04 (13)
C7—C8—C14122.4 (2)C7—N1—H1N117.4 (16)
C10—C9—C8121.1 (3)S1—N1—H1N111.9 (17)
C10—C9—H9119.5O2—S1—O1119.85 (10)
C8—C9—H9119.5O2—S1—N1106.49 (10)
C11—C10—C9120.1 (3)O1—S1—N1106.91 (9)
C11—C10—H10119.9O2—S1—C1106.76 (10)
C9—C10—H10119.9O1—S1—C1107.68 (10)
C10—C11—C12121.6 (3)N1—S1—C1108.79 (9)
C10—C11—H11119.2
C6—C1—C2—C30.5 (3)C10—C11—C12—C72.6 (4)
S1—C1—C2—C3177.81 (18)C10—C11—C12—C15176.0 (3)
C1—C2—C3—C40.3 (4)C8—C7—C12—C113.8 (3)
C2—C3—C4—C51.3 (4)N1—C7—C12—C11179.8 (2)
C2—C3—C4—C13177.5 (3)C8—C7—C12—C15174.7 (2)
C3—C4—C5—C61.5 (4)N1—C7—C12—C151.7 (3)
C13—C4—C5—C6177.3 (3)C8—C7—N1—S1103.9 (2)
C2—C1—C6—C50.3 (3)C12—C7—N1—S179.6 (2)
S1—C1—C6—C5178.06 (18)C7—N1—S1—O2157.30 (17)
C4—C5—C6—C10.8 (4)C7—N1—S1—O128.06 (19)
C12—C7—C8—C92.0 (3)C7—N1—S1—C187.97 (18)
N1—C7—C8—C9178.4 (2)C6—C1—S1—O226.8 (2)
C12—C7—C8—C14176.2 (2)C2—C1—S1—O2151.58 (18)
N1—C7—C8—C140.2 (3)C6—C1—S1—O1156.66 (17)
C7—C8—C9—C101.1 (4)C2—C1—S1—O121.7 (2)
C14—C8—C9—C10179.3 (3)C6—C1—S1—N187.81 (19)
C8—C9—C10—C112.3 (5)C2—C1—S1—N193.86 (19)
C9—C10—C11—C120.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.85 (1)2.20 (1)3.040 (2)169 (2)
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC15H17NO2S
Mr275.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)299
a, b, c (Å)5.1412 (5), 17.310 (2), 16.429 (2)
β (°) 96.65 (1)
V3)1452.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.46 × 0.32 × 0.14
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD Detector.
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.906, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
7741, 2580, 2090
Rint0.052
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.116, 1.04
No. of reflections2580
No. of parameters178
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.36

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.848 (10)2.203 (11)3.040 (2)169 (2)
Symmetry code: (i) x1, y, z.
 

References

First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1691.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o144.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o1219.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds