metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1-ammonio­ethane-1,1-diyl­diphos­phonato-κ2O,O′)di­aqua­cobalt(II) nona­hydrate

aInstitute of General and Inorganic Chemistry, NAS Ukraine, Kyiv, prosp. Palladina 32/34, 03680, Ukraine
*Correspondence e-mail: complex@ionc.kiev.ua

(Received 6 April 2010; accepted 13 April 2010; online 17 April 2010)

In the title compound, [Co(C2H8NO6P2)2(H2O)2]·9H2O, the CoII atom has a slightly distorted octa­hedral coordination environment consisting of four deprotonated phospho­nate O atoms of two independent 1-amino­ethyl­idendiphospho­nate anions and complemented by the O atoms of two water mol­ecules in cis positions. The anions exists in the zwitterionic form (protonated amino group and two deprotonated phospho­nate O atoms) and constitute two six-membered chelate rings. The crystal structure also contains nine partly disordered uncoordinated water mol­ecules, which create an extensive three-dimensional network of strong O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For general background to organic diphospho­nic acids, see: Matczak-Jon & Videnova-Adrabinska (2005[Matczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev. 249, 2458-2488.]). For applications of transition metal bis­phospho­nates, see: Eberhardt et al. (2005[Eberhardt, C., Schwarz, M. & Kurth, A. H. (2005). J. Orthop. Sci. 10, 622-626.]). For related structures, see: Xiang et al. (2007[Xiang, J., Li, M., Wu, S., Yuan, L.-J. & Sun, J. (2007). J. Mol. Struct. 826, 143-149.]); Yin et al. (2005[Yin, P., Wang, X.-C., Gao, S. & Zheng, L.-M. (2005). J. Solid State Chem. 178, 1049-1053.]); Dudko et al. (2009[Dudko, A., Bon, V., Kozachkova, A. & Pekhnyo, V. (2009). Acta Cryst. E65, m459.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C2H8NO6P2)2(H2O)2]·9H2O

  • Mr = 665.17

  • Monoclinic, P 21 /c

  • a = 15.1925 (3) Å

  • b = 13.2046 (2) Å

  • c = 12.9688 (2) Å

  • β = 106.0866 (11)°

  • V = 2499.81 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 173 K

  • 0.30 × 0.24 × 0.20 mm

Data collection
  • Bruker APEX-II CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.749, Tmax = 0.820

  • 51914 measured reflections

  • 6273 independent reflections

  • 5626 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.090

  • S = 1.12

  • 6273 reflections

  • 401 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O7 2.0697 (14)
Co1—O13 2.0747 (17)
Co1—O10 2.0771 (15)
Co1—O14 2.0837 (16)
Co1—O1 2.1007 (15)
Co1—O4 2.1201 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11N⋯O17 0.86 (3) 2.00 (3) 2.836 (3) 165 (3)
N1—H12N⋯O7 0.81 (3) 1.98 (3) 2.785 (2) 175 (3)
N1—H13N⋯O15i 0.85 (3) 1.98 (3) 2.810 (2) 165 (3)
N2—H21N⋯O23A 0.91 (3) 1.94 (3) 2.808 (4) 159 (3)
N2—H22N⋯O4 0.90 (3) 2.05 (3) 2.944 (2) 173 (3)
N2—H23N⋯O16 0.90 (3) 1.90 (3) 2.783 (3) 164 (3)
O3—H3O⋯O6ii 0.66 (3) 1.92 (3) 2.570 (2) 169 (4)
O5—H5O⋯O2i 0.76 (3) 1.84 (3) 2.592 (2) 170 (3)
O8—H8O⋯O11iii 0.70 (3) 1.81 (3) 2.508 (2) 169 (3)
O12—H12O⋯O9iv 0.83 (3) 1.71 (3) 2.517 (2) 165 (3)
O13—H131⋯O6ii 0.79 (3) 1.92 (3) 2.691 (2) 166 (3)
O13—H132⋯O20A 0.77 (3) 1.92 (3) 2.671 (3) 165 (3)
O14—H141⋯O18Av 0.82 (3) 1.91 (3) 2.697 (3) 163 (3)
O14—H142⋯O9iv 0.74 (3) 1.95 (3) 2.688 (2) 172 (3)
O15—H151⋯O1 0.80 (3) 2.01 (3) 2.803 (2) 177 (3)
O15—H152⋯O14 0.66 (3) 2.50 (3) 2.946 (2) 127 (3)
O15—H152⋯O12iv 0.66 (3) 2.54 (3) 3.049 (2) 136 (3)
O16—H161⋯O15i 0.85 (4) 1.94 (4) 2.788 (3) 176 (3)
O16—H162⋯O17i 0.89 (4) 1.97 (4) 2.844 (3) 170 (3)
O17—H171⋯O21vi 0.75 (3) 2.14 (4) 2.795 (3) 147 (3)
O17—H172⋯O18Avii 0.73 (4) 2.13 (4) 2.845 (3) 167 (4)
O19—H191⋯O13 0.84 (4) 2.27 (4) 3.063 (3) 158 (3)
O19—H192⋯O2v 0.75 (4) 2.04 (4) 2.773 (3) 166 (4)
O21—H211⋯O19 0.80 (4) 2.05 (4) 2.815 (3) 162 (4)
O21—H212⋯O19viii 1.00 (4) 1.93 (4) 2.914 (3) 169 (3)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x, -y+1, -z+1; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vii) -x+1, -y+2, -z+1; (viii) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Organic diphosphonic acids are potentially very powerful chelating agents used in metal extractions and are tested by the pharmaceutical industry for use as efficient drugs preventing calcification and inhibiting bone resorption (Matczak-Jon et al., 2005). There is evidence that application of transition metal bisphosphonates can improve fixation of cementless metal implants by enhancing the extent of osseointegration (Eberhardt et al., 2005). In this respect, a detailed structure-correlated study of the individual properties and the complex-forming driving factors is desired in order to sufficiently understand bisphosphonate physiological activities.

Several structures of CoII aminoethylidenediphosphonates have been reported previously (Xiang et al. 2007; Yin et al. 2005). The main difference between these structures and the title compound is the presence of two water molecules instead of a 1,10-phenanthroline ligand in the coordination environment of the transition metal ion (Xiang et al. 2007), leading also to a different symmetry.

The asymmetric unit of the title compound contains one molecule of the complex (Fig.1). Two 1-aminoethylidendiphosphonate anions chelate the central metal ion via two oxygen atoms from phosphonate groups forming six-membered non-planar metalla rings. Two water molecules complement the slightly distorted octahedral coordination environment of Co in cis-position. The Co—O bond lengths have expected values and conform with the previously reported related structures (Xiang et al., 2007). The values of the O—Co—O angles are in the range from 89.23 (7)° to 91.54 (5)°. The Co1—O1—P1—C1—P2—O4 and Co1—O7—P3—C3—P4—O10 metalla cycles have an envelope conformation with the C1 and C3 atoms out of plane by 0.850 (2) Å and 0.795 (2) Å, respectively. The dihedral angle between the planar fragments Co1—O1—P1—P2—O4 and Co1—O7—P3—P4—O10 is 84.20 (3)°. The coordinated ligand molecules exists in the zwitterionic form with a proton transfer from one of the phosphonic groups to the amino group which is representative for all 1-aminodiphosphonic acids. In addition, the amino group does also not participate in coordination (Dudko et al. 2009).

In the crystal structure of the title compound, nine solvent water molecules are present. Such an amount of solvent molecules could be explained by the presence of two coordinated water molecules in addition to the more hydrophilic phosphonate groups. As a result, a 3-D network of mostly strong O—H···O and N—H···O hydrogen bonds is observed in the structure (Fig. 2; Table 1). Several H-bonds can not be unambiguously derived from the model because some of the crystal lattice water molecules are disordered.

Related literature top

For general background to organic diphosphonic acids, see: Matczak-Jon & Videnova-Adrabinska (2005). For applications of transition metal bisphosphonates, see: Eberhardt et al. (2005). For related structures, see: Xiang et al. (2007); Yin et al. (2005); Dudko et al. (2009).

Experimental top

Light pink crystals of the title compound were obtained from the mixture of 10 ml (10 -2 mol/l) water solution of Co(NO3)2 with 20 ml (10 -2 mol/l) solution of 1-aminoethylidendiphosphonic acid. The combined solution was stored in a dark place for slow evaporation. After 20 days of staying, suitable crystals for X-ray data collection were obtained.

Refinement top

In the crystal structure of the title compound, O atoms O18 and O20 are disordered over two sites with occupancies 0.87/0.13. Disordered O atoms O22 and O23 were treated with occupancies 0.88/0.12 and 0.71/0.29, respectively. The major component of the disordered site was refined anisotropically, the corresponding minor occupied sites were refined isotropically. Hydrogen atoms bonded to the disordered oxygen atoms could not be located from difference Fourier maps and were eventually omitted from refinement. Other H atoms bonded to N and O atoms were located in a difference map and refined freely with Uiso(H) = 1.5Ueq(N) and Uiso(H) = 1.2Ueq(O), respectively. Methyl hydrogens atoms were positioned geometrically and were refined using a riding model with C—H = 0.98 Å for CH3 [Uiso(H) = 1.5Ueq(C)].

Structure description top

Organic diphosphonic acids are potentially very powerful chelating agents used in metal extractions and are tested by the pharmaceutical industry for use as efficient drugs preventing calcification and inhibiting bone resorption (Matczak-Jon et al., 2005). There is evidence that application of transition metal bisphosphonates can improve fixation of cementless metal implants by enhancing the extent of osseointegration (Eberhardt et al., 2005). In this respect, a detailed structure-correlated study of the individual properties and the complex-forming driving factors is desired in order to sufficiently understand bisphosphonate physiological activities.

Several structures of CoII aminoethylidenediphosphonates have been reported previously (Xiang et al. 2007; Yin et al. 2005). The main difference between these structures and the title compound is the presence of two water molecules instead of a 1,10-phenanthroline ligand in the coordination environment of the transition metal ion (Xiang et al. 2007), leading also to a different symmetry.

The asymmetric unit of the title compound contains one molecule of the complex (Fig.1). Two 1-aminoethylidendiphosphonate anions chelate the central metal ion via two oxygen atoms from phosphonate groups forming six-membered non-planar metalla rings. Two water molecules complement the slightly distorted octahedral coordination environment of Co in cis-position. The Co—O bond lengths have expected values and conform with the previously reported related structures (Xiang et al., 2007). The values of the O—Co—O angles are in the range from 89.23 (7)° to 91.54 (5)°. The Co1—O1—P1—C1—P2—O4 and Co1—O7—P3—C3—P4—O10 metalla cycles have an envelope conformation with the C1 and C3 atoms out of plane by 0.850 (2) Å and 0.795 (2) Å, respectively. The dihedral angle between the planar fragments Co1—O1—P1—P2—O4 and Co1—O7—P3—P4—O10 is 84.20 (3)°. The coordinated ligand molecules exists in the zwitterionic form with a proton transfer from one of the phosphonic groups to the amino group which is representative for all 1-aminodiphosphonic acids. In addition, the amino group does also not participate in coordination (Dudko et al. 2009).

In the crystal structure of the title compound, nine solvent water molecules are present. Such an amount of solvent molecules could be explained by the presence of two coordinated water molecules in addition to the more hydrophilic phosphonate groups. As a result, a 3-D network of mostly strong O—H···O and N—H···O hydrogen bonds is observed in the structure (Fig. 2; Table 1). Several H-bonds can not be unambiguously derived from the model because some of the crystal lattice water molecules are disordered.

For general background to organic diphosphonic acids, see: Matczak-Jon & Videnova-Adrabinska (2005). For applications of transition metal bisphosphonates, see: Eberhardt et al. (2005). For related structures, see: Xiang et al. (2007); Yin et al. (2005); Dudko et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound showing 50% probability displacement ellipsoids for the non-hydrogen atoms. Solvent water molecules are omitted for clarity.
[Figure 2] Fig. 2. Crystal packing of title compound, in a projection along the c axis. Dashed lines indicate hydrogen bonds.
Bis(1-ammonioethane-1,1-diyldiphosphonato- κ2O,O')diaquacobalt(II) nonahydrate top
Crystal data top
[Co(C2H8NO6P2)2(H2O)2]·9H2OF(000) = 1388
Mr = 665.17Dx = 1.767 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9983 reflections
a = 15.1925 (3) Åθ = 2.3–28.4°
b = 13.2046 (2) ŵ = 1.04 mm1
c = 12.9688 (2) ÅT = 173 K
β = 106.0866 (11)°Block, light pink
V = 2499.81 (7) Å30.30 × 0.24 × 0.20 mm
Z = 4
Data collection top
Bruker APEX-II CCD
diffractometer
6273 independent reflections
Radiation source: fine-focus sealed tube5626 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 8.33 pixels mm-1θmax = 28.4°, θmin = 1.4°
φ and ω scansh = 1920
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1717
Tmin = 0.749, Tmax = 0.820l = 1717
51914 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0396P)2 + 3.3375P]
where P = (Fo2 + 2Fc2)/3
6273 reflections(Δ/σ)max = 0.001
401 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Co(C2H8NO6P2)2(H2O)2]·9H2OV = 2499.81 (7) Å3
Mr = 665.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.1925 (3) ŵ = 1.04 mm1
b = 13.2046 (2) ÅT = 173 K
c = 12.9688 (2) Å0.30 × 0.24 × 0.20 mm
β = 106.0866 (11)°
Data collection top
Bruker APEX-II CCD
diffractometer
6273 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5626 reflections with I > 2σ(I)
Tmin = 0.749, Tmax = 0.820Rint = 0.030
51914 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.73 e Å3
6273 reflectionsΔρmin = 0.29 e Å3
401 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.255576 (18)0.49258 (2)0.52538 (2)0.01238 (8)
P10.40125 (3)0.68696 (4)0.57579 (4)0.01281 (11)
P20.37271 (3)0.58209 (4)0.35868 (4)0.01196 (11)
P30.06525 (3)0.58713 (4)0.36181 (4)0.01226 (11)
P40.08900 (3)0.35638 (4)0.36325 (4)0.01415 (11)
C10.36957 (13)0.70306 (15)0.42887 (16)0.0131 (4)
C20.43053 (15)0.78295 (17)0.39660 (17)0.0188 (4)
H21C0.41160.79140.31850.028*
H22C0.49460.76080.41980.028*
H23C0.42430.84770.43090.028*
C30.06352 (13)0.47197 (16)0.28100 (16)0.0141 (4)
C40.02844 (14)0.46254 (19)0.19417 (17)0.0204 (4)
H41C0.03740.52190.14700.031*
H42C0.07840.45860.22830.031*
H43C0.02820.40110.15180.031*
N10.27212 (12)0.74065 (14)0.39596 (15)0.0142 (3)
H11N0.2720 (19)0.799 (2)0.426 (2)0.021*
H12N0.237 (2)0.701 (2)0.412 (2)0.021*
H13N0.2560 (19)0.749 (2)0.328 (2)0.021*
N20.13796 (12)0.48190 (15)0.22493 (15)0.0165 (3)
H21N0.1347 (19)0.429 (2)0.179 (2)0.025*
H22N0.193 (2)0.486 (2)0.273 (2)0.025*
H23N0.128 (2)0.538 (2)0.183 (2)0.025*
O10.33239 (10)0.61709 (12)0.60220 (11)0.0160 (3)
O20.40782 (10)0.79109 (11)0.62352 (12)0.0181 (3)
O30.49936 (10)0.64009 (13)0.60579 (13)0.0188 (3)
H3O0.502 (2)0.590 (2)0.605 (2)0.023*
O40.31168 (10)0.50763 (11)0.39358 (12)0.0154 (3)
O50.32357 (10)0.60670 (12)0.23804 (12)0.0171 (3)
H5O0.3517 (19)0.640 (2)0.211 (2)0.020*
O60.47085 (10)0.55160 (12)0.37641 (12)0.0178 (3)
O70.15729 (9)0.59446 (11)0.44381 (11)0.0151 (3)
O80.06089 (11)0.67523 (12)0.28140 (13)0.0191 (3)
H8O0.017 (2)0.695 (2)0.258 (2)0.023*
O90.01614 (10)0.58374 (12)0.40569 (12)0.0179 (3)
O100.17939 (10)0.37086 (11)0.44643 (12)0.0179 (3)
O110.08724 (10)0.26901 (12)0.28832 (12)0.0195 (3)
O120.00608 (11)0.34512 (13)0.41132 (13)0.0199 (3)
H12O0.0100 (19)0.378 (2)0.467 (2)0.024*
O130.35601 (12)0.39698 (14)0.61576 (15)0.0238 (4)
H1310.407 (2)0.403 (2)0.614 (2)0.029*
H1320.340 (2)0.341 (3)0.611 (2)0.029*
O140.18902 (11)0.48630 (13)0.64577 (13)0.0198 (3)
H1410.210 (2)0.456 (2)0.702 (3)0.024*
H1420.140 (2)0.472 (2)0.630 (2)0.024*
O150.19611 (13)0.70714 (14)0.67947 (14)0.0234 (4)
H1510.235 (2)0.680 (2)0.660 (2)0.028*
H1520.165 (2)0.671 (3)0.674 (3)0.028*
O160.10482 (14)0.62776 (16)0.06388 (15)0.0310 (4)
H1610.130 (2)0.679 (3)0.099 (3)0.037*
H1620.143 (2)0.610 (3)0.026 (3)0.037*
O170.24161 (13)0.93732 (14)0.46692 (16)0.0265 (4)
H1710.287 (2)0.949 (3)0.506 (3)0.032*
H1720.229 (2)0.979 (3)0.429 (3)0.032*
O190.44927 (14)0.42724 (16)0.85539 (17)0.0329 (4)
H1910.415 (2)0.433 (3)0.793 (3)0.039*
H1920.483 (3)0.385 (3)0.866 (3)0.039*
O210.60125 (14)0.55256 (16)0.94457 (19)0.0359 (4)
H2110.559 (3)0.523 (3)0.907 (3)0.043*
H2120.590 (2)0.567 (3)1.015 (3)0.043*
O18A0.77849 (14)0.88751 (17)0.66533 (16)0.0234 (8)0.873 (11)
O20A0.3072 (2)0.20567 (19)0.6380 (3)0.0415 (11)0.869 (14)
O22A0.67469 (18)0.7176 (2)0.6366 (4)0.0409 (12)0.876 (13)
O23A0.1129 (3)0.3552 (6)0.0452 (6)0.0420 (16)0.71 (3)
O18B0.747 (3)0.840 (3)0.668 (3)0.101 (12)*0.127 (11)
O20B0.350 (3)0.197 (2)0.684 (3)0.076 (10)*0.131 (14)
O22B0.6582 (15)0.7397 (17)0.579 (3)0.042 (6)*0.124 (13)
O23B0.1074 (8)0.3242 (16)0.0717 (14)0.048 (3)*0.29 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01106 (13)0.01304 (14)0.01351 (13)0.00105 (9)0.00416 (10)0.00019 (10)
P10.0123 (2)0.0130 (2)0.0135 (2)0.00120 (18)0.00427 (18)0.00135 (18)
P20.0114 (2)0.0119 (2)0.0137 (2)0.00023 (17)0.00541 (17)0.00051 (18)
P30.0101 (2)0.0140 (2)0.0133 (2)0.00027 (17)0.00432 (17)0.00080 (18)
P40.0142 (2)0.0133 (2)0.0157 (2)0.00344 (18)0.00540 (18)0.00208 (19)
C10.0119 (8)0.0131 (9)0.0154 (9)0.0009 (7)0.0056 (7)0.0006 (7)
C20.0221 (10)0.0161 (10)0.0206 (10)0.0057 (8)0.0102 (8)0.0005 (8)
C30.0121 (8)0.0177 (10)0.0135 (8)0.0022 (7)0.0053 (7)0.0013 (7)
C40.0162 (9)0.0272 (12)0.0164 (9)0.0025 (8)0.0020 (8)0.0024 (9)
N10.0146 (8)0.0126 (9)0.0157 (8)0.0005 (6)0.0049 (6)0.0004 (7)
N20.0154 (8)0.0186 (9)0.0169 (8)0.0017 (7)0.0064 (7)0.0012 (7)
O10.0161 (7)0.0180 (7)0.0150 (7)0.0036 (6)0.0062 (5)0.0009 (6)
O20.0222 (7)0.0143 (7)0.0193 (7)0.0018 (6)0.0083 (6)0.0045 (6)
O30.0143 (7)0.0166 (7)0.0246 (8)0.0010 (6)0.0038 (6)0.0001 (7)
O40.0170 (7)0.0132 (7)0.0189 (7)0.0030 (5)0.0095 (6)0.0016 (5)
O50.0183 (7)0.0189 (8)0.0143 (7)0.0020 (6)0.0050 (5)0.0013 (6)
O60.0125 (6)0.0175 (7)0.0249 (7)0.0006 (6)0.0078 (6)0.0010 (6)
O70.0119 (6)0.0145 (7)0.0177 (7)0.0005 (5)0.0020 (5)0.0005 (6)
O80.0159 (7)0.0200 (8)0.0223 (8)0.0043 (6)0.0068 (6)0.0073 (6)
O90.0135 (7)0.0236 (8)0.0192 (7)0.0022 (6)0.0088 (6)0.0036 (6)
O100.0184 (7)0.0147 (7)0.0188 (7)0.0015 (6)0.0024 (6)0.0002 (6)
O110.0185 (7)0.0187 (8)0.0221 (7)0.0035 (6)0.0070 (6)0.0068 (6)
O120.0206 (7)0.0221 (8)0.0204 (7)0.0081 (6)0.0112 (6)0.0056 (6)
O130.0156 (7)0.0193 (8)0.0364 (9)0.0003 (6)0.0071 (7)0.0082 (7)
O140.0145 (7)0.0269 (9)0.0186 (8)0.0058 (6)0.0054 (6)0.0001 (6)
O150.0258 (9)0.0214 (9)0.0252 (8)0.0049 (7)0.0108 (7)0.0066 (7)
O160.0389 (10)0.0333 (10)0.0234 (8)0.0088 (8)0.0127 (8)0.0040 (8)
O170.0268 (9)0.0222 (9)0.0283 (9)0.0019 (7)0.0036 (7)0.0002 (7)
O190.0286 (9)0.0351 (11)0.0330 (10)0.0094 (8)0.0052 (8)0.0034 (8)
O210.0277 (10)0.0321 (11)0.0470 (12)0.0015 (8)0.0086 (9)0.0061 (9)
O18A0.0236 (11)0.0192 (12)0.0270 (11)0.0037 (8)0.0064 (8)0.0031 (8)
O20A0.0413 (19)0.0277 (14)0.055 (2)0.0005 (10)0.0119 (15)0.0096 (11)
O22A0.0299 (13)0.0307 (14)0.064 (3)0.0050 (10)0.0168 (13)0.0156 (15)
O23A0.063 (2)0.034 (3)0.032 (2)0.0083 (17)0.0194 (16)0.0152 (19)
Geometric parameters (Å, º) top
Co1—O72.0697 (14)C3—C41.537 (3)
Co1—O132.0747 (17)C4—H41C0.9800
Co1—O102.0771 (15)C4—H42C0.9800
Co1—O142.0837 (16)C4—H43C0.9800
Co1—O12.1007 (15)N1—H11N0.86 (3)
Co1—O42.1201 (15)N1—H12N0.81 (3)
P1—O21.4999 (15)N1—H13N0.85 (3)
P1—O11.5039 (15)N2—H21N0.91 (3)
P1—O31.5604 (16)N2—H22N0.90 (3)
P1—C11.844 (2)N2—H23N0.90 (3)
P2—O61.4993 (15)O3—H3O0.66 (3)
P2—O41.5047 (15)O5—H5O0.76 (3)
P2—O51.5696 (15)O8—H8O0.70 (3)
P2—C11.846 (2)O12—H12O0.83 (3)
P3—O91.4982 (15)O13—H1310.79 (3)
P3—O71.5071 (14)O13—H1320.77 (3)
P3—O81.5515 (16)O14—H1410.82 (3)
P3—C31.843 (2)O14—H1420.74 (3)
P4—O111.5038 (16)O15—H1510.80 (3)
P4—O101.5050 (15)O15—H1520.66 (3)
P4—O121.5599 (16)O16—H1610.85 (4)
P4—C31.841 (2)O16—H1620.89 (4)
C1—N11.507 (3)O17—H1710.75 (3)
C1—C21.536 (3)O17—H1720.73 (4)
C2—H21C0.9800O19—H1910.84 (4)
C2—H22C0.9800O19—H1920.75 (4)
C2—H23C0.9800O21—H2110.80 (4)
C3—N21.510 (3)O21—H2121.00 (4)
O7—Co1—O13176.20 (7)H21C—C2—H22C109.5
O7—Co1—O1091.52 (6)C1—C2—H23C109.5
O13—Co1—O1091.71 (7)H21C—C2—H23C109.5
O7—Co1—O1488.73 (6)H22C—C2—H23C109.5
O13—Co1—O1489.20 (7)N2—C3—C4107.71 (16)
O10—Co1—O1491.08 (6)N2—C3—P4106.60 (14)
O7—Co1—O187.76 (6)C4—C3—P4111.09 (15)
O13—Co1—O189.05 (7)N2—C3—P3107.91 (14)
O10—Co1—O1178.83 (6)C4—C3—P3110.50 (15)
O14—Co1—O189.83 (6)P4—C3—P3112.77 (10)
O7—Co1—O485.48 (6)C3—C4—H41C109.5
O13—Co1—O496.63 (7)C3—C4—H42C109.5
O10—Co1—O488.21 (6)H41C—C4—H42C109.5
O14—Co1—O4174.14 (6)C3—C4—H43C109.5
O1—Co1—O490.82 (6)H41C—C4—H43C109.5
O2—P1—O1116.06 (9)H42C—C4—H43C109.5
O2—P1—O3108.12 (9)C1—N1—H11N106.9 (18)
O1—P1—O3112.13 (9)C1—N1—H12N112 (2)
O2—P1—C1106.81 (9)H11N—N1—H12N112 (3)
O1—P1—C1107.89 (9)C1—N1—H13N108.4 (19)
O3—P1—C1105.14 (9)H11N—N1—H13N108 (3)
O6—P2—O4116.61 (9)H12N—N1—H13N109 (3)
O6—P2—O5112.75 (9)C3—N2—H21N109.5 (18)
O4—P2—O5105.82 (9)C3—N2—H22N110.4 (19)
O6—P2—C1108.50 (9)H21N—N2—H22N112 (3)
O4—P2—C1108.35 (9)C3—N2—H23N110.0 (18)
O5—P2—C1104.02 (9)H21N—N2—H23N106 (3)
O9—P3—O7115.85 (9)H22N—N2—H23N109 (3)
O9—P3—O8113.06 (9)P1—O1—Co1134.61 (9)
O7—P3—O8106.53 (9)P1—O3—H3O116 (3)
O9—P3—C3107.95 (9)P2—O4—Co1136.28 (9)
O7—P3—C3108.57 (9)P2—O5—H5O114 (2)
O8—P3—C3104.19 (9)P3—O7—Co1135.71 (9)
O11—P4—O10114.20 (9)P3—O8—H8O115 (3)
O11—P4—O12108.26 (9)P4—O10—Co1136.45 (10)
O10—P4—O12113.78 (9)P4—O12—H12O115 (2)
O11—P4—C3107.37 (9)Co1—O13—H131120 (2)
O10—P4—C3108.28 (9)Co1—O13—H132112 (2)
O12—P4—C3104.31 (9)H131—O13—H132112 (3)
N1—C1—C2108.41 (17)Co1—O14—H141123 (2)
N1—C1—P1106.58 (13)Co1—O14—H142117 (2)
C2—C1—P1110.87 (14)H141—O14—H142104 (3)
N1—C1—P2107.64 (13)H151—O15—H152102 (4)
C2—C1—P2111.10 (14)H161—O16—H162104 (3)
P1—C1—P2112.02 (11)H171—O17—H172109 (4)
C1—C2—H21C109.5H191—O19—H192117 (4)
C1—C2—H22C109.5H211—O21—H212110 (3)
O2—P1—C1—N169.60 (15)O8—P3—C3—C465.37 (16)
O1—P1—C1—N155.84 (15)O9—P3—C3—P469.94 (12)
O3—P1—C1—N1175.67 (13)O7—P3—C3—P456.38 (12)
O2—P1—C1—C248.19 (16)O8—P3—C3—P4169.62 (10)
O1—P1—C1—C2173.63 (14)O2—P1—O1—Co1152.91 (11)
O3—P1—C1—C266.54 (16)O3—P1—O1—Co182.16 (14)
O2—P1—C1—P2172.92 (9)C1—P1—O1—Co133.15 (15)
O1—P1—C1—P261.64 (12)O7—Co1—O1—P186.87 (13)
O3—P1—C1—P258.19 (12)O13—Co1—O1—P195.20 (13)
O6—P2—C1—N1171.19 (13)O14—Co1—O1—P1175.60 (13)
O4—P2—C1—N161.33 (15)O4—Co1—O1—P11.42 (13)
O5—P2—C1—N150.94 (15)O6—P2—O4—Co1102.36 (14)
O6—P2—C1—C252.64 (16)O5—P2—O4—Co1131.38 (13)
O4—P2—C1—C2179.87 (14)C1—P2—O4—Co120.33 (16)
O5—P2—C1—C267.61 (15)O7—Co1—O4—P281.31 (13)
O6—P2—C1—P171.96 (12)O13—Co1—O4—P295.52 (14)
O4—P2—C1—P155.52 (12)O10—Co1—O4—P2172.97 (14)
O5—P2—C1—P1167.78 (10)O1—Co1—O4—P26.38 (14)
O11—P4—C3—N260.67 (15)O9—P3—O7—Co192.63 (14)
O10—P4—C3—N263.09 (15)O8—P3—O7—Co1140.66 (12)
O12—P4—C3—N2175.41 (13)C3—P3—O7—Co128.97 (15)
O11—P4—C3—C456.41 (16)O10—Co1—O7—P31.53 (13)
O10—P4—C3—C4179.83 (14)O14—Co1—O7—P389.51 (13)
O12—P4—C3—C458.34 (16)O1—Co1—O7—P3179.38 (13)
O11—P4—C3—P3178.91 (10)O4—Co1—O7—P389.61 (13)
O10—P4—C3—P355.15 (12)O11—P4—O10—Co1146.29 (12)
O12—P4—C3—P366.35 (12)O12—P4—O10—Co188.72 (15)
O9—P3—C3—N2172.59 (13)C3—P4—O10—Co126.74 (16)
O7—P3—C3—N261.09 (15)O7—Co1—O10—P40.20 (14)
O8—P3—C3—N252.15 (15)O13—Co1—O10—P4177.79 (14)
O9—P3—C3—C455.06 (16)O14—Co1—O10—P488.55 (14)
O7—P3—C3—C4178.61 (14)O4—Co1—O10—P485.63 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11N···O170.86 (3)2.00 (3)2.836 (3)165 (3)
N1—H12N···O70.81 (3)1.98 (3)2.785 (2)175 (3)
N1—H13N···O15i0.85 (3)1.98 (3)2.810 (2)165 (3)
N2—H21N···O23A0.91 (3)1.94 (3)2.808 (4)159 (3)
N2—H22N···O40.90 (3)2.05 (3)2.944 (2)173 (3)
N2—H23N···O160.90 (3)1.90 (3)2.783 (3)164 (3)
O3—H3O···O6ii0.66 (3)1.92 (3)2.570 (2)169 (4)
O5—H5O···O2i0.76 (3)1.84 (3)2.592 (2)170 (3)
O8—H8O···O11iii0.70 (3)1.81 (3)2.508 (2)169 (3)
O12—H12O···O9iv0.83 (3)1.71 (3)2.517 (2)165 (3)
O13—H131···O6ii0.79 (3)1.92 (3)2.691 (2)166 (3)
O13—H132···O20A0.77 (3)1.92 (3)2.671 (3)165 (3)
O14—H141···O18Av0.82 (3)1.91 (3)2.697 (3)163 (3)
O14—H142···O9iv0.74 (3)1.95 (3)2.688 (2)172 (3)
O15—H151···O10.80 (3)2.01 (3)2.803 (2)177 (3)
O15—H152···O140.66 (3)2.50 (3)2.946 (2)127 (3)
O15—H152···O12iv0.66 (3)2.54 (3)3.049 (2)136 (3)
O16—H161···O15i0.85 (4)1.94 (4)2.788 (3)176 (3)
O16—H162···O17i0.89 (4)1.97 (4)2.844 (3)170 (3)
O17—H171···O21vi0.75 (3)2.14 (4)2.795 (3)147 (3)
O17—H172···O18Avii0.73 (4)2.13 (4)2.845 (3)167 (4)
O19—H191···O130.84 (4)2.27 (4)3.063 (3)158 (3)
O19—H192···O2v0.75 (4)2.04 (4)2.773 (3)166 (4)
O21—H211···O190.80 (4)2.05 (4)2.815 (3)162 (4)
O21—H212···O19viii1.00 (4)1.93 (4)2.914 (3)169 (3)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z+1/2; (iv) x, y+1, z+1; (v) x+1, y1/2, z+3/2; (vi) x+1, y+1/2, z+3/2; (vii) x+1, y+2, z+1; (viii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Co(C2H8NO6P2)2(H2O)2]·9H2O
Mr665.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)15.1925 (3), 13.2046 (2), 12.9688 (2)
β (°) 106.0866 (11)
V3)2499.81 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.30 × 0.24 × 0.20
Data collection
DiffractometerBruker APEX-II CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.749, 0.820
No. of measured, independent and
observed [I > 2σ(I)] reflections
51914, 6273, 5626
Rint0.030
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.090, 1.12
No. of reflections6273
No. of parameters401
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.73, 0.29

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2009).

Selected bond lengths (Å) top
Co1—O72.0697 (14)Co1—O142.0837 (16)
Co1—O132.0747 (17)Co1—O12.1007 (15)
Co1—O102.0771 (15)Co1—O42.1201 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11N···O170.86 (3)2.00 (3)2.836 (3)165 (3)
N1—H12N···O70.81 (3)1.98 (3)2.785 (2)175 (3)
N1—H13N···O15i0.85 (3)1.98 (3)2.810 (2)165 (3)
N2—H21N···O23A0.91 (3)1.94 (3)2.808 (4)159 (3)
N2—H22N···O40.90 (3)2.05 (3)2.944 (2)173 (3)
N2—H23N···O160.90 (3)1.90 (3)2.783 (3)164 (3)
O3—H3O···O6ii0.66 (3)1.92 (3)2.570 (2)169 (4)
O5—H5O···O2i0.76 (3)1.84 (3)2.592 (2)170 (3)
O8—H8O···O11iii0.70 (3)1.81 (3)2.508 (2)169 (3)
O12—H12O···O9iv0.83 (3)1.71 (3)2.517 (2)165 (3)
O13—H131···O6ii0.79 (3)1.92 (3)2.691 (2)166 (3)
O13—H132···O20A0.77 (3)1.92 (3)2.671 (3)165 (3)
O14—H141···O18Av0.82 (3)1.91 (3)2.697 (3)163 (3)
O14—H142···O9iv0.74 (3)1.95 (3)2.688 (2)172 (3)
O15—H151···O10.80 (3)2.01 (3)2.803 (2)177 (3)
O15—H152···O140.66 (3)2.50 (3)2.946 (2)127 (3)
O15—H152···O12iv0.66 (3)2.54 (3)3.049 (2)136 (3)
O16—H161···O15i0.85 (4)1.94 (4)2.788 (3)176 (3)
O16—H162···O17i0.89 (4)1.97 (4)2.844 (3)170 (3)
O17—H171···O21vi0.75 (3)2.14 (4)2.795 (3)147 (3)
O17—H172···O18Avii0.73 (4)2.13 (4)2.845 (3)167 (4)
O19—H191···O130.84 (4)2.27 (4)3.063 (3)158 (3)
O19—H192···O2v0.75 (4)2.04 (4)2.773 (3)166 (4)
O21—H211···O190.80 (4)2.05 (4)2.815 (3)162 (4)
O21—H212···O19viii1.00 (4)1.93 (4)2.914 (3)169 (3)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z+1/2; (iv) x, y+1, z+1; (v) x+1, y1/2, z+3/2; (vi) x+1, y+1/2, z+3/2; (vii) x+1, y+2, z+1; (viii) x+1, y+1, z+2.
 

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDudko, A., Bon, V., Kozachkova, A. & Pekhnyo, V. (2009). Acta Cryst. E65, m459.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEberhardt, C., Schwarz, M. & Kurth, A. H. (2005). J. Orthop. Sci. 10, 622–626.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMatczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev. 249, 2458–2488.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationXiang, J., Li, M., Wu, S., Yuan, L.-J. & Sun, J. (2007). J. Mol. Struct. 826, 143–149.  Web of Science CSD CrossRef CAS Google Scholar
First citationYin, P., Wang, X.-C., Gao, S. & Zheng, L.-M. (2005). J. Solid State Chem. 178, 1049–1053.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds