metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of di-μ-sulfido-bis­­{[(2R)-2-acet­­oxy-2-amino­ethane-1-thiol­ato-κ2N,S]oxidomolybdenum(V)}

aResearch Institute of Natural Sciences, Okayama University of Science, Ridai-cho, kita-ku, Okayama 700-0005, Japan, and bDepartment of Chemistry, Okayama University of Science, Ridai-cho, Kita-ku, Okayama 700-0005, Japan
*Correspondence e-mail: akashi@high.ous.ac.jp

(Received 12 April 2010; accepted 21 April 2010; online 24 April 2010)

The structure of the title compound, [Mo2(C4H8NO2S)2O2S2], has been redetermined. Besides obvious differences between the original [Drew & Kay (1971[Drew, M. G. B. & Kay, A. (1971). J. Chem. Soc. A, pp. 1851-1854.]). J. Chem. Soc. A, pp. 1851–1854] and the current unit-cell parameters, some packing features of the structure are also different; these findings are the result of significant improvements in the precision and accuracy of the present structure analysis. The two Mo atoms in the dimeric complex have very similar distorted trigonal–bipyramidal environments. Each Mo atom is bonded to an S atom and to an N atom of an L-cysteine ester ligand, to a terminal O atom and to two S atoms which bridge to the adjacent Mo atom [Mo⋯Mo separation = 2.8191 (2) Å]. N—H⋯Ocarbon­yl and N—H⋯Oterminal hydrogen-bonding inter­actions consolidate the crystal packing. During the synthesis, the originally employed L-cysteinate ligand has been converted to the L-cysteinate methyl ester ligand. Since this reaction does not take place without tin(IV) chloride, it is clear that tin(IV) chloride acts as a catalyst for the reaction.

Related literature

For the properties of molybdenum complexes with sulfur ligands, see: Newton & Otsuka (1980[Newton, W. E. & Otsuka, S. (1980). In Molybdenum Chemistry of Biological Significance. New York and London: Plenum Press.]); Ueyama et al. (1982[Ueyama, N., Nakata, M. & Nakamura, A. (1982). J. Mol. Catal. 14, 341-350.]). For syntheses of related compounds, see: Shibahara & Akashi (1992[Shibahara, T. & Akashi, H. (1992). Inorg. Synth. 29, 254-260.]); Kay & Mitchell (1970[Kay, A. & Mitchell, P. C. H. (1970). J. Chem. Soc. A, pp. 2421-2428.]). For related structures, see: Shibahara et al. (1983[Shibahara, T., Kuroya, H., Matumoto, K. & Ooi, S. (1983). Bull. Chem. Soc. Jpn, 56, 2945-2948.]); Drew & Kay (1971[Drew, M. G. B. & Kay, A. (1971). J. Chem. Soc. A, pp. 1851-1854.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo2(C4H8NO2S)2O2S2]

  • Mr = 556.34

  • Monoclinic, P 21

  • a = 9.195 (5) Å

  • b = 5.622 (3) Å

  • c = 17.437 (9) Å

  • β = 91.6763 (15)°

  • V = 901.0 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.88 mm−1

  • T = 93 K

  • 0.32 × 0.23 × 0.15 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.680, Tmax = 0.759

  • 10030 measured reflections

  • 5007 independent reflections

  • 4966 reflections with F2 > 2σ(F2)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.067

  • S = 1.12

  • 5007 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 1.23 e Å−3

  • Δρmin = −0.63 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2185 Friedel pairs

  • Flack parameter: −0.08 (3)

Data collection: CrystalClear (Rigaku, 1999[Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku Americas and Rigaku, 2007[Rigaku Americas and Rigaku (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick et al., 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Molybdenum complexes with sulfur ligands including L-cysteine or L-cysteine ethers are of interest in relation to redox-active molybdo-enzymes (Newton et al., 1980). Doubly sulfur-bridged molybdenum(V) compounds are prepared and examined as catalysts for redox reactions (Ueyama et al., 1982). The formation of the title compound, C8H16Mo2N2O6S8, (I), has been reported previously in the reaction of sodium molybdate with hydrogen sulphide and L-cysteine methyl ester (Kay & Mitchell, 1970). However, the direct formation of (I) from Na2[Mo2O2S2(L-cys)2] (Shibahara & Akashi, 1992) has not been reported previously. In this reaction in methanol, the L-cysteinato ligand has changed to the L-cysteinato methyl ester ligand.

The structure of (I) has been reported previously by Drew & Kay (1971), but there are significant differences between the original and the current unit cell parameters which, in part, may be ascribed to the different measurement temperatures: Drew & Kay (1971), room temperature measurement: monoclinic, P21, with a = 9.348 (9), b = 5.640 (7), c = 19.440 (16) Å, β = 116.66 (10)°. This work: monoclinic, P21, with a = 9.195 (5), b = 5.622 (3), c = 17.437, β = 91.6763 (15)°. In the present work, the structure of (I) (Fig. 1) was determined with sufficient accuracy (R-factor = 0.024) and all hydrogen atoms in the structure were refined. The Mo - Mo distance is 2.8191 (2) Å. The Mo-Sbridge distances are 3.079 (7) and 3.3941 (7) Å. The range of these distances is within the range of values observed previously in doubly sulfur-bridged molybdenum(V) compounds, see, for example: Shibahara et al. (1983). The packing of the structure of (I) (Fig. 2) is also obviously different from that reported by Drew & Kay (1971). It is clear that NH···Ocarbonyl and N—H···Oterminal intermolecular hydrogen bonds exist in the structure of (I) (Fig. 3).

Related literature top

For the properties of molybdenum complexes with sulfur ligands, see: Newton et al. (1980); Ueyama et al. (1982). For syntheses of related compounds, see: Shibahara & Akashi (1992); Kay & Mitchell (1970). For related structures, see: Shibahara et al. (1983); Drew et al. (1971).

Experimental top

Tin(IV) chloride pentahydrate (108.8 mg, 0.155 mmol) was added to Na2[Mo2O2S2(L-cys)2] (100 mg, 0.155 mmol) in methanol (40 ml). Single crystals suitable for X-ray diffraction were grown from the solution through slow evaporation of the solvent.

Refinement top

The positions of all H atoms were initially located from difference maps and were refined by using the riding model. The isotropic displacement parameters for these atoms were fixed at 1.2 times the equivalent isotropic displacement parameter of their carrier atom.

Structure description top

Molybdenum complexes with sulfur ligands including L-cysteine or L-cysteine ethers are of interest in relation to redox-active molybdo-enzymes (Newton et al., 1980). Doubly sulfur-bridged molybdenum(V) compounds are prepared and examined as catalysts for redox reactions (Ueyama et al., 1982). The formation of the title compound, C8H16Mo2N2O6S8, (I), has been reported previously in the reaction of sodium molybdate with hydrogen sulphide and L-cysteine methyl ester (Kay & Mitchell, 1970). However, the direct formation of (I) from Na2[Mo2O2S2(L-cys)2] (Shibahara & Akashi, 1992) has not been reported previously. In this reaction in methanol, the L-cysteinato ligand has changed to the L-cysteinato methyl ester ligand.

The structure of (I) has been reported previously by Drew & Kay (1971), but there are significant differences between the original and the current unit cell parameters which, in part, may be ascribed to the different measurement temperatures: Drew & Kay (1971), room temperature measurement: monoclinic, P21, with a = 9.348 (9), b = 5.640 (7), c = 19.440 (16) Å, β = 116.66 (10)°. This work: monoclinic, P21, with a = 9.195 (5), b = 5.622 (3), c = 17.437, β = 91.6763 (15)°. In the present work, the structure of (I) (Fig. 1) was determined with sufficient accuracy (R-factor = 0.024) and all hydrogen atoms in the structure were refined. The Mo - Mo distance is 2.8191 (2) Å. The Mo-Sbridge distances are 3.079 (7) and 3.3941 (7) Å. The range of these distances is within the range of values observed previously in doubly sulfur-bridged molybdenum(V) compounds, see, for example: Shibahara et al. (1983). The packing of the structure of (I) (Fig. 2) is also obviously different from that reported by Drew & Kay (1971). It is clear that NH···Ocarbonyl and N—H···Oterminal intermolecular hydrogen bonds exist in the structure of (I) (Fig. 3).

For the properties of molybdenum complexes with sulfur ligands, see: Newton et al. (1980); Ueyama et al. (1982). For syntheses of related compounds, see: Shibahara & Akashi (1992); Kay & Mitchell (1970). For related structures, see: Shibahara et al. (1983); Drew et al. (1971).

Computing details top

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear (Rigaku, 1999); data reduction: CrystalStructure (Rigaku Americas and Rigaku, 2007); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick et al., 2008); molecular graphics: ORTEPIII (Burnett et al., 1996); software used to prepare material for publication: CrystalStructure (Rigaku Americas and Rigaku, 2007).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom-numbering scheme for compound (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the molecular packing of the structutre of compound (I) along the b axis. H atoms have been omitted for clarity.
[Figure 3] Fig. 3. Scheme of intermolecular N—H···O interactions of (I). Symmetry codes: (i) -x+1, y+1/2, -z, (ii) x, y+1, z, (iii) -x+2, y-1/2, -z+1.
di-µ-sulfido-bis{[(2R)-2-acetoxy-2-aminoethane-1-thiolato- κ2N,S]oxidomolybdenum(V)} top
Crystal data top
[Mo2(C4H8NO2S)2O2S2]F(000) = 548.00
Mr = 556.34Dx = 2.051 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71070 Å
Hall symbol: P 2ybCell parameters from 3110 reflections
a = 9.195 (5) Åθ = 5.5–30.0°
b = 5.622 (3) ŵ = 1.88 mm1
c = 17.437 (9) ÅT = 93 K
β = 91.6763 (15)°Platelet, orange
V = 901.0 (8) Å30.32 × 0.23 × 0.15 mm
Z = 2
Data collection top
Rigaku Mercury
diffractometer
4966 reflections with F2 > 2σ(F2)
Detector resolution: 7.31 pixels mm-1Rint = 0.024
ω scansθmax = 30.0°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 1212
Tmin = 0.680, Tmax = 0.759k = 77
10030 measured reflectionsl = 2424
5007 independent reflections
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.0278P)2 + 0.6607P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.024(Δ/σ)max = 0.007
wR(F2) = 0.067Δρmax = 1.23 e Å3
S = 1.12Δρmin = 0.63 e Å3
5007 reflectionsAbsolute structure: Flack (1983), 2185 Friedel pairs
200 parametersAbsolute structure parameter: 0.08 (3)
H-atom parameters constrained
Crystal data top
[Mo2(C4H8NO2S)2O2S2]V = 901.0 (8) Å3
Mr = 556.34Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.195 (5) ŵ = 1.88 mm1
b = 5.622 (3) ÅT = 93 K
c = 17.437 (9) Å0.32 × 0.23 × 0.15 mm
β = 91.6763 (15)°
Data collection top
Rigaku Mercury
diffractometer
5007 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
4966 reflections with F2 > 2σ(F2)
Tmin = 0.680, Tmax = 0.759Rint = 0.024
10030 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.067Δρmax = 1.23 e Å3
S = 1.12Δρmin = 0.63 e Å3
5007 reflectionsAbsolute structure: Flack (1983), 2185 Friedel pairs
200 parametersAbsolute structure parameter: 0.08 (3)
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo(1)0.56160 (2)0.35614 (4)0.237407 (11)0.01531 (5)
Mo(2)0.83145 (2)0.39138 (4)0.317580 (11)0.01609 (5)
S(1)0.77619 (7)0.16995 (14)0.20725 (4)0.02024 (13)
S(2)0.64491 (7)0.66478 (13)0.31650 (4)0.01814 (13)
S(3)0.42535 (7)0.67618 (13)0.18011 (4)0.01799 (12)
S(4)1.05984 (8)0.40575 (19)0.25678 (4)0.02909 (17)
O(1)0.4563 (2)0.1814 (4)0.29126 (11)0.0214 (4)
O(2)0.8209 (2)0.1968 (4)0.39132 (12)0.0229 (4)
O(3)0.1638 (2)0.2314 (5)0.00266 (13)0.0307 (5)
O(4)0.3678 (2)0.0163 (4)0.00768 (12)0.0238 (4)
O(5)1.3237 (2)0.8121 (4)0.44041 (12)0.0255 (4)
O(6)1.1181 (2)1.0185 (4)0.45859 (12)0.0235 (4)
N(1)0.4930 (2)0.2095 (4)0.12429 (12)0.0163 (4)
N(2)0.9461 (2)0.6727 (4)0.38715 (13)0.0187 (4)
C(1)0.3251 (3)0.5388 (5)0.09977 (16)0.0199 (5)
C(2)0.3400 (2)0.2688 (5)0.10319 (14)0.0169 (4)
C(3)0.2942 (2)0.1557 (5)0.02689 (15)0.0202 (5)
C(4)0.1122 (3)0.1453 (7)0.0722 (2)0.0348 (7)
C(5)1.1683 (3)0.6098 (7)0.31658 (16)0.0275 (6)
C(6)1.1053 (2)0.6353 (5)0.39573 (15)0.0196 (5)
C(7)1.1797 (2)0.8438 (5)0.43657 (13)0.0194 (5)
C(8)1.4106 (3)1.0111 (7)0.46876 (18)0.0307 (7)
H(1)0.50350.04670.12530.020*
H(2)0.55280.26850.08750.020*
H(3)0.92940.81800.36430.022*
H(4)0.90710.67730.43510.022*
H(5)0.22100.58310.10170.024*
H(6)0.36320.59820.05080.024*
H(7)0.27580.20670.14390.020*
H(8)0.02290.23010.08760.042*
H(9)0.18690.17390.11000.042*
H(10)0.09210.02540.06910.042*
H(11)1.26940.54980.32170.033*
H(12)1.17120.76780.29150.033*
H(13)1.12440.48640.42570.024*
H(14)1.51120.99200.45280.037*
H(15)1.37071.15980.44770.037*
H(16)1.40851.01570.52490.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo(1)0.01791 (9)0.01641 (12)0.01172 (9)0.00422 (8)0.00248 (6)0.00076 (7)
Mo(2)0.01801 (10)0.01769 (12)0.01263 (9)0.00569 (8)0.00168 (6)0.00010 (7)
S(1)0.0209 (2)0.0222 (3)0.0177 (2)0.0068 (2)0.0019 (2)0.0043 (2)
S(2)0.0213 (2)0.0178 (3)0.0153 (2)0.0066 (2)0.0001 (2)0.0009 (2)
S(3)0.0215 (2)0.0160 (3)0.0164 (2)0.0027 (2)0.0001 (2)0.0015 (2)
S(4)0.0215 (2)0.0456 (5)0.0204 (2)0.0023 (3)0.0050 (2)0.0127 (3)
O(1)0.0243 (9)0.0227 (11)0.0174 (8)0.0032 (8)0.0043 (7)0.0019 (7)
O(2)0.0259 (9)0.0216 (10)0.0210 (8)0.0082 (8)0.0017 (7)0.0028 (7)
O(3)0.0192 (9)0.0432 (15)0.0296 (10)0.0050 (9)0.0040 (7)0.0126 (10)
O(4)0.0265 (9)0.0281 (12)0.0171 (8)0.0035 (8)0.0029 (7)0.0019 (8)
O(5)0.0188 (8)0.0347 (13)0.0230 (9)0.0061 (8)0.0006 (6)0.0066 (8)
O(6)0.0245 (9)0.0282 (12)0.0175 (8)0.0080 (8)0.0031 (7)0.0018 (8)
N(1)0.0169 (9)0.0182 (11)0.0138 (8)0.0026 (8)0.0022 (7)0.0017 (8)
N(2)0.0194 (9)0.0199 (11)0.0168 (9)0.0038 (8)0.0004 (7)0.0023 (8)
C(1)0.0177 (11)0.0198 (13)0.0222 (12)0.0027 (9)0.0016 (9)0.0005 (9)
C(2)0.0157 (10)0.0189 (13)0.0161 (10)0.0017 (9)0.0016 (8)0.0001 (9)
C(3)0.0189 (10)0.0223 (14)0.0196 (11)0.0022 (10)0.0025 (8)0.0015 (9)
C(4)0.0306 (15)0.042 (2)0.0316 (14)0.0012 (14)0.0089 (12)0.0107 (14)
C(5)0.0210 (11)0.044 (2)0.0180 (11)0.0007 (13)0.0033 (9)0.0086 (12)
C(6)0.0190 (10)0.0223 (14)0.0175 (10)0.0064 (10)0.0004 (8)0.0008 (9)
C(7)0.0203 (10)0.0273 (14)0.0106 (8)0.0049 (11)0.0012 (7)0.0037 (9)
C(8)0.0270 (14)0.041 (2)0.0244 (13)0.0002 (13)0.0024 (11)0.0038 (13)
Geometric parameters (Å, º) top
Mo(1)—Mo(2)2.8191 (2)C(1)—C(2)1.525 (4)
Mo(1)—S(1)2.3079 (7)C(2)—C(3)1.523 (3)
Mo(1)—S(2)2.3319 (7)C(5)—C(6)1.519 (3)
Mo(1)—S(3)2.3941 (7)C(6)—C(7)1.524 (4)
Mo(1)—O(1)1.685 (2)N(1)—H(1)0.920
Mo(1)—N(1)2.213 (2)N(1)—H(2)0.920
Mo(2)—S(1)2.3349 (7)N(2)—H(3)0.920
Mo(2)—S(2)2.3028 (7)N(2)—H(4)0.920
Mo(2)—S(4)2.3814 (7)C(1)—H(5)0.990
Mo(2)—O(2)1.693 (2)C(1)—H(6)0.990
Mo(2)—N(2)2.238 (2)C(2)—H(7)1.000
S(3)—C(1)1.826 (2)C(4)—H(8)0.980
S(4)—C(5)1.827 (3)C(4)—H(9)0.979
O(3)—C(3)1.330 (3)C(4)—H(10)0.979
O(3)—C(4)1.458 (4)C(5)—H(11)0.990
O(4)—C(3)1.208 (3)C(5)—H(12)0.991
O(5)—C(7)1.336 (3)C(6)—H(13)1.000
O(5)—C(8)1.453 (4)C(8)—H(14)0.980
O(6)—C(7)1.202 (3)C(8)—H(15)0.980
N(1)—C(2)1.482 (3)C(8)—H(16)0.980
N(2)—C(6)1.482 (3)
S(2)···O(1)i3.405 (2)H(1)···C(1)iii3.317
S(3)···O(1)i3.445 (2)H(1)···H(6)iii3.100
S(3)···N(1)i3.218 (2)H(1)···H(6)vi3.352
S(3)···C(5)ii3.423 (2)H(1)···H(9)vi3.552
O(1)···S(2)iii3.405 (2)H(2)···O(4)x2.114
O(1)···S(3)iii3.445 (2)H(2)···C(3)x3.295
O(1)···O(5)iv3.570 (3)H(2)···H(6)vi2.727
O(1)···C(8)iv3.278 (3)H(2)···H(9)x3.320
O(2)···O(5)v3.321 (3)H(2)···H(10)x3.488
O(2)···O(6)iii3.108 (3)H(3)···Mo(2)i3.438
O(2)···O(6)v3.217 (3)H(3)···O(2)i2.404
O(2)···N(2)iii3.165 (3)H(3)···O(6)v3.556
O(2)···C(7)v3.113 (3)H(4)···O(2)i3.115
O(4)···N(1)vi2.984 (3)H(4)···O(6)v2.077
O(4)···C(1)iii3.304 (3)H(4)···C(7)v3.044
O(4)···C(1)vi3.292 (3)H(4)···C(8)v3.536
O(4)···C(2)vi3.492 (3)H(4)···H(13)viii3.006
O(5)···O(1)vii3.570 (3)H(4)···H(15)v3.319
O(5)···O(2)viii3.321 (3)H(4)···H(16)v3.139
O(5)···C(8)ix3.334 (4)H(5)···S(4)ii3.277
O(6)···O(2)i3.108 (3)H(5)···O(4)i3.397
O(6)···O(2)viii3.217 (3)H(5)···C(3)i3.545
O(6)···N(2)viii2.903 (3)H(5)···C(4)xiii3.112
O(6)···C(6)viii3.377 (3)H(5)···H(8)xiii2.396
N(1)···S(3)iii3.218 (2)H(5)···H(10)xiii2.982
N(1)···O(4)x2.984 (3)H(5)···H(12)ii3.512
N(2)···O(2)i3.165 (3)H(6)···O(4)i2.563
N(2)···O(6)v2.903 (3)H(6)···O(4)x2.647
C(1)···O(4)i3.304 (3)H(6)···N(1)x3.421
C(1)···O(4)x3.292 (3)H(6)···C(3)i3.223
C(2)···O(4)x3.492 (3)H(6)···C(3)x3.481
C(5)···S(3)xi3.423 (2)H(6)···H(1)i3.100
C(6)···O(6)v3.377 (3)H(6)···H(1)x3.352
C(7)···O(2)viii3.113 (3)H(6)···H(2)x2.727
C(8)···O(1)vii3.278 (3)H(7)···S(3)iii3.337
C(8)···O(5)xii3.334 (4)H(7)···S(4)ii3.049
C(8)···C(8)ix3.419 (5)H(8)···S(4)vi3.533
C(8)···C(8)xii3.419 (5)H(8)···C(1)xiv3.376
Mo(1)···H(11)ii3.286H(8)···H(5)xiv2.396
Mo(2)···H(3)iii3.438H(8)···H(10)xiii3.261
S(1)···H(9)vi3.286H(9)···S(1)vi3.324
S(1)···H(9)x3.324H(9)···S(1)x3.286
S(1)···H(10)x3.221H(9)···H(1)x3.552
S(2)···H(11)ii3.517H(9)···H(2)vi3.320
S(2)···H(14)ii3.273H(10)···S(1)vi3.221
S(2)···H(16)v2.945H(10)···S(4)vi3.543
S(3)···H(1)i2.410H(10)···O(3)xiv2.985
S(3)···H(7)i3.337H(10)···H(2)vi3.488
S(3)···H(11)ii2.977H(10)···H(5)xiv2.982
S(3)···H(12)ii3.125H(10)···H(8)xiv3.261
S(4)···H(5)xi3.277H(11)···Mo(1)xi3.286
S(4)···H(7)xi3.049H(11)···S(2)xi3.517
S(4)···H(8)x3.533H(11)···S(3)xi2.977
S(4)···H(10)x3.543H(11)···O(1)xi2.753
O(1)···H(11)ii2.753H(11)···H(15)iii3.222
O(1)···H(12)iv3.504H(12)···S(3)xi3.125
O(1)···H(14)iv3.039H(12)···O(1)vii3.504
O(1)···H(15)iv2.864H(12)···H(5)xi3.512
O(2)···H(3)iii2.404H(13)···O(2)viii3.426
O(2)···H(4)iii3.115H(13)···O(6)iii2.693
O(2)···H(13)v3.426H(13)···O(6)v3.056
O(2)···H(14)iv3.280H(13)···H(4)v3.006
O(2)···H(16)v3.158H(13)···H(15)iii2.932
O(3)···H(10)xiii2.985H(14)···S(2)xi3.273
O(4)···H(1)vi3.566H(14)···O(1)vii3.039
O(4)···H(2)vi2.114H(14)···O(2)vii3.280
O(4)···H(5)iii3.397H(14)···O(5)xii2.974
O(4)···H(6)iii2.563H(14)···C(8)ix3.105
O(4)···H(6)vi2.647H(14)···C(8)xii3.294
O(5)···H(14)ix2.974H(14)···H(14)ix3.267
O(5)···H(15)ix3.480H(14)···H(14)xii3.267
O(5)···H(16)ix3.020H(14)···H(15)ix2.751
O(6)···H(3)viii3.556H(14)···H(16)ix2.802
O(6)···H(4)viii2.077H(14)···H(16)xii3.057
O(6)···H(13)i2.693H(15)···O(1)vii2.864
O(6)···H(13)viii3.056H(15)···O(5)xii3.480
N(1)···H(6)vi3.421H(15)···C(8)xii3.146
C(1)···H(1)i3.317H(15)···H(4)viii3.319
C(1)···H(8)xiii3.376H(15)···H(11)i3.222
C(3)···H(2)vi3.295H(15)···H(13)i2.932
C(3)···H(5)iii3.545H(15)···H(14)xii2.751
C(3)···H(6)iii3.223H(15)···H(16)xii2.881
C(3)···H(6)vi3.481H(16)···S(2)viii2.945
C(4)···H(5)xiv3.112H(16)···O(2)viii3.158
C(7)···H(4)viii3.044H(16)···O(5)xii3.020
C(8)···H(4)viii3.536H(16)···C(8)ix3.289
C(8)···H(14)ix3.294H(16)···C(8)xii3.245
C(8)···H(14)xii3.105H(16)···H(4)viii3.139
C(8)···H(15)ix3.146H(16)···H(14)ix3.057
C(8)···H(16)ix3.245H(16)···H(14)xii2.802
C(8)···H(16)xii3.289H(16)···H(15)ix2.881
H(1)···S(3)iii2.410H(16)···H(16)ix3.402
H(1)···O(4)x3.566H(16)···H(16)xii3.402
Mo(2)—Mo(1)—S(1)53.049 (18)S(4)—C(5)—C(6)111.2 (2)
Mo(2)—Mo(1)—S(2)52.068 (17)N(2)—C(6)—C(5)108.9 (2)
Mo(2)—Mo(1)—S(3)126.612 (19)N(2)—C(6)—C(7)111.5 (2)
Mo(2)—Mo(1)—O(1)106.05 (6)C(5)—C(6)—C(7)108.6 (2)
Mo(2)—Mo(1)—N(1)133.81 (5)O(5)—C(7)—O(6)124.7 (2)
S(1)—Mo(1)—S(2)101.77 (2)O(5)—C(7)—C(6)110.6 (2)
S(1)—Mo(1)—S(3)133.33 (2)O(6)—C(7)—C(6)124.6 (2)
S(1)—Mo(1)—O(1)111.82 (7)Mo(1)—N(1)—H(1)109.1
S(1)—Mo(1)—N(1)81.45 (6)Mo(1)—N(1)—H(2)109.1
S(2)—Mo(1)—S(3)81.17 (2)C(2)—N(1)—H(1)109.1
S(2)—Mo(1)—O(1)106.77 (7)C(2)—N(1)—H(2)109.2
S(2)—Mo(1)—N(1)152.22 (6)H(1)—N(1)—H(2)107.9
S(3)—Mo(1)—O(1)111.63 (7)Mo(2)—N(2)—H(3)108.8
S(3)—Mo(1)—N(1)77.05 (6)Mo(2)—N(2)—H(4)108.8
O(1)—Mo(1)—N(1)97.23 (9)C(6)—N(2)—H(3)108.8
Mo(1)—Mo(2)—S(1)52.177 (17)C(6)—N(2)—H(4)108.8
Mo(1)—Mo(2)—S(2)53.005 (18)H(3)—N(2)—H(4)107.7
Mo(1)—Mo(2)—S(4)123.814 (18)S(3)—C(1)—H(5)109.6
Mo(1)—Mo(2)—O(2)105.19 (7)S(3)—C(1)—H(6)109.6
Mo(1)—Mo(2)—N(2)135.42 (6)C(2)—C(1)—H(5)109.6
S(1)—Mo(2)—S(2)101.83 (2)C(2)—C(1)—H(6)109.6
S(1)—Mo(2)—S(4)79.91 (2)H(5)—C(1)—H(6)108.1
S(1)—Mo(2)—O(2)105.39 (7)N(1)—C(2)—H(7)108.7
S(1)—Mo(2)—N(2)155.64 (6)C(1)—C(2)—H(7)108.7
S(2)—Mo(2)—S(4)129.80 (3)C(3)—C(2)—H(7)108.7
S(2)—Mo(2)—O(2)112.22 (7)O(3)—C(4)—H(8)109.4
S(2)—Mo(2)—N(2)82.64 (6)O(3)—C(4)—H(9)109.4
S(4)—Mo(2)—O(2)115.52 (7)O(3)—C(4)—H(10)109.4
S(4)—Mo(2)—N(2)79.03 (6)H(8)—C(4)—H(9)109.5
O(2)—Mo(2)—N(2)94.67 (9)H(8)—C(4)—H(10)109.5
Mo(1)—S(1)—Mo(2)74.77 (2)H(9)—C(4)—H(10)109.6
Mo(1)—S(2)—Mo(2)74.93 (2)S(4)—C(5)—H(11)109.4
Mo(1)—S(3)—C(1)104.40 (10)S(4)—C(5)—H(12)109.4
Mo(2)—S(4)—C(5)103.96 (9)C(6)—C(5)—H(11)109.4
C(3)—O(3)—C(4)116.4 (2)C(6)—C(5)—H(12)109.4
C(7)—O(5)—C(8)116.6 (2)H(11)—C(5)—H(12)108.0
Mo(1)—N(1)—C(2)112.43 (15)N(2)—C(6)—H(13)109.3
Mo(2)—N(2)—C(6)113.75 (18)C(5)—C(6)—H(13)109.2
S(3)—C(1)—C(2)110.37 (18)C(7)—C(6)—H(13)109.3
N(1)—C(2)—C(1)108.5 (2)O(5)—C(8)—H(14)109.4
N(1)—C(2)—C(3)111.0 (2)O(5)—C(8)—H(15)109.5
C(1)—C(2)—C(3)111.0 (2)O(5)—C(8)—H(16)109.5
O(3)—C(3)—O(4)124.2 (2)H(14)—C(8)—H(15)109.5
O(3)—C(3)—C(2)111.6 (2)H(14)—C(8)—H(16)109.4
O(4)—C(3)—C(2)124.2 (2)H(15)—C(8)—H(16)109.5
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z; (iii) x, y1, z; (iv) x1, y1, z; (v) x+2, y1/2, z+1; (vi) x+1, y1/2, z; (vii) x+1, y+1, z; (viii) x+2, y+1/2, z+1; (ix) x+3, y1/2, z+1; (x) x+1, y+1/2, z; (xi) x+1, y, z; (xii) x+3, y+1/2, z+1; (xiii) x, y+1/2, z; (xiv) x, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N(1)—H(2)···O(4)x0.922.112.984 (3)157
N(2)—H(3)···O(2)i0.922.403.165 (3)140
N(2)—H(4)···O(6)v0.922.082.903 (3)149
Symmetry codes: (i) x, y+1, z; (v) x+2, y1/2, z+1; (x) x+1, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Mo2(C4H8NO2S)2O2S2]
Mr556.34
Crystal system, space groupMonoclinic, P21
Temperature (K)93
a, b, c (Å)9.195 (5), 5.622 (3), 17.437 (9)
β (°) 91.6763 (15)
V3)901.0 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.88
Crystal size (mm)0.32 × 0.23 × 0.15
Data collection
DiffractometerRigaku Mercury
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.680, 0.759
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
10030, 5007, 4966
Rint0.024
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.067, 1.12
No. of reflections5007
No. of parameters200
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.23, 0.63
Absolute structureFlack (1983), 2185 Friedel pairs
Absolute structure parameter0.08 (3)

Computer programs: CrystalClear (Rigaku, 1999), CrystalStructure (Rigaku Americas and Rigaku, 2007), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick et al., 2008), ORTEPIII (Burnett et al., 1996).

 

Acknowledgements

This work was supported by KAKENHI (18550063).

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDrew, M. G. B. & Kay, A. (1971). J. Chem. Soc. A, pp. 1851–1854.  CSD CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKay, A. & Mitchell, P. C. H. (1970). J. Chem. Soc. A, pp. 2421–2428.  CrossRef Google Scholar
First citationNewton, W. E. & Otsuka, S. (1980). In Molybdenum Chemistry of Biological Significance. New York and London: Plenum Press.  Google Scholar
First citationRigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku Americas and Rigaku (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShibahara, T. & Akashi, H. (1992). Inorg. Synth. 29, 254–260.  CrossRef CAS Google Scholar
First citationShibahara, T., Kuroya, H., Matumoto, K. & Ooi, S. (1983). Bull. Chem. Soc. Jpn, 56, 2945–2948.  CrossRef CAS Web of Science Google Scholar
First citationUeyama, N., Nakata, M. & Nakamura, A. (1982). J. Mol. Catal. 14, 341–350.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds