metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(ethyl­enedi­ammonium) bis­­[(2-amino­ethyl)ammonium] bis­­[bis­­(μ5-hydrogen phosphato)penta-μ2-oxido-deca­oxido­penta­molybdenum(VI)] deca­hydrate

aSchool of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: lujing@lcu.edu.cn

(Received 13 April 2010; accepted 27 April 2010; online 30 April 2010)

The title compound, (C2H10N2)3(C2H9N2)2[Mo5(HPO4)2O15]·10H2O, was prepared under hydro­thermal conditions at pH 5.0. The structure contains mono- and diprotonated ethyl­enediamine cations, [Mo5O15(HPO4)2]4− anions and uncoord­in­ated water mol­ecules. The [Mo5O15(HPO4)2]4− hetero­poly­oxometallate anion is made up of five MoO6 octa­hedra sharing an edge and forming a ring, which is closed by common corners of the terminal MoO6 octa­hedron. The ring is topped on both sides by two slightly distorted PO4 tetra­hedra, sharing three corners with three MoO6 octa­hedra. The terminal oxygen atoms of the PO4 units are protonated. Together with the anions, the water mol­ecules and the ethyl­enediammonium cations are involved in N—H⋯O and O—H⋯O hydrogen bonding, forming a three-dimensional supra­molecular network.

Related literature

For background to polyoxometalates, see: Coronado & Gomez-Garcia (1998[Coronado, E. & Gomez-Garcia, C. J. (1998). Chem. Rev. 98, 273-296.]); Niu et al. (2009[Niu, J., Wang, K., Chen, H., Zhao, J., Ma, P., Wang, J., Li, M., Bai, Y. & Dang, D. (2009). Cryst. Growth Des. 9, 4362-4372.]); Ruether et al. (2003[Ruether, T., Hultgren, V. M., Timko, B. P., Bond, A. M., Jackson, W. R. & Wedd, A. G. (2003). J. Am. Chem. Soc. 125, 10133-10143.]). For the structure of (C2H10N2)2[Mo5O15(HPO4)2], see: Sun et al. (2003[Sun, Q., Zhang, H., Huang, C., Sun, Q., Sun, R. & Wang, Y. (2003). Acta Cryst. E59, m729-m730.]). For structures containing the [Mo5O15(PO4)2]6− anion, see: Gong et al. (2006[Gong, Y., Hu, C., Li, H., Tang, W., Huang, K. & Hou, W. (2006). J. Mol. Struct. 784, 228-238.]); Skibsted et al. (2000[Skibsted, J., Brorson, M., Villadsen, J. & Jakobsen, H. J. (2000). Inorg. Chem. 39, 4130-4136.]). For the bond-valence method, see: Brown (2002[Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry - The Bond Valence Model. IUCr monographs on Crystallography, No. 12. Oxford University Press.]).

[Scheme 1]

Experimental

Crystal data
  • (C2H10N2)3(C2H9N2)2[Mo5(HPO4)2O15]·10H2O

  • Mr = 2312.06

  • Triclinic, [P \overline 1]

  • a = 10.0045 (11) Å

  • b = 10.6625 (12) Å

  • c = 15.1884 (19) Å

  • α = 87.405 (2)°

  • β = 73.119 (1)°

  • γ = 77.978 (1)°

  • V = 1516.2 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.23 mm−1

  • T = 298 K

  • 0.38 × 0.34 × 0.30 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.485, Tmax = 0.554

  • 7582 measured reflections

  • 5253 independent reflections

  • 4015 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.114

  • S = 1.04

  • 5253 reflections

  • 396 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 1.28 e Å−3

  • Δρmin = −1.07 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5E⋯O20i 0.90 2.66 3.075 (8) 109
N5—H5E⋯O28ii 0.90 2.01 2.796 (9) 144
N5—H5D⋯O10 0.89 2.45 3.069 (8) 127
N5—H5D⋯O6 0.89 2.01 2.846 (8) 156
N5—H5C⋯O21i 0.89 2.17 3.046 (8) 170
N4—H4E⋯O1i 0.89 1.93 2.806 (8) 167
N4—H4D⋯O12iii 0.89 2.65 3.357 (8) 137
N4—H4D⋯O22iii 0.89 2.60 3.099 (8) 116
N4—H4D⋯O4iii 0.89 2.08 2.907 (8) 155
N4—H4C⋯O25 0.89 1.92 2.803 (8) 171
N3—H3D⋯O17i 0.87 2.25 3.117 (8) 176
N3—H3C⋯O15iv 0.89 1.87 2.732 (7) 162
N2—H2E⋯O23iii 0.90 2.56 3.030 (8) 113
N2—H2E⋯O5v 0.90 1.84 2.699 (8) 159
N2—H2D⋯O20v 0.89 2.14 2.924 (8) 146
N2—H2C⋯O6iii 0.90 2.49 3.310 (8) 151
N2—H2C⋯O12iii 0.90 2.35 3.084 (8) 139
N1—H1C⋯O7iv 0.90 2.46 3.259 (8) 149
N1—H1C⋯O16iv 0.90 2.28 3.011 (8) 138
N1—H1B⋯O28vi 0.89 1.93 2.819 (8) 173
N1—H1A⋯O5v 0.90 1.92 2.772 (8) 159
O28—H28B⋯O23vii 0.86 2.39 3.157 (8) 149
O28—H28A⋯O27 0.84 2.31 2.740 (10) 112
O27—H27B⋯O17i 0.87 2.46 2.912 (10) 113
O27—H27B⋯O22vii 0.87 2.11 2.916 (10) 155
O27—H27A⋯O10viii 0.87 2.03 2.875 (9) 163
O26—H26B⋯O19i 0.84 2.40 3.064 (8) 136
O26—H26B⋯O17i 0.84 2.36 2.874 (8) 120
O26—H26A⋯O14 0.84 2.11 2.858 (8) 148
O25—H25B⋯O21i 0.84 1.97 2.808 (7) 170
O25—H25B⋯O4i 0.84 2.57 3.083 (7) 120
O25—H25A⋯O11 0.85 1.93 2.745 (7) 163
O24—H24B⋯O25viii 0.86 2.08 2.868 (9) 151
O24—H24A⋯O1iv 0.86 1.97 2.795 (8) 159
O5—H5F⋯O28ii 0.84 2.02 2.845 (8) 168
O1—H1F⋯N3ix 0.85 2.18 2.766 (8) 126
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+2, -z+1; (iv) -x+1, -y+1, -z+1; (v) x-1, y, z+1; (vi) x, y, z+1; (vii) x-1, y-1, z; (viii) x, y-1, z; (ix) x+1, y, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Numerous polyoxometalates (POMs) have been synthesized and characterized because of their interesting structures and potential applications (Coronado et al., 1998; Niu et al., 2009; Ruether et al., 2003). POM syntheses are usually performed under hydrothermal conditions and one or more of the reaction parameters, such as temperature, pH, stoichiometry, reaction time, can influence the reaction product. Thus the rational synthesis of POMs is still a great challenge. In a previous study, the compounds (C2H10N2)2[Mo5O15(HPO4)2] and the title compound, (C2H10N2)3(C2H9N2)2[Mo5O15(HPO4)2].10H2O, (I), were synthesized at pH 3.0 and 5.0, respectively. Because compound (C2H10N2)2[Mo5O15(HPO4)2] has been reported in detail (Sun et al., 2003), we only report the structure of compound (I).

The asymmetric unit of compound (I) contains one and a half ethylenediammonium cations, one (2-aminoethyl)ammonium cation, five lattice water molecules and one heteropolyoxometallate anion [Mo5O15(HPO4)2]4-. The latter is made up of five MoO6 octahedra sharing an edge and forming a ring which is closed by common corners of the terminal octahedron. The rings are topped on both sides by two asymmetric PO4 tetrahedra, sharing three corners with three MoO6 octahedra (Fig. 1). According to the results of valence bond calculations (Brown, 2002), both terminal oxygen atoms of the two PO4 tetrahedra are protonated: (bond valence sums are 1.24 for O1 and 1.29 for O5). The shortest Mo—O bond lengths are observed for terminal oxygen atoms with a mean distance of 1.708 Å, and those involving oxygen atoms of PO4 are the longest bond with a mean bond lengths of 2.292 Å. Mo—O bond lengths involving other oxygen atoms range from 1.917Å to 1.966 Å. All those bond lengths are similar to other reported heteropolyoxometallate anions (Sun et al. (2003) for [Mo5O15(HPO4)2]4-, and Gong et al. (2006) and Skibsted et al. (2000) for [Mo5O15(PO4)2]6-).

As shown in Fig. 2, lattice water molecules, the protonated ethylenediamine cations and the [Mo5O15(HPO4)2]4- anions are bonded with each other via O—H···O and N—H···O hydrogen bonds to form a three-dimensional network. The geometric parameters of hydrogen bonding are listed in Table 1.

Related literature top

For background to polyoxometalates, see: Coronado & Gomez-Garcia (1998); Niu et al. (2009); Ruether et al. (2003). For the structure of (C2H10N2)2[Mo5O15(HPO4)2], see: Sun et al. (2003). For structures containing the [Mo5O15(PO4)2]6- anion, see: Gong et al. (2006); Skibsted et al. (2000). For the bond-valence method, see: Brown (2002).

Experimental top

Compound (I) was obtained under hydrothermal conditions. (NH4)6Mo7O24˙4H2O (0.37 g), H3PO4 (85%, 0.2 mL) Mn(OAc)2.H2O (0.12 g) were added in water (15 mL). The pH value was adjusted to 5.0 by ethylenediamine, and the mixture was heated at 453 K for 5 d. Blue crystals were obtained with 15% yield (based on Mo). Elemental analysis for C5H36Mo5N5O28P2: Found: C 5.36, H 3.23%, N 6.48, P 5.79, Mo 42.07%; calcd. C 5.19, H 3.11, N 6.06, P 5.36 Mo 41.52%.

Refinement top

The H atoms attached to carbon atoms were positioned geometrically and were treated as riding on their parent atoms, with a C—H distance of 0.97 Å and Uiso(H) = 1.2Ueq(C). The hydrogen atoms of the water molecules, ammonium functions and O1 and O5 atoms of the phosphate groups were located in difference maps and were refined by using the 'DFIX' command with O—H = 0.85 (2) Å and N—H = 0.89 (2) Å with Uiso(H) = 1.2Uiso(O) and Uiso(H) = 1.5Uiso(O), respectively. The distance of the highest peak is 0.87 Å from O14, and the distance of the deepest hole is 1.00 Å from Mo1.

Structure description top

Numerous polyoxometalates (POMs) have been synthesized and characterized because of their interesting structures and potential applications (Coronado et al., 1998; Niu et al., 2009; Ruether et al., 2003). POM syntheses are usually performed under hydrothermal conditions and one or more of the reaction parameters, such as temperature, pH, stoichiometry, reaction time, can influence the reaction product. Thus the rational synthesis of POMs is still a great challenge. In a previous study, the compounds (C2H10N2)2[Mo5O15(HPO4)2] and the title compound, (C2H10N2)3(C2H9N2)2[Mo5O15(HPO4)2].10H2O, (I), were synthesized at pH 3.0 and 5.0, respectively. Because compound (C2H10N2)2[Mo5O15(HPO4)2] has been reported in detail (Sun et al., 2003), we only report the structure of compound (I).

The asymmetric unit of compound (I) contains one and a half ethylenediammonium cations, one (2-aminoethyl)ammonium cation, five lattice water molecules and one heteropolyoxometallate anion [Mo5O15(HPO4)2]4-. The latter is made up of five MoO6 octahedra sharing an edge and forming a ring which is closed by common corners of the terminal octahedron. The rings are topped on both sides by two asymmetric PO4 tetrahedra, sharing three corners with three MoO6 octahedra (Fig. 1). According to the results of valence bond calculations (Brown, 2002), both terminal oxygen atoms of the two PO4 tetrahedra are protonated: (bond valence sums are 1.24 for O1 and 1.29 for O5). The shortest Mo—O bond lengths are observed for terminal oxygen atoms with a mean distance of 1.708 Å, and those involving oxygen atoms of PO4 are the longest bond with a mean bond lengths of 2.292 Å. Mo—O bond lengths involving other oxygen atoms range from 1.917Å to 1.966 Å. All those bond lengths are similar to other reported heteropolyoxometallate anions (Sun et al. (2003) for [Mo5O15(HPO4)2]4-, and Gong et al. (2006) and Skibsted et al. (2000) for [Mo5O15(PO4)2]6-).

As shown in Fig. 2, lattice water molecules, the protonated ethylenediamine cations and the [Mo5O15(HPO4)2]4- anions are bonded with each other via O—H···O and N—H···O hydrogen bonds to form a three-dimensional network. The geometric parameters of hydrogen bonding are listed in Table 1.

For background to polyoxometalates, see: Coronado & Gomez-Garcia (1998); Niu et al. (2009); Ruether et al. (2003). For the structure of (C2H10N2)2[Mo5O15(HPO4)2], see: Sun et al. (2003). For structures containing the [Mo5O15(PO4)2]6- anion, see: Gong et al. (2006); Skibsted et al. (2000). For the bond-valence method, see: Brown (2002).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with atom labels and drawn at the 50% probability level for the displacement ellipsoids. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The 3-D supramolecular network construcuted by hydrogen bonds.
Tris(ethylenediammonium) bis[(2-aminoethyl)ammonium] bis[bis(µ5- hydrogen phosphato)penta-µ2-oxido-decaoxidopentamolybdenum(VI)] decahydrate top
Crystal data top
(C2H10N2)3(C2H9N2)2[Mo5(HPO4)2O15]·10H2OZ = 1
Mr = 2312.06F(000) = 1130
Triclinic, P1Dx = 2.532 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0045 (11) ÅCell parameters from 5253 reflections
b = 10.6625 (12) Åθ = 1.4–25.0°
c = 15.1884 (19) ŵ = 2.23 mm1
α = 87.405 (2)°T = 298 K
β = 73.119 (1)°Block, blue
γ = 77.978 (1)°0.38 × 0.34 × 0.30 mm
V = 1516.2 (3) Å3
Data collection top
Siemens SMART CCD area-detector
diffractometer
5253 independent reflections
Radiation source: fine-focus sealed tube4015 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
phi and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.485, Tmax = 0.554k = 1212
7582 measured reflectionsl = 1618
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0528P)2 + 3.4931P]
where P = (Fo2 + 2Fc2)/3
5253 reflections(Δ/σ)max = 0.001
396 parametersΔρmax = 1.28 e Å3
5 restraintsΔρmin = 1.07 e Å3
Crystal data top
(C2H10N2)3(C2H9N2)2[Mo5(HPO4)2O15]·10H2Oγ = 77.978 (1)°
Mr = 2312.06V = 1516.2 (3) Å3
Triclinic, P1Z = 1
a = 10.0045 (11) ÅMo Kα radiation
b = 10.6625 (12) ŵ = 2.23 mm1
c = 15.1884 (19) ÅT = 298 K
α = 87.405 (2)°0.38 × 0.34 × 0.30 mm
β = 73.119 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
5253 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4015 reflections with I > 2σ(I)
Tmin = 0.485, Tmax = 0.554Rint = 0.033
7582 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0415 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.04Δρmax = 1.28 e Å3
5253 reflectionsΔρmin = 1.07 e Å3
396 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.68911 (6)0.98073 (6)0.29463 (4)0.01950 (16)
Mo20.70040 (6)0.66797 (6)0.33717 (4)0.01926 (16)
Mo31.04111 (6)0.51146 (6)0.24970 (4)0.01935 (16)
Mo41.25353 (6)0.72000 (6)0.16806 (4)0.01859 (16)
Mo51.06247 (6)1.02104 (6)0.22185 (4)0.02026 (17)
P10.96988 (18)0.79447 (17)0.37213 (12)0.0172 (4)
P20.92311 (18)0.77833 (17)0.13393 (12)0.0173 (4)
O10.9504 (5)0.7503 (5)0.4712 (3)0.0252 (11)
H1F0.97300.66900.47240.030*
O20.8247 (5)0.8134 (4)0.3492 (3)0.0194 (10)
O31.0838 (4)0.6931 (4)0.3051 (3)0.0165 (10)
O41.0145 (5)0.9234 (4)0.3588 (3)0.0204 (11)
O50.9720 (5)0.7288 (5)0.0357 (3)0.0253 (11)
H5F0.90540.71210.01840.030*
O60.7953 (5)0.8908 (4)0.1520 (3)0.0196 (10)
O70.8823 (5)0.6662 (4)0.1989 (3)0.0185 (10)
O81.0447 (5)0.8278 (4)0.1577 (3)0.0203 (10)
O90.6217 (5)1.0335 (5)0.4066 (3)0.0306 (12)
O100.5760 (5)1.0780 (5)0.2421 (3)0.0276 (12)
O110.6061 (5)0.8291 (4)0.3003 (3)0.0198 (10)
O120.8564 (5)1.0536 (5)0.2577 (3)0.0247 (11)
O130.6085 (5)0.6714 (5)0.4513 (3)0.0317 (13)
O140.6344 (6)0.5618 (5)0.2884 (4)0.0328 (13)
O150.8706 (5)0.5525 (4)0.3514 (3)0.0210 (11)
O161.0008 (5)0.4019 (5)0.1883 (4)0.0297 (12)
O171.1447 (5)0.4220 (5)0.3112 (4)0.0307 (12)
O181.1771 (5)0.5751 (4)0.1505 (3)0.0207 (11)
O191.3806 (5)0.6492 (5)0.2178 (4)0.0325 (13)
O201.3464 (5)0.7417 (5)0.0556 (3)0.0299 (12)
O211.2370 (5)0.8958 (5)0.2099 (3)0.0219 (11)
O221.0926 (6)1.1388 (5)0.2799 (4)0.0321 (13)
O231.0943 (5)1.0763 (5)0.1119 (3)0.0320 (13)
O240.3296 (8)0.1763 (7)0.4162 (5)0.076 (2)
H24A0.24190.21410.44040.091*
H24B0.32640.11330.38380.091*
O250.3181 (5)0.9219 (5)0.3693 (3)0.0301 (12)
H25A0.40320.88020.35470.036*
H25B0.28310.91630.32560.036*
O260.4289 (7)0.4016 (6)0.3250 (4)0.0511 (16)
H26A0.48390.44430.33700.061*
H26B0.37990.44670.29380.061*
O270.3488 (8)0.2320 (9)0.1809 (5)0.098 (3)
H27A0.40300.18390.20990.118*
H27B0.26190.23000.21240.118*
O280.2690 (6)0.2880 (6)0.0232 (4)0.0443 (15)
H28A0.33050.31540.04060.053*
H28B0.24030.23160.06250.053*
C10.3022 (8)0.5766 (8)0.9035 (5)0.0328 (18)*
H1D0.37350.51450.86080.039*
H1E0.34180.59310.95190.039*
C20.2697 (9)0.6994 (8)0.8535 (5)0.037 (2)*
H2A0.35830.71800.81380.045*
H2B0.21120.68770.81470.045*
C30.2894 (8)0.6276 (8)0.4831 (6)0.037 (2)
H3A0.32000.67010.42510.045*
H3B0.37150.56710.49170.045*
C40.2356 (10)0.7262 (8)0.5605 (6)0.043 (2)
H4A0.17920.69000.61490.052*
H4B0.31630.74770.57520.052*
C50.5516 (8)1.0024 (8)0.0280 (5)0.0295 (18)
H5A0.64820.98980.01280.035*
H5B0.52891.08610.05740.035*
N10.1738 (7)0.5215 (6)0.9442 (4)0.0327 (16)
H1A0.10430.57430.98490.049*
H1B0.20070.45080.97390.049*
H1C0.13580.49960.90210.049*
N20.1935 (7)0.8119 (6)0.9175 (4)0.0313 (15)
H2C0.17760.88420.88630.047*
H2D0.23960.82570.95710.047*
H2E0.10620.79990.95070.047*
N30.1786 (7)0.5569 (6)0.4790 (4)0.0309 (15)
H3C0.14720.51670.53120.046*
H3D0.16490.52030.43330.046*
N40.1468 (7)0.8455 (6)0.5355 (4)0.0327 (16)
H4C0.19860.87790.48520.049*
H4D0.11260.90560.57920.049*
H4E0.07410.82100.52310.049*
N50.5426 (7)0.9020 (6)0.0988 (4)0.0319 (15)
H5C0.45580.90470.13710.048*
H5D0.60280.90860.13060.048*
H5E0.57210.82360.07130.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0177 (3)0.0153 (3)0.0236 (3)0.0010 (2)0.0049 (3)0.0023 (2)
Mo20.0192 (3)0.0160 (3)0.0227 (3)0.0047 (3)0.0059 (3)0.0036 (2)
Mo30.0209 (3)0.0136 (3)0.0234 (3)0.0031 (3)0.0066 (3)0.0010 (2)
Mo40.0174 (3)0.0174 (3)0.0204 (3)0.0026 (3)0.0052 (2)0.0006 (2)
Mo50.0202 (3)0.0148 (3)0.0255 (3)0.0046 (3)0.0062 (3)0.0044 (2)
P10.0189 (9)0.0153 (9)0.0170 (9)0.0015 (7)0.0059 (7)0.0003 (7)
P20.0183 (9)0.0173 (10)0.0165 (9)0.0036 (7)0.0055 (7)0.0026 (7)
O10.029 (3)0.020 (3)0.023 (3)0.001 (2)0.006 (2)0.001 (2)
O20.017 (2)0.018 (3)0.023 (3)0.002 (2)0.007 (2)0.002 (2)
O30.014 (2)0.013 (2)0.021 (2)0.0014 (19)0.0038 (19)0.0017 (19)
O40.023 (3)0.015 (3)0.022 (3)0.002 (2)0.005 (2)0.0026 (19)
O50.027 (3)0.029 (3)0.021 (3)0.008 (2)0.007 (2)0.000 (2)
O60.018 (2)0.022 (3)0.018 (2)0.000 (2)0.006 (2)0.002 (2)
O70.021 (2)0.012 (2)0.023 (3)0.007 (2)0.005 (2)0.0036 (19)
O80.017 (2)0.018 (3)0.027 (3)0.006 (2)0.008 (2)0.004 (2)
O90.031 (3)0.027 (3)0.028 (3)0.003 (2)0.003 (2)0.003 (2)
O100.025 (3)0.020 (3)0.037 (3)0.000 (2)0.012 (2)0.005 (2)
O110.013 (2)0.017 (3)0.028 (3)0.001 (2)0.005 (2)0.004 (2)
O120.022 (3)0.017 (3)0.035 (3)0.003 (2)0.010 (2)0.004 (2)
O130.029 (3)0.029 (3)0.030 (3)0.001 (2)0.001 (2)0.003 (2)
O140.035 (3)0.029 (3)0.041 (3)0.015 (3)0.017 (3)0.005 (2)
O150.025 (3)0.015 (3)0.025 (3)0.007 (2)0.009 (2)0.006 (2)
O160.030 (3)0.021 (3)0.039 (3)0.009 (2)0.010 (2)0.002 (2)
O170.033 (3)0.018 (3)0.044 (3)0.001 (2)0.019 (3)0.005 (2)
O180.021 (3)0.018 (3)0.022 (3)0.004 (2)0.005 (2)0.002 (2)
O190.025 (3)0.027 (3)0.047 (3)0.002 (2)0.015 (3)0.003 (2)
O200.029 (3)0.031 (3)0.025 (3)0.007 (2)0.000 (2)0.003 (2)
O210.019 (2)0.022 (3)0.024 (3)0.005 (2)0.005 (2)0.000 (2)
O220.035 (3)0.025 (3)0.040 (3)0.010 (2)0.014 (3)0.000 (2)
O230.034 (3)0.030 (3)0.030 (3)0.007 (3)0.008 (2)0.014 (2)
O240.055 (5)0.058 (5)0.094 (6)0.007 (4)0.009 (4)0.027 (4)
O250.026 (3)0.033 (3)0.034 (3)0.006 (2)0.013 (2)0.001 (2)
O260.050 (4)0.044 (4)0.063 (4)0.015 (3)0.019 (3)0.002 (3)
O270.059 (5)0.137 (9)0.078 (6)0.019 (5)0.020 (5)0.020 (5)
O280.042 (3)0.032 (4)0.060 (4)0.007 (3)0.016 (3)0.001 (3)
C30.028 (4)0.024 (5)0.051 (5)0.002 (4)0.003 (4)0.005 (4)
C40.053 (6)0.039 (6)0.048 (5)0.016 (5)0.027 (5)0.013 (4)
C50.035 (4)0.025 (4)0.037 (4)0.016 (4)0.015 (4)0.006 (3)
N10.044 (4)0.026 (4)0.025 (3)0.003 (3)0.007 (3)0.000 (3)
N20.029 (4)0.025 (4)0.035 (4)0.005 (3)0.002 (3)0.010 (3)
N30.048 (4)0.026 (4)0.022 (3)0.008 (3)0.015 (3)0.006 (3)
N40.046 (4)0.022 (4)0.031 (4)0.010 (3)0.008 (3)0.009 (3)
N50.037 (4)0.030 (4)0.034 (4)0.010 (3)0.015 (3)0.003 (3)
Geometric parameters (Å, º) top
Mo1—O91.710 (5)O24—H24B0.8617
Mo1—O101.718 (5)O25—H25A0.8451
Mo1—O121.917 (5)O25—H25B0.8447
Mo1—O111.953 (5)O26—H26A0.8443
Mo1—O62.274 (4)O26—H26B0.8435
Mo1—O22.285 (4)O27—H27A0.8680
Mo2—O131.709 (5)O27—H27B0.8656
Mo2—O141.714 (5)O28—H28A0.8421
Mo2—O111.924 (4)O28—H28B0.8598
Mo2—O151.944 (5)C1—N11.482 (10)
Mo2—O22.224 (5)C1—C21.508 (10)
Mo2—O72.343 (4)C1—H1D0.9700
Mo3—O161.706 (5)C1—H1E0.9700
Mo3—O171.711 (5)C2—N21.502 (10)
Mo3—O181.919 (5)C2—H2A0.9700
Mo3—O151.926 (5)C2—H2B0.9700
Mo3—O32.311 (4)C3—N31.481 (10)
Mo3—O72.312 (4)C3—C41.512 (10)
Mo4—O191.692 (5)C3—H3A0.9700
Mo4—O201.722 (5)C3—H3B0.9700
Mo4—O181.921 (5)C4—N41.494 (10)
Mo4—O211.966 (5)C4—H4A0.9700
Mo4—O82.211 (4)C4—H4B0.9700
Mo4—O32.322 (4)C5—N51.481 (9)
Mo5—O221.690 (5)C5—C5i1.525 (14)
Mo5—O231.709 (5)C5—H5A0.9700
Mo5—O211.932 (5)C5—H5B0.9700
Mo5—O121.933 (5)N1—H1A0.8953
Mo5—O42.253 (5)N1—H1B0.8934
Mo5—O82.380 (5)N1—H1C0.8952
P1—O41.520 (5)N2—H2C0.8970
P1—O11.526 (5)N2—H2D0.8910
P1—O31.555 (5)N2—H2E0.9044
P1—O21.561 (5)N3—H3C0.8896
P2—O51.511 (5)N3—H3D0.8689
P2—O61.528 (5)N4—H4C0.8901
P2—O81.558 (5)N4—H4D0.8854
P2—O71.560 (5)N4—H4E0.8918
O1—H1F0.8500N5—H5C0.8890
O5—H5F0.8360N5—H5D0.8888
O24—H24A0.8641N5—H5E0.9043
O9—Mo1—O10102.4 (2)O6—P2—O7109.2 (3)
O9—Mo1—O12100.1 (2)O8—P2—O7109.4 (3)
O10—Mo1—O12102.6 (2)P1—O1—H1F110.0
O9—Mo1—O11100.8 (2)P1—O2—Mo2129.3 (3)
O10—Mo1—O1196.4 (2)P1—O2—Mo1133.9 (3)
O12—Mo1—O11147.8 (2)Mo2—O2—Mo196.06 (16)
O9—Mo1—O6173.2 (2)P1—O3—Mo3125.3 (2)
O10—Mo1—O684.3 (2)P1—O3—Mo4130.2 (3)
O12—Mo1—O679.31 (19)Mo3—O3—Mo492.41 (15)
O11—Mo1—O677.05 (18)P1—O4—Mo5123.0 (3)
O9—Mo1—O285.7 (2)P2—O5—H5F112.6
O10—Mo1—O2166.4 (2)P2—O6—Mo1121.6 (2)
O12—Mo1—O286.43 (18)P2—O7—Mo3125.2 (3)
O11—Mo1—O271.10 (17)P2—O7—Mo2130.2 (3)
O6—Mo1—O287.45 (16)Mo3—O7—Mo292.82 (15)
O13—Mo2—O14104.5 (3)P2—O8—Mo4129.5 (3)
O13—Mo2—O11100.0 (2)P2—O8—Mo5134.9 (3)
O14—Mo2—O11101.2 (2)Mo4—O8—Mo594.63 (16)
O13—Mo2—O1594.9 (2)Mo2—O11—Mo1119.7 (2)
O14—Mo2—O1598.7 (2)Mo1—O12—Mo5146.5 (3)
O11—Mo2—O15151.31 (19)Mo3—O15—Mo2121.2 (2)
O13—Mo2—O295.4 (2)Mo3—O18—Mo4121.2 (2)
O14—Mo2—O2160.0 (2)Mo5—O21—Mo4120.0 (2)
O11—Mo2—O273.01 (18)H24A—O24—H24B105.7
O15—Mo2—O281.31 (18)H25A—O25—H25B108.9
O13—Mo2—O7162.8 (2)H26A—O26—H26B109.4
O14—Mo2—O789.0 (2)H27A—O27—H27B105.9
O11—Mo2—O787.47 (17)H28A—O28—H28B106.4
O15—Mo2—O772.28 (17)N1—C1—C2112.4 (6)
O2—Mo2—O771.84 (16)N1—C1—H1D109.1
O16—Mo3—O17104.8 (2)C2—C1—H1D109.1
O16—Mo3—O1898.2 (2)N1—C1—H1E109.1
O17—Mo3—O18103.4 (2)C2—C1—H1E109.1
O16—Mo3—O15102.4 (2)H1D—C1—H1E107.9
O17—Mo3—O1596.2 (2)N2—C2—C1113.0 (6)
O18—Mo3—O15146.9 (2)N2—C2—H2A109.0
O16—Mo3—O3166.0 (2)C1—C2—H2A109.0
O17—Mo3—O388.1 (2)N2—C2—H2B109.0
O18—Mo3—O373.27 (17)C1—C2—H2B109.0
O15—Mo3—O381.00 (18)H2A—C2—H2B107.8
O16—Mo3—O787.5 (2)N3—C3—C4112.0 (7)
O17—Mo3—O7165.5 (2)N3—C3—H3A109.2
O18—Mo3—O782.00 (17)C4—C3—H3A109.2
O15—Mo3—O773.31 (17)N3—C3—H3B109.2
O3—Mo3—O780.46 (15)C4—C3—H3B109.2
O19—Mo4—O20104.5 (3)H3A—C3—H3B107.9
O19—Mo4—O18100.8 (2)N4—C4—C3111.8 (6)
O20—Mo4—O1899.1 (2)N4—C4—H4A109.3
O19—Mo4—O2196.6 (2)C3—C4—H4A109.3
O20—Mo4—O2195.7 (2)N4—C4—H4B109.3
O18—Mo4—O21153.52 (19)C3—C4—H4B109.3
O19—Mo4—O8158.6 (2)H4A—C4—H4B107.9
O20—Mo4—O895.8 (2)N5—C5—C5i110.7 (8)
O18—Mo4—O882.59 (18)N5—C5—H5A109.5
O21—Mo4—O874.17 (18)C5i—C5—H5A109.5
O19—Mo4—O388.0 (2)N5—C5—H5B109.5
O20—Mo4—O3166.4 (2)C5i—C5—H5B109.5
O18—Mo4—O372.96 (17)H5A—C5—H5B108.1
O21—Mo4—O387.89 (17)C1—N1—H1A113.3
O8—Mo4—O372.61 (16)C1—N1—H1B107.2
O22—Mo5—O23103.1 (3)H1A—N1—H1B107.8
O22—Mo5—O21100.0 (2)C1—N1—H1C113.0
O23—Mo5—O2199.9 (2)H1A—N1—H1C107.1
O22—Mo5—O12101.7 (2)H1B—N1—H1C108.2
O23—Mo5—O1299.6 (2)C2—N2—H2C111.4
O21—Mo5—O12146.5 (2)C2—N2—H2D113.7
O22—Mo5—O485.1 (2)H2C—N2—H2D108.1
O23—Mo5—O4171.9 (2)C2—N2—H2E110.2
O21—Mo5—O478.16 (18)H2C—N2—H2E105.6
O12—Mo5—O478.63 (18)H2D—N2—H2E107.4
O22—Mo5—O8168.7 (2)C3—N3—H3C112.0
O23—Mo5—O885.4 (2)C3—N3—H3D131.5
O21—Mo5—O870.87 (18)H3C—N3—H3D110.5
O12—Mo5—O883.95 (18)C4—N4—H4C109.0
O4—Mo5—O886.50 (16)C4—N4—H4D114.6
O4—P1—O1111.1 (3)H4C—N4—H4D108.8
O4—P1—O3109.7 (3)C4—N4—H4E105.9
O1—P1—O3110.0 (3)H4C—N4—H4E109.6
O4—P1—O2106.7 (3)H4D—N4—H4E109.0
O1—P1—O2109.5 (3)C5—N5—H5C114.8
O3—P1—O2109.8 (3)C5—N5—H5D108.2
O5—P2—O6112.9 (3)H5C—N5—H5D109.7
O5—P2—O8110.5 (3)C5—N5—H5E109.6
O6—P2—O8106.4 (3)H5C—N5—H5E107.2
O5—P2—O7108.4 (3)H5D—N5—H5E107.0
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5E···O20ii0.902.663.075 (8)109
N5—H5E···O28iii0.902.012.796 (9)144
N5—H5D···O100.892.453.069 (8)127
N5—H5D···O60.892.012.846 (8)156
N5—H5C···O21ii0.892.173.046 (8)170
N4—H4E···O1ii0.891.932.806 (8)167
N4—H4D···O12iv0.892.653.357 (8)137
N4—H4D···O22iv0.892.603.099 (8)116
N4—H4D···O4iv0.892.082.907 (8)155
N4—H4C···O250.891.922.803 (8)171
N3—H3D···O17ii0.872.253.117 (8)176
N3—H3C···O15v0.891.872.732 (7)162
N2—H2E···O23iv0.902.563.030 (8)113
N2—H2E···O5vi0.901.842.699 (8)159
N2—H2D···O20vi0.892.142.924 (8)146
N2—H2C···O6iv0.902.493.310 (8)151
N2—H2C···O12iv0.902.353.084 (8)139
N1—H1C···O7v0.902.463.259 (8)149
N1—H1C···O16v0.902.283.011 (8)138
N1—H1B···O28vii0.891.932.819 (8)173
N1—H1A···O5vi0.901.922.772 (8)159
O28—H28B···O23viii0.862.393.157 (8)149
O28—H28A···O270.842.312.740 (10)112
O27—H27B···O17ii0.872.462.912 (10)113
O27—H27B···O22viii0.872.112.916 (10)155
O27—H27A···O10ix0.872.032.875 (9)163
O26—H26B···O19ii0.842.403.064 (8)136
O26—H26B···O17ii0.842.362.874 (8)120
O26—H26A···O140.842.112.858 (8)148
O25—H25B···O21ii0.841.972.808 (7)170
O25—H25B···O4ii0.842.573.083 (7)120
O25—H25A···O110.851.932.745 (7)163
O24—H24B···O25ix0.862.082.868 (9)151
O24—H24A···O1v0.861.972.795 (8)159
O5—H5F···O28iii0.842.022.845 (8)168
O1—H1F···N3x0.852.182.766 (8)126
Symmetry codes: (ii) x1, y, z; (iii) x+1, y+1, z; (iv) x+1, y+2, z+1; (v) x+1, y+1, z+1; (vi) x1, y, z+1; (vii) x, y, z+1; (viii) x1, y1, z; (ix) x, y1, z; (x) x+1, y, z.

Experimental details

Crystal data
Chemical formula(C2H10N2)3(C2H9N2)2[Mo5(HPO4)2O15]·10H2O
Mr2312.06
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.0045 (11), 10.6625 (12), 15.1884 (19)
α, β, γ (°)87.405 (2), 73.119 (1), 77.978 (1)
V3)1516.2 (3)
Z1
Radiation typeMo Kα
µ (mm1)2.23
Crystal size (mm)0.38 × 0.34 × 0.30
Data collection
DiffractometerSiemens SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.485, 0.554
No. of measured, independent and
observed [I > 2σ(I)] reflections
7582, 5253, 4015
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.114, 1.04
No. of reflections5253
No. of parameters396
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.28, 1.07

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5E···O20i0.902.663.075 (8)109.0
N5—H5E···O28ii0.902.012.796 (9)144.2
N5—H5D···O100.892.453.069 (8)126.9
N5—H5D···O60.892.012.846 (8)155.6
N5—H5C···O21i0.892.173.046 (8)169.7
N4—H4E···O1i0.891.932.806 (8)166.7
N4—H4D···O12iii0.892.653.357 (8)137.4
N4—H4D···O22iii0.892.603.099 (8)116.2
N4—H4D···O4iii0.892.082.907 (8)155.3
N4—H4C···O250.891.922.803 (8)171.3
N3—H3D···O17i0.872.253.117 (8)176.3
N3—H3C···O15iv0.891.872.732 (7)162.1
N2—H2E···O23iii0.902.563.030 (8)112.8
N2—H2E···O5v0.901.842.699 (8)158.6
N2—H2D···O20v0.892.142.924 (8)145.8
N2—H2C···O6iii0.902.493.310 (8)151.4
N2—H2C···O12iii0.902.353.084 (8)138.6
N1—H1C···O7iv0.902.463.259 (8)148.8
N1—H1C···O16iv0.902.283.011 (8)138.3
N1—H1B···O28vi0.891.932.819 (8)172.9
N1—H1A···O5v0.901.922.772 (8)159.1
O28—H28B···O23vii0.862.393.157 (8)149.2
O28—H28A···O270.842.312.740 (10)111.8
O27—H27B···O17i0.872.462.912 (10)112.9
O27—H27B···O22vii0.872.112.916 (10)154.6
O27—H27A···O10viii0.872.032.875 (9)162.6
O26—H26B···O19i0.842.403.064 (8)135.8
O26—H26B···O17i0.842.362.874 (8)119.8
O26—H26A···O140.842.112.858 (8)147.9
O25—H25B···O21i0.841.972.808 (7)169.8
O25—H25B···O4i0.842.573.083 (7)120.2
O25—H25A···O110.851.932.745 (7)163.1
O24—H24B···O25viii0.862.082.868 (9)151.1
O24—H24A···O1iv0.861.972.795 (8)158.6
O5—H5F···O28ii0.842.022.845 (8)168.1
O1—H1F···N3ix0.852.182.766 (8)125.9
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x+1, y+2, z+1; (iv) x+1, y+1, z+1; (v) x1, y, z+1; (vi) x, y, z+1; (vii) x1, y1, z; (viii) x, y1, z; (ix) x+1, y, z.
 

Acknowledgements

This work was supported by the Doctoral Foundation of Liaocheng University (No. 31805).

References

First citationBrown, I. D. (2002). The Chemical Bond in Inorganic Chemistry – The Bond Valence Model. IUCr monographs on Crystallography, No. 12. Oxford University Press.  Google Scholar
First citationCoronado, E. & Gomez-Garcia, C. J. (1998). Chem. Rev. 98, 273–296.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGong, Y., Hu, C., Li, H., Tang, W., Huang, K. & Hou, W. (2006). J. Mol. Struct. 784, 228–238.  Web of Science CSD CrossRef CAS Google Scholar
First citationNiu, J., Wang, K., Chen, H., Zhao, J., Ma, P., Wang, J., Li, M., Bai, Y. & Dang, D. (2009). Cryst. Growth Des. 9, 4362–4372.  Web of Science CSD CrossRef CAS Google Scholar
First citationRuether, T., Hultgren, V. M., Timko, B. P., Bond, A. M., Jackson, W. R. & Wedd, A. G. (2003). J. Am. Chem. Soc. 125, 10133–10143.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSkibsted, J., Brorson, M., Villadsen, J. & Jakobsen, H. J. (2000). Inorg. Chem. 39, 4130–4136.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSun, Q., Zhang, H., Huang, C., Sun, Q., Sun, R. & Wang, Y. (2003). Acta Cryst. E59, m729–m730.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds