inorganic compounds
Diytterbium(II) lithium indium(III) digermanide, Yb2LiInGe2
aDepartment of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
*Correspondence e-mail: sbobev@mail.chem.udel.edu
The title compound, Yb2LiInGe2, a new ordered quaternary intermetallic phase, crystallizes with the orthorhombic Ca2LiInGe2 type (Pearson code oP24). The contains six crystallographically unique sites in the all in special positions with .m.. The structure is complex and based on [InGe4] tetrahedra, which share corners in two directions, forming layers parallel to (001). Yb atoms fill square-pyramidal (Yb1) and octahedral (Yb2) interstices between the [InGe4/2] layers, while the small Li+ atoms fill tetrahedral sites.
Related literature
Isotypic Ae2LiInGe2 (Ae = Ca, Sr) compounds have been reported by Mao et al. (2001). Other related structures include Ca2CdSb2 and Yb2CdSb2 (Xia & Bobev, 2007), SrInGe and EuInGe (Mao et al., 2002), (Eu1-xCax)3In2Ge3 and (Eu1-xCax)4In3Ge4 (You et al., 2010), and (Sr1-xCax)5In3Ge6 (You & Bobev, 2010). STRUCTURE TIDY (Gelato & Parthé, 1987) was used for standardization of the atomic coordinates.
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810014595/wm2327sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810014595/wm2327Isup2.hkl
The
reaction was carried out in a 2 cm3 alumina crucible, using a total ca 500 mg mixture of the elements (Yb and Ge from Alfa, Li from Sigma-Aldrich), which was then topped off with ca 2 grams of In (Alfa, shots) acting as a metal The crucible was subsequently enclosed and flame-sealed in an evacuated fused silica ampoule, and then was heated at 120 Kh-1 to 1223 K, kept there for 10 h, cooled to 573 K, where the excess In was removed by centrifugation.Displacement parameters for all atoms were refined anisotropically except those of Li. The maximum residual electron density lies 0.87 Å from Yb1, and the minimum residual electron density lies 1.97 Å from Ge2. The atomic coordinates have been standardized with the aid of STRUCTURE TIDY (Gelato & Parthé, 1987).
During our exploratory investigations of lithium-containing germanides using molten indium as a metal
the quaternary compound Yb2LiInGe2 was obtained for the first time. It crystallizes in Pnma and is isostructural with Ae2LiInGe2 (Ae = Ca and Sr) compounds which were reported previously by Mao et al. (2001). This finding implies that this series can probably be extended towards other lanthanide metals, which likewise exhibit a stable of +II, such as Eu for example.The
of the title compound can be readily described as consisting of puckered polyanionic layers of corner-shared [InGe4] tetrahedra, running parallel to the ab plane and alternately stacked along the c axis (Figure 1). Yb and Li atoms, in turn, can be viewed simply as "electron donors", which provide the electrons to fill the valence shells of In and Ge, as well as "spacers" that separate the [InGe4/2]5- polyanionic layers.The In—Ge bond distances observed within the [InGe4] tetrahedron range from 2.7803 (13) to 2.8203 (13) Å, and are comparable to those in other indium germanides such as Ca2LiInGe2 (2.806 (1) - 2.838 (1)Å; Mao et al., 2001), Sr2LiInGe2 (2.885 (1) - 2.926 (1) Å; Mao et al., 2001), EuInGe (2.751 (1) Å; Mao et al., 2002), SrInGe (2.780 Å; Mao et al., 2002), as well as the recently reported (Eu1-xCax)3In2Ge3 (2.760 (2) - 2.869 (1) Å), (Eu1-xCax)4In3Ge4 (2.755 (2) - 2.887 (1) Å; You et al., 2010), and (Sr1-xCax)5In3Ge6 (2.672 (2) - 2.877 (3) Å; You & Bobev, 2010). In the absence of direct In—In or Ge—Ge bonding, the formula of the title compound can be rationalized as follows: [(Yb2+)2(Li+)][(4b-In-) (2b-Ge2-)2]. Here, the In atom is tetrahedrally surrounded by four Ge atoms (Ge1 × 2 and Ge2 × 2) and is therefore assigned a formal charge of "-1", while the Ge atoms are 2-bonded, carrying a formal charge of "-2" each (4-bonded and 2-bonded atoms are denoted as 4b- and 2b-, respectively).
Interestingly, the structure of the title compound closely resembles the structure of one of our previously reported antimonides, viz. Ca2CdSb2 (Xia & Bobev, 2007). The latter structure is also made up of corrugated layers of corner-shared [CdSb4] tetrahedra, with Ca2+ cations filling the space between them. The obvious difference between these two structure types is the addition of Li atoms in Yb2LiInGe2, filling small tetrahedral holes between the layers (Figure 1).
Isotypic Ae2LiInGe2 (Ae = Ca, Sr) compounds have been reported by Mao et al. (2001). Other related structures include Ca2CdSb2 and Yb2CdSb2 (Xia & Bobev, 2007), SrInGe and EuInGe (Mao et al., 2002), (Eu1-xCax)3In2Ge3 and (Eu1-xCax)4In3Ge4 (You et al., 2010), and (Sr1-xCax)5In3Ge6 (You & Bobev, 2010). STRUCTURE TIDY (Gelato & Parthé, 1987) was used for standardization of the atomic coordinates.
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Yb2LiInGe2 | F(000) = 1024 |
Mr = 613.02 | Dx = 7.707 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 735 reflections |
a = 7.182 (3) Å | θ = 2.4–28.2° |
b = 4.3899 (18) Å | µ = 50.42 mm−1 |
c = 16.758 (7) Å | T = 200 K |
V = 528.3 (4) Å3 | Needle, grey-silver |
Z = 4 | 0.04 × 0.02 × 0.02 mm |
Bruker SMART APEX diffractometer | 735 independent reflections |
Radiation source: fine-focus sealed tube | 623 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.090 |
ω scans | θmax = 28.2°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | h = −9→9 |
Tmin = 0.258, Tmax = 0.365 | k = −5→5 |
6805 measured reflections | l = −22→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | w = 1/[σ2(Fo2) + (0.P)2 + 1.4209P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.059 | (Δ/σ)max < 0.001 |
S = 1.11 | Δρmax = 2.10 e Å−3 |
735 reflections | Δρmin = −2.86 e Å−3 |
35 parameters | Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00117 (14) |
Yb2LiInGe2 | V = 528.3 (4) Å3 |
Mr = 613.02 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 7.182 (3) Å | µ = 50.42 mm−1 |
b = 4.3899 (18) Å | T = 200 K |
c = 16.758 (7) Å | 0.04 × 0.02 × 0.02 mm |
Bruker SMART APEX diffractometer | 735 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | 623 reflections with I > 2σ(I) |
Tmin = 0.258, Tmax = 0.365 | Rint = 0.090 |
6805 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 35 parameters |
wR(F2) = 0.059 | 0 restraints |
S = 1.11 | Δρmax = 2.10 e Å−3 |
735 reflections | Δρmin = −2.86 e Å−3 |
Experimental. Selected in the glove box, crystals were put in a Paratone N oil and cut to the desired dimensions. The chosen crystal was mounted on a tip of a glass fiber and quickly transferred onto the goniometer. The crystal was kept under a cold nitrogen stream to protect from the ambient air and moisture. Data collection is performed with four batch runs at φ = 0.00 ° (607 frames), at φ = 90.00 ° (607 frames), at φ = 180.00 ° (607 frames), and at φ = 270.00 (607 frames). Frame width = 0.30 ° in ω. Data are merged and treated with multi-scan absorption corrections. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Yb1 | 0.01067 (8) | 0.2500 | 0.27892 (3) | 0.00935 (17) | |
Yb2 | 0.15804 (9) | 0.2500 | 0.06161 (3) | 0.01085 (17) | |
In | 0.15783 (13) | 0.2500 | 0.84697 (5) | 0.0079 (2) | |
Ge1 | 0.22805 (19) | 0.2500 | 0.43629 (8) | 0.0078 (3) | |
Ge2 | 0.27452 (18) | 0.2500 | 0.68627 (8) | 0.0065 (3) | |
Li1 | 0.011 (4) | 0.2500 | 0.5672 (16) | 0.023 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Yb1 | 0.0083 (3) | 0.0110 (3) | 0.0088 (3) | 0.000 | 0.0001 (2) | 0.000 |
Yb2 | 0.0116 (3) | 0.0121 (3) | 0.0089 (3) | 0.000 | −0.0001 (2) | 0.000 |
In | 0.0076 (5) | 0.0102 (4) | 0.0060 (5) | 0.000 | −0.0004 (3) | 0.000 |
Ge1 | 0.0094 (7) | 0.0087 (6) | 0.0052 (7) | 0.000 | 0.0004 (5) | 0.000 |
Ge2 | 0.0058 (7) | 0.0083 (6) | 0.0054 (7) | 0.000 | 0.0002 (5) | 0.000 |
Yb1—Ge2i | 3.0583 (13) | In—Yb1viii | 3.4331 (12) |
Yb1—Ge2ii | 3.0583 (13) | In—Yb1ix | 3.4331 (12) |
Yb1—Ge1 | 3.0646 (18) | In—Yb2i | 3.5087 (12) |
Yb1—Ge2iii | 3.0997 (13) | In—Yb2ii | 3.5087 (12) |
Yb1—Ge2iv | 3.0997 (13) | In—Yb2xii | 3.5969 (18) |
Yb1—Ini | 3.2760 (12) | Ge1—Li1 | 2.69 (3) |
Yb1—Inii | 3.2760 (12) | Ge1—Iniv | 2.7803 (13) |
Yb1—Li1ii | 3.39 (2) | Ge1—Iniii | 2.7803 (13) |
Yb1—Li1i | 3.39 (2) | Ge1—Li1i | 2.786 (17) |
Yb1—Iniii | 3.4331 (12) | Ge1—Li1ii | 2.786 (17) |
Yb1—Iniv | 3.4331 (12) | Ge1—Yb2vi | 3.0883 (19) |
Yb1—Yb2v | 3.6817 (13) | Ge1—Yb2viii | 3.1460 (13) |
Yb2—Ge2iii | 3.0686 (13) | Ge1—Yb2ix | 3.1460 (13) |
Yb2—Ge2iv | 3.0686 (13) | Ge2—Li1 | 2.75 (3) |
Yb2—Ge1v | 3.088 (2) | Ge2—Inxi | 2.809 (2) |
Yb2—Ge1iv | 3.1460 (13) | Ge2—Yb1i | 3.0583 (13) |
Yb2—Ge1iii | 3.1460 (13) | Ge2—Yb1ii | 3.0583 (13) |
Yb2—Li1iii | 3.24 (2) | Ge2—Yb2ix | 3.0686 (13) |
Yb2—Li1iv | 3.24 (2) | Ge2—Yb2viii | 3.0686 (13) |
Yb2—Li1vi | 3.33 (3) | Ge2—Yb1viii | 3.0997 (13) |
Yb2—Ini | 3.5087 (12) | Ge2—Yb1ix | 3.0997 (13) |
Yb2—Inii | 3.5087 (12) | Li1—Ge1i | 2.786 (17) |
Yb2—Invii | 3.5969 (18) | Li1—Ge1ii | 2.786 (17) |
Yb2—Yb1vi | 3.6817 (13) | Li1—Inx | 2.91 (3) |
In—Ge1viii | 2.7803 (13) | Li1—Li1i | 3.15 (4) |
In—Ge1ix | 2.7803 (13) | Li1—Li1ii | 3.15 (4) |
In—Ge2x | 2.809 (2) | Li1—Yb2viii | 3.24 (2) |
In—Ge2 | 2.8203 (19) | Li1—Yb2ix | 3.24 (2) |
In—Li1xi | 2.91 (3) | Li1—Yb2v | 3.33 (3) |
In—Yb1i | 3.2760 (12) | Li1—Yb1ii | 3.39 (2) |
In—Yb1ii | 3.2760 (12) | Li1—Yb1i | 3.39 (2) |
Ge2i—Yb1—Ge2ii | 91.73 (5) | Ge1viii—In—Yb2i | 116.71 (5) |
Ge2i—Yb1—Ge1 | 100.19 (4) | Ge1ix—In—Yb2i | 57.43 (4) |
Ge2ii—Yb1—Ge1 | 100.19 (4) | Ge2x—In—Yb2i | 56.83 (3) |
Ge2i—Yb1—Ge2iii | 159.57 (3) | Ge2—In—Yb2i | 127.52 (3) |
Ge2ii—Yb1—Ge2iii | 85.45 (3) | Li1xi—In—Yb2i | 110.3 (4) |
Ge1—Yb1—Ge2iii | 100.22 (4) | Yb1i—In—Yb2i | 67.86 (3) |
Ge2i—Yb1—Ge2iv | 85.45 (3) | Yb1ii—In—Yb2i | 117.48 (4) |
Ge2ii—Yb1—Ge2iv | 159.57 (3) | Yb1viii—In—Yb2i | 173.39 (3) |
Ge1—Yb1—Ge2iv | 100.22 (4) | Yb1ix—In—Yb2i | 101.15 (3) |
Ge2iii—Yb1—Ge2iv | 90.16 (5) | Ge1viii—In—Yb2ii | 57.43 (4) |
Ge2i—Yb1—Ini | 52.74 (3) | Ge1ix—In—Yb2ii | 116.71 (4) |
Ge2ii—Yb1—Ini | 110.87 (4) | Ge2x—In—Yb2ii | 56.83 (3) |
Ge1—Yb1—Ini | 137.93 (2) | Ge2—In—Yb2ii | 127.52 (3) |
Ge2iii—Yb1—Ini | 109.62 (4) | Li1xi—In—Yb2ii | 110.3 (4) |
Ge2iv—Yb1—Ini | 52.18 (4) | Yb1i—In—Yb2ii | 117.48 (4) |
Ge2i—Yb1—Inii | 110.87 (4) | Yb1ii—In—Yb2ii | 67.86 (3) |
Ge2ii—Yb1—Inii | 52.74 (3) | Yb1viii—In—Yb2ii | 101.15 (3) |
Ge1—Yb1—Inii | 137.93 (2) | Yb1ix—In—Yb2ii | 173.39 (3) |
Ge2iii—Yb1—Inii | 52.18 (4) | Yb2i—In—Yb2ii | 77.45 (4) |
Ge2iv—Yb1—Inii | 109.62 (4) | Ge1viii—In—Yb2xii | 57.42 (3) |
Ini—Yb1—Inii | 84.13 (4) | Ge1ix—In—Yb2xii | 57.42 (3) |
Ge2i—Yb1—Li1ii | 106.8 (4) | Ge2x—In—Yb2xii | 101.46 (4) |
Ge2ii—Yb1—Li1ii | 50.2 (4) | Ge2—In—Yb2xii | 162.69 (4) |
Ge1—Yb1—Li1ii | 50.8 (4) | Li1xi—In—Yb2xii | 60.4 (5) |
Ge2iii—Yb1—Li1ii | 86.9 (3) | Yb1i—In—Yb2xii | 130.10 (2) |
Ge2iv—Yb1—Li1ii | 149.6 (4) | Yb1ii—In—Yb2xii | 130.10 (2) |
Ini—Yb1—Li1ii | 155.1 (4) | Yb1viii—In—Yb2xii | 109.38 (3) |
Inii—Yb1—Li1ii | 92.3 (3) | Yb1ix—In—Yb2xii | 109.38 (3) |
Ge2i—Yb1—Li1i | 50.2 (4) | Yb2i—In—Yb2xii | 64.13 (2) |
Ge2ii—Yb1—Li1i | 106.8 (4) | Yb2ii—In—Yb2xii | 64.13 (2) |
Ge1—Yb1—Li1i | 50.8 (4) | Li1—Ge1—Iniv | 127.56 (6) |
Ge2iii—Yb1—Li1i | 149.6 (4) | Li1—Ge1—Iniii | 127.56 (6) |
Ge2iv—Yb1—Li1i | 86.9 (3) | Iniv—Ge1—Iniii | 104.27 (6) |
Ini—Yb1—Li1i | 92.3 (3) | Li1—Ge1—Li1i | 70.1 (7) |
Inii—Yb1—Li1i | 155.1 (4) | Iniv—Ge1—Li1i | 63.1 (5) |
Li1ii—Yb1—Li1i | 80.7 (6) | Iniii—Ge1—Li1i | 142.4 (5) |
Ge2i—Yb1—Iniii | 149.31 (4) | Li1—Ge1—Li1ii | 70.1 (7) |
Ge2ii—Yb1—Iniii | 86.68 (4) | Iniv—Ge1—Li1ii | 142.4 (5) |
Ge1—Yb1—Iniii | 50.28 (2) | Iniii—Ge1—Li1ii | 63.1 (5) |
Ge2iii—Yb1—Iniii | 50.84 (3) | Li1i—Ge1—Li1ii | 104.0 (9) |
Ge2iv—Yb1—Iniii | 105.90 (4) | Li1—Ge1—Yb1 | 113.9 (6) |
Ini—Yb1—Iniii | 153.95 (3) | Iniv—Ge1—Yb1 | 71.75 (4) |
Inii—Yb1—Iniii | 92.39 (3) | Iniii—Ge1—Yb1 | 71.75 (4) |
Li1ii—Yb1—Iniii | 50.6 (4) | Li1i—Ge1—Yb1 | 70.6 (5) |
Li1i—Yb1—Iniii | 101.1 (4) | Li1ii—Ge1—Yb1 | 70.6 (5) |
Ge2i—Yb1—Iniv | 86.68 (4) | Li1—Ge1—Yb2vi | 124.8 (6) |
Ge2ii—Yb1—Iniv | 149.31 (4) | Iniv—Ge1—Yb2vi | 73.22 (3) |
Ge1—Yb1—Iniv | 50.28 (2) | Iniii—Ge1—Yb2vi | 73.22 (3) |
Ge2iii—Yb1—Iniv | 105.90 (4) | Li1i—Ge1—Yb2vi | 128.0 (4) |
Ge2iv—Yb1—Iniv | 50.84 (3) | Li1ii—Ge1—Yb2vi | 128.0 (4) |
Ini—Yb1—Iniv | 92.39 (3) | Yb1—Ge1—Yb2vi | 121.28 (5) |
Inii—Yb1—Iniv | 153.95 (3) | Li1—Ge1—Yb2viii | 66.8 (4) |
Li1ii—Yb1—Iniv | 101.1 (4) | Iniv—Ge1—Yb2viii | 146.46 (6) |
Li1i—Yb1—Iniv | 50.6 (4) | Iniii—Ge1—Yb2viii | 74.45 (4) |
Iniii—Yb1—Iniv | 79.49 (4) | Li1i—Ge1—Yb2viii | 136.4 (5) |
Ge2i—Yb1—Yb2v | 53.19 (3) | Li1ii—Ge1—Yb2viii | 67.9 (5) |
Ge2ii—Yb1—Yb2v | 53.19 (3) | Yb1—Ge1—Yb2viii | 134.98 (3) |
Ge1—Yb1—Yb2v | 74.08 (4) | Yb2vi—Ge1—Yb2viii | 74.48 (3) |
Ge2iii—Yb1—Yb2v | 134.90 (2) | Li1—Ge1—Yb2ix | 66.8 (4) |
Ge2iv—Yb1—Yb2v | 134.90 (2) | Iniv—Ge1—Yb2ix | 74.45 (4) |
Ini—Yb1—Yb2v | 102.32 (3) | Iniii—Ge1—Yb2ix | 146.46 (6) |
Inii—Yb1—Yb2v | 102.32 (3) | Li1i—Ge1—Yb2ix | 67.9 (5) |
Li1ii—Yb1—Yb2v | 54.3 (4) | Li1ii—Ge1—Yb2ix | 136.4 (5) |
Li1i—Yb1—Yb2v | 54.3 (4) | Yb1—Ge1—Yb2ix | 134.98 (3) |
Iniii—Yb1—Yb2v | 103.64 (3) | Yb2vi—Ge1—Yb2ix | 74.48 (3) |
Iniv—Yb1—Yb2v | 103.64 (3) | Yb2viii—Ge1—Yb2ix | 88.48 (5) |
Ge2iii—Yb2—Ge2iv | 91.33 (5) | Li1—Ge2—Inxi | 122.1 (6) |
Ge2iii—Yb2—Ge1v | 98.63 (3) | Li1—Ge2—In | 119.2 (6) |
Ge2iv—Yb2—Ge1v | 98.63 (3) | Inxi—Ge2—In | 118.72 (5) |
Ge2iii—Yb2—Ge1iv | 155.85 (4) | Li1—Ge2—Yb1i | 71.2 (4) |
Ge2iv—Yb2—Ge1iv | 85.09 (4) | Inxi—Ge2—Yb1i | 133.97 (2) |
Ge1v—Yb2—Ge1iv | 105.52 (3) | In—Ge2—Yb1i | 67.60 (3) |
Ge2iii—Yb2—Ge1iii | 85.09 (4) | Li1—Ge2—Yb1ii | 71.2 (4) |
Ge2iv—Yb2—Ge1iii | 155.85 (4) | Inxi—Ge2—Yb1ii | 133.97 (2) |
Ge1v—Yb2—Ge1iii | 105.52 (3) | In—Ge2—Yb1ii | 67.60 (3) |
Ge1iv—Yb2—Ge1iii | 88.48 (5) | Yb1i—Ge2—Yb1ii | 91.73 (5) |
Ge2iii—Yb2—Li1iii | 51.6 (4) | Li1—Ge2—Yb2ix | 67.4 (4) |
Ge2iv—Yb2—Li1iii | 110.4 (4) | Inxi—Ge2—Yb2ix | 73.16 (3) |
Ge1v—Yb2—Li1iii | 137.2 (3) | In—Ge2—Yb2ix | 134.18 (3) |
Ge1iv—Yb2—Li1iii | 107.5 (4) | Yb1i—Ge2—Yb2ix | 73.87 (3) |
Ge1iii—Yb2—Li1iii | 49.9 (4) | Yb1ii—Ge2—Yb2ix | 138.50 (5) |
Ge2iii—Yb2—Li1iv | 110.4 (4) | Li1—Ge2—Yb2viii | 67.4 (4) |
Ge2iv—Yb2—Li1iv | 51.6 (4) | Inxi—Ge2—Yb2viii | 73.16 (3) |
Ge1v—Yb2—Li1iv | 137.2 (3) | In—Ge2—Yb2viii | 134.18 (3) |
Ge1iv—Yb2—Li1iv | 49.9 (4) | Yb1i—Ge2—Yb2viii | 138.50 (5) |
Ge1iii—Yb2—Li1iv | 107.5 (4) | Yb1ii—Ge2—Yb2viii | 73.87 (3) |
Li1iii—Yb2—Li1iv | 85.4 (7) | Yb2ix—Ge2—Yb2viii | 91.33 (5) |
Ge2iii—Yb2—Li1vi | 108.7 (3) | Li1—Ge2—Yb1viii | 134.90 (3) |
Ge2iv—Yb2—Li1vi | 108.7 (3) | Inxi—Ge2—Yb1viii | 67.14 (3) |
Ge1v—Yb2—Li1vi | 140.2 (5) | In—Ge2—Yb1viii | 70.71 (3) |
Ge1iv—Yb2—Li1vi | 50.9 (2) | Yb1i—Ge2—Yb1viii | 138.24 (5) |
Ge1iii—Yb2—Li1vi | 50.9 (2) | Yb1ii—Ge2—Yb1viii | 74.31 (3) |
Li1iii—Yb2—Li1vi | 57.3 (6) | Yb2ix—Ge2—Yb1viii | 140.26 (5) |
Li1iv—Yb2—Li1vi | 57.3 (6) | Yb2viii—Ge2—Yb1viii | 75.87 (3) |
Ge2iii—Yb2—Ini | 104.61 (4) | Li1—Ge2—Yb1ix | 134.90 (3) |
Ge2iv—Yb2—Ini | 50.01 (3) | Inxi—Ge2—Yb1ix | 67.14 (3) |
Ge1v—Yb2—Ini | 49.35 (3) | In—Ge2—Yb1ix | 70.71 (3) |
Ge1iv—Yb2—Ini | 91.33 (3) | Yb1i—Ge2—Yb1ix | 74.31 (3) |
Ge1iii—Yb2—Ini | 153.64 (4) | Yb1ii—Ge2—Yb1ix | 138.24 (5) |
Li1iii—Yb2—Ini | 152.4 (5) | Yb2ix—Ge2—Yb1ix | 75.87 (3) |
Li1iv—Yb2—Ini | 92.2 (4) | Yb2viii—Ge2—Yb1ix | 140.26 (5) |
Li1vi—Yb2—Ini | 140.83 (7) | Yb1viii—Ge2—Yb1ix | 90.16 (5) |
Ge2iii—Yb2—Inii | 50.01 (3) | Ge1—Li1—Ge2 | 101.1 (9) |
Ge2iv—Yb2—Inii | 104.61 (4) | Ge1—Li1—Ge1i | 109.9 (7) |
Ge1v—Yb2—Inii | 49.35 (3) | Ge2—Li1—Ge1i | 116.0 (6) |
Ge1iv—Yb2—Inii | 153.64 (4) | Ge1—Li1—Ge1ii | 109.9 (7) |
Ge1iii—Yb2—Inii | 91.33 (3) | Ge2—Li1—Ge1ii | 116.0 (6) |
Li1iii—Yb2—Inii | 92.2 (4) | Ge1i—Li1—Ge1ii | 104.0 (9) |
Li1iv—Yb2—Inii | 152.4 (5) | Ge1—Li1—Inx | 155.0 (11) |
Li1vi—Yb2—Inii | 140.83 (7) | Ge2—Li1—Inx | 103.9 (8) |
Ini—Yb2—Inii | 77.45 (4) | Ge1i—Li1—Inx | 58.3 (5) |
Ge2iii—Yb2—Invii | 132.91 (3) | Ge1ii—Li1—Inx | 58.3 (5) |
Ge2iv—Yb2—Invii | 132.91 (3) | Ge1—Li1—Li1i | 56.3 (8) |
Ge1v—Yb2—Invii | 90.63 (3) | Ge2—Li1—Li1i | 123.5 (10) |
Ge1iv—Yb2—Invii | 48.13 (3) | Ge1i—Li1—Li1i | 53.5 (5) |
Ge1iii—Yb2—Invii | 48.13 (3) | Ge1ii—Li1—Li1i | 120.3 (13) |
Li1iii—Yb2—Invii | 91.7 (5) | Inx—Li1—Li1i | 108.1 (11) |
Li1iv—Yb2—Invii | 91.7 (5) | Ge1—Li1—Li1ii | 56.3 (8) |
Li1vi—Yb2—Invii | 49.6 (5) | Ge2—Li1—Li1ii | 123.5 (10) |
Ini—Yb2—Invii | 115.87 (2) | Ge1i—Li1—Li1ii | 120.3 (13) |
Inii—Yb2—Invii | 115.87 (2) | Ge1ii—Li1—Li1ii | 53.5 (5) |
Ge2iii—Yb2—Yb1vi | 52.94 (3) | Inx—Li1—Li1ii | 108.1 (11) |
Ge2iv—Yb2—Yb1vi | 52.94 (3) | Li1i—Li1—Li1ii | 88.4 (13) |
Ge1v—Yb2—Yb1vi | 132.81 (4) | Ge1—Li1—Yb2viii | 63.3 (5) |
Ge1iv—Yb2—Yb1vi | 107.80 (4) | Ge2—Li1—Yb2viii | 61.0 (5) |
Ge1iii—Yb2—Yb1vi | 107.80 (4) | Ge1i—Li1—Yb2viii | 170.3 (8) |
Li1iii—Yb2—Yb1vi | 58.2 (4) | Ge1ii—Li1—Yb2viii | 85.27 (12) |
Li1iv—Yb2—Yb1vi | 58.2 (4) | Inx—Li1—Yb2viii | 130.8 (5) |
Li1vi—Yb2—Yb1vi | 87.0 (5) | Li1i—Li1—Yb2viii | 119.2 (13) |
Ini—Yb2—Yb1vi | 97.34 (3) | Li1ii—Li1—Yb2viii | 62.8 (6) |
Inii—Yb2—Yb1vi | 97.34 (3) | Ge1—Li1—Yb2ix | 63.3 (5) |
Invii—Yb2—Yb1vi | 136.56 (3) | Ge2—Li1—Yb2ix | 61.0 (5) |
Ge1viii—In—Ge1ix | 104.27 (6) | Ge1i—Li1—Yb2ix | 85.27 (12) |
Ge1viii—In—Ge2x | 113.31 (4) | Ge1ii—Li1—Yb2ix | 170.3 (8) |
Ge1ix—In—Ge2x | 113.31 (4) | Inx—Li1—Yb2ix | 130.8 (5) |
Ge1viii—In—Ge2 | 115.24 (4) | Li1i—Li1—Yb2ix | 62.8 (6) |
Ge1ix—In—Ge2 | 115.24 (4) | Li1ii—Li1—Yb2ix | 119.2 (13) |
Ge2x—In—Ge2 | 95.85 (4) | Yb2viii—Li1—Yb2ix | 85.4 (6) |
Ge1viii—In—Li1xi | 58.5 (2) | Ge1—Li1—Yb2v | 85.0 (7) |
Ge1ix—In—Li1xi | 58.5 (2) | Ge2—Li1—Yb2v | 173.9 (10) |
Ge2x—In—Li1xi | 161.9 (5) | Ge1i—Li1—Yb2v | 61.2 (5) |
Ge2—In—Li1xi | 102.3 (5) | Ge1ii—Li1—Yb2v | 61.2 (5) |
Ge1viii—In—Yb1i | 169.90 (3) | Inx—Li1—Yb2v | 70.0 (6) |
Ge1ix—In—Yb1i | 85.79 (4) | Li1i—Li1—Yb2v | 59.9 (8) |
Ge2x—In—Yb1i | 60.68 (3) | Li1ii—Li1—Yb2v | 59.9 (9) |
Ge2—In—Yb1i | 59.66 (3) | Yb2viii—Li1—Yb2v | 122.7 (6) |
Li1xi—In—Yb1i | 129.7 (3) | Yb2ix—Li1—Yb2v | 122.7 (6) |
Ge1viii—In—Yb1ii | 85.79 (4) | Ge1—Li1—Yb1ii | 130.3 (6) |
Ge1ix—In—Yb1ii | 169.90 (3) | Ge2—Li1—Yb1ii | 58.6 (4) |
Ge2x—In—Yb1ii | 60.68 (3) | Ge1i—Li1—Yb1ii | 119.9 (9) |
Ge2—In—Yb1ii | 59.66 (3) | Ge1ii—Li1—Yb1ii | 58.5 (3) |
Li1xi—In—Yb1ii | 129.7 (3) | Inx—Li1—Yb1ii | 65.5 (5) |
Yb1i—In—Yb1ii | 84.13 (4) | Li1i—Li1—Yb1ii | 173.3 (13) |
Ge1viii—In—Yb1viii | 57.97 (4) | Li1ii—Li1—Yb1ii | 95.2 (4) |
Ge1ix—In—Yb1viii | 118.63 (5) | Yb2viii—Li1—Yb1ii | 67.4 (3) |
Ge2x—In—Yb1viii | 127.87 (3) | Yb2ix—Li1—Yb1ii | 119.6 (8) |
Ge2—In—Yb1viii | 58.45 (3) | Yb2v—Li1—Yb1ii | 117.3 (6) |
Li1xi—In—Yb1viii | 64.0 (4) | Ge1—Li1—Yb1i | 130.3 (6) |
Yb1i—In—Yb1viii | 118.08 (3) | Ge2—Li1—Yb1i | 58.6 (4) |
Yb1ii—In—Yb1viii | 67.29 (3) | Ge1i—Li1—Yb1i | 58.5 (3) |
Ge1viii—In—Yb1ix | 118.63 (5) | Ge1ii—Li1—Yb1i | 119.9 (9) |
Ge1ix—In—Yb1ix | 57.97 (4) | Inx—Li1—Yb1i | 65.5 (5) |
Ge2x—In—Yb1ix | 127.86 (3) | Li1i—Li1—Yb1i | 95.2 (4) |
Ge2—In—Yb1ix | 58.45 (3) | Li1ii—Li1—Yb1i | 173.3 (13) |
Li1xi—In—Yb1ix | 64.0 (4) | Yb2viii—Li1—Yb1i | 119.6 (8) |
Yb1i—In—Yb1ix | 67.29 (3) | Yb2ix—Li1—Yb1i | 67.4 (3) |
Yb1ii—In—Yb1ix | 118.08 (3) | Yb2v—Li1—Yb1i | 117.3 (6) |
Yb1viii—In—Yb1ix | 79.49 (4) | Yb1ii—Li1—Yb1i | 80.7 (6) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x, −y+1, −z+1; (iii) −x+1/2, −y+1, z−1/2; (iv) −x+1/2, −y, z−1/2; (v) x−1/2, y, −z+1/2; (vi) x+1/2, y, −z+1/2; (vii) x, y, z−1; (viii) −x+1/2, −y+1, z+1/2; (ix) −x+1/2, −y, z+1/2; (x) x−1/2, y, −z+3/2; (xi) x+1/2, y, −z+3/2; (xii) x, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | Yb2LiInGe2 |
Mr | 613.02 |
Crystal system, space group | Orthorhombic, Pnma |
Temperature (K) | 200 |
a, b, c (Å) | 7.182 (3), 4.3899 (18), 16.758 (7) |
V (Å3) | 528.3 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 50.42 |
Crystal size (mm) | 0.04 × 0.02 × 0.02 |
Data collection | |
Diffractometer | Bruker SMART APEX |
Absorption correction | Multi-scan (SADABS; Bruker, 2002) |
Tmin, Tmax | 0.258, 0.365 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6805, 735, 623 |
Rint | 0.090 |
(sin θ/λ)max (Å−1) | 0.666 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.059, 1.11 |
No. of reflections | 735 |
No. of parameters | 35 |
Δρmax, Δρmin (e Å−3) | 2.10, −2.86 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).
In—Ge1i | 2.7803 (13) | In—Ge2iii | 2.809 (2) |
In—Ge1ii | 2.7803 (13) | In—Ge2 | 2.8203 (19) |
Symmetry codes: (i) −x+1/2, −y+1, z+1/2; (ii) −x+1/2, −y, z+1/2; (iii) x−1/2, y, −z+3/2. |
Acknowledgements
The authors acknowledge financial support from the University of Delaware Research Foundation – Strategic Initiative Grants (UDRF).
References
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143. CrossRef Web of Science IUCr Journals Google Scholar
Mao, J.-G., Goodey, J. & Guloy, A. M. (2002). Inorg. Chem. 41, 931–937. Web of Science CrossRef PubMed CAS Google Scholar
Mao, J.-G., Xu, Z. & Guloy, A. M. (2001). Inorg. Chem. 40, 4472–4477. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xia, S.-Q. & Bobev, S. (2007). J. Am. Chem. Soc. 129, 4049–4057. Web of Science CrossRef PubMed CAS Google Scholar
You, T.-S. & Bobev, S. (2010). J. Solid State Chem. doi:10.1016/j.jssc.2010.03.036. Google Scholar
You, T.-S., Tobash, P. & Bobev, S. (2010). Inorg. Chem. 49, 1773–1783. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
During our exploratory investigations of lithium-containing germanides using molten indium as a metal flux, the quaternary compound Yb2LiInGe2 was obtained for the first time. It crystallizes in space group Pnma and is isostructural with Ae2LiInGe2 (Ae = Ca and Sr) compounds which were reported previously by Mao et al. (2001). This finding implies that this series can probably be extended towards other lanthanide metals, which likewise exhibit a stable oxidation state of +II, such as Eu for example.
The crystal structure of the title compound can be readily described as consisting of puckered polyanionic layers of corner-shared [InGe4] tetrahedra, running parallel to the ab plane and alternately stacked along the c axis (Figure 1). Yb and Li atoms, in turn, can be viewed simply as "electron donors", which provide the electrons to fill the valence shells of In and Ge, as well as "spacers" that separate the [InGe4/2]5- polyanionic layers.
The In—Ge bond distances observed within the [InGe4] tetrahedron range from 2.7803 (13) to 2.8203 (13) Å, and are comparable to those in other indium germanides such as Ca2LiInGe2 (2.806 (1) - 2.838 (1)Å; Mao et al., 2001), Sr2LiInGe2 (2.885 (1) - 2.926 (1) Å; Mao et al., 2001), EuInGe (2.751 (1) Å; Mao et al., 2002), SrInGe (2.780 Å; Mao et al., 2002), as well as the recently reported (Eu1-xCax)3In2Ge3 (2.760 (2) - 2.869 (1) Å), (Eu1-xCax)4In3Ge4 (2.755 (2) - 2.887 (1) Å; You et al., 2010), and (Sr1-xCax)5In3Ge6 (2.672 (2) - 2.877 (3) Å; You & Bobev, 2010). In the absence of direct In—In or Ge—Ge bonding, the formula of the title compound can be rationalized as follows: [(Yb2+)2(Li+)][(4b-In-) (2b-Ge2-)2]. Here, the In atom is tetrahedrally surrounded by four Ge atoms (Ge1 × 2 and Ge2 × 2) and is therefore assigned a formal charge of "-1", while the Ge atoms are 2-bonded, carrying a formal charge of "-2" each (4-bonded and 2-bonded atoms are denoted as 4b- and 2b-, respectively).
Interestingly, the structure of the title compound closely resembles the structure of one of our previously reported antimonides, viz. Ca2CdSb2 (Xia & Bobev, 2007). The latter structure is also made up of corrugated layers of corner-shared [CdSb4] tetrahedra, with Ca2+ cations filling the space between them. The obvious difference between these two structure types is the addition of Li atoms in Yb2LiInGe2, filling small tetrahedral holes between the layers (Figure 1).