inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Diytterbium(II) lithium indium(III) digermanide, Yb2LiInGe2

aDepartment of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
*Correspondence e-mail: sbobev@mail.chem.udel.edu

(Received 14 April 2010; accepted 20 April 2010; online 28 April 2010)

The title compound, Yb2LiInGe2, a new ordered quaternary inter­metallic phase, crystallizes with the ortho­rhom­bic Ca2LiInGe2 type (Pearson code oP24). The crystal structure contains six crystallographically unique sites in the asymmetric unit, all in special positions with site symmetry .m.. The structure is complex and based on [InGe4] tetra­hedra, which share corners in two directions, forming layers parallel to (001). Yb atoms fill square-pyramidal (Yb1) and octa­hedral (Yb2) inter­stices between the [InGe4/2] layers, while the small Li+ atoms fill tetra­hedral sites.

Related literature

Isotypic Ae2LiInGe2 (Ae = Ca, Sr) compounds have been reported by Mao et al. (2001[Mao, J.-G., Xu, Z. & Guloy, A. M. (2001). Inorg. Chem. 40, 4472-4477.]). Other related structures include Ca2CdSb2 and Yb2CdSb2 (Xia & Bobev, 2007[Xia, S.-Q. & Bobev, S. (2007). J. Am. Chem. Soc. 129, 4049-4057.]), SrInGe and EuInGe (Mao et al., 2002[Mao, J.-G., Goodey, J. & Guloy, A. M. (2002). Inorg. Chem. 41, 931-937.]), (Eu1-xCax)3In2Ge3 and (Eu1-xCax)4In3Ge4 (You et al., 2010[You, T.-S., Tobash, P. & Bobev, S. (2010). Inorg. Chem. 49, 1773-1783.]), and (Sr1-xCax)5In3Ge6 (You & Bobev, 2010[You, T.-S. & Bobev, S. (2010). J. Solid State Chem. doi:10.1016/j.jssc.2010.03.036.]). STRUCTURE TIDY (Gelato & Parthé, 1987[Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.]) was used for standardization of the atomic coordinates.

Experimental

Crystal data
  • Yb2LiInGe2

  • Mr = 613.02

  • Orthorhombic, P n m a

  • a = 7.182 (3) Å

  • b = 4.3899 (18) Å

  • c = 16.758 (7) Å

  • V = 528.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 50.42 mm−1

  • T = 200 K

  • 0.04 × 0.02 × 0.02 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.258, Tmax = 0.365

  • 6805 measured reflections

  • 735 independent reflections

  • 623 reflections with I > 2σ(I)

  • Rint = 0.090

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.059

  • S = 1.11

  • 735 reflections

  • 35 parameters

  • Δρmax = 2.10 e Å−3

  • Δρmin = −2.86 e Å−3

Table 1
Selected bond lengths (Å)

In—Ge1i 2.7803 (13)
In—Ge1ii 2.7803 (13)
In—Ge2iii 2.809 (2)
In—Ge2 2.8203 (19)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

During our exploratory investigations of lithium-containing germanides using molten indium as a metal flux, the quaternary compound Yb2LiInGe2 was obtained for the first time. It crystallizes in space group Pnma and is isostructural with Ae2LiInGe2 (Ae = Ca and Sr) compounds which were reported previously by Mao et al. (2001). This finding implies that this series can probably be extended towards other lanthanide metals, which likewise exhibit a stable oxidation state of +II, such as Eu for example.

The crystal structure of the title compound can be readily described as consisting of puckered polyanionic layers of corner-shared [InGe4] tetrahedra, running parallel to the ab plane and alternately stacked along the c axis (Figure 1). Yb and Li atoms, in turn, can be viewed simply as "electron donors", which provide the electrons to fill the valence shells of In and Ge, as well as "spacers" that separate the [InGe4/2]5- polyanionic layers.

The In—Ge bond distances observed within the [InGe4] tetrahedron range from 2.7803 (13) to 2.8203 (13) Å, and are comparable to those in other indium germanides such as Ca2LiInGe2 (2.806 (1) - 2.838 (1)Å; Mao et al., 2001), Sr2LiInGe2 (2.885 (1) - 2.926 (1) Å; Mao et al., 2001), EuInGe (2.751 (1) Å; Mao et al., 2002), SrInGe (2.780 Å; Mao et al., 2002), as well as the recently reported (Eu1-xCax)3In2Ge3 (2.760 (2) - 2.869 (1) Å), (Eu1-xCax)4In3Ge4 (2.755 (2) - 2.887 (1) Å; You et al., 2010), and (Sr1-xCax)5In3Ge6 (2.672 (2) - 2.877 (3) Å; You & Bobev, 2010). In the absence of direct In—In or Ge—Ge bonding, the formula of the title compound can be rationalized as follows: [(Yb2+)2(Li+)][(4b-In-) (2b-Ge2-)2]. Here, the In atom is tetrahedrally surrounded by four Ge atoms (Ge1 × 2 and Ge2 × 2) and is therefore assigned a formal charge of "-1", while the Ge atoms are 2-bonded, carrying a formal charge of "-2" each (4-bonded and 2-bonded atoms are denoted as 4b- and 2b-, respectively).

Interestingly, the structure of the title compound closely resembles the structure of one of our previously reported antimonides, viz. Ca2CdSb2 (Xia & Bobev, 2007). The latter structure is also made up of corrugated layers of corner-shared [CdSb4] tetrahedra, with Ca2+ cations filling the space between them. The obvious difference between these two structure types is the addition of Li atoms in Yb2LiInGe2, filling small tetrahedral holes between the layers (Figure 1).

Related literature top

Isotypic Ae2LiInGe2 (Ae = Ca, Sr) compounds have been reported by Mao et al. (2001). Other related structures include Ca2CdSb2 and Yb2CdSb2 (Xia & Bobev, 2007), SrInGe and EuInGe (Mao et al., 2002), (Eu1-xCax)3In2Ge3 and (Eu1-xCax)4In3Ge4 (You et al., 2010), and (Sr1-xCax)5In3Ge6 (You & Bobev, 2010). STRUCTURE TIDY (Gelato & Parthé, 1987) was used for standardization of the atomic coordinates.

Experimental top

The flux reaction was carried out in a 2 cm3 alumina crucible, using a total ca 500 mg mixture of the elements (Yb and Ge from Alfa, Li from Sigma-Aldrich), which was then topped off with ca 2 grams of In (Alfa, shots) acting as a metal flux. The crucible was subsequently enclosed and flame-sealed in an evacuated fused silica ampoule, and then was heated at 120 Kh-1 to 1223 K, kept there for 10 h, cooled to 573 K, where the excess In was removed by centrifugation.

Refinement top

Displacement parameters for all atoms were refined anisotropically except those of Li. The maximum residual electron density lies 0.87 Å from Yb1, and the minimum residual electron density lies 1.97 Å from Ge2. The atomic coordinates have been standardized with the aid of STRUCTURE TIDY (Gelato & Parthé, 1987).

Structure description top

During our exploratory investigations of lithium-containing germanides using molten indium as a metal flux, the quaternary compound Yb2LiInGe2 was obtained for the first time. It crystallizes in space group Pnma and is isostructural with Ae2LiInGe2 (Ae = Ca and Sr) compounds which were reported previously by Mao et al. (2001). This finding implies that this series can probably be extended towards other lanthanide metals, which likewise exhibit a stable oxidation state of +II, such as Eu for example.

The crystal structure of the title compound can be readily described as consisting of puckered polyanionic layers of corner-shared [InGe4] tetrahedra, running parallel to the ab plane and alternately stacked along the c axis (Figure 1). Yb and Li atoms, in turn, can be viewed simply as "electron donors", which provide the electrons to fill the valence shells of In and Ge, as well as "spacers" that separate the [InGe4/2]5- polyanionic layers.

The In—Ge bond distances observed within the [InGe4] tetrahedron range from 2.7803 (13) to 2.8203 (13) Å, and are comparable to those in other indium germanides such as Ca2LiInGe2 (2.806 (1) - 2.838 (1)Å; Mao et al., 2001), Sr2LiInGe2 (2.885 (1) - 2.926 (1) Å; Mao et al., 2001), EuInGe (2.751 (1) Å; Mao et al., 2002), SrInGe (2.780 Å; Mao et al., 2002), as well as the recently reported (Eu1-xCax)3In2Ge3 (2.760 (2) - 2.869 (1) Å), (Eu1-xCax)4In3Ge4 (2.755 (2) - 2.887 (1) Å; You et al., 2010), and (Sr1-xCax)5In3Ge6 (2.672 (2) - 2.877 (3) Å; You & Bobev, 2010). In the absence of direct In—In or Ge—Ge bonding, the formula of the title compound can be rationalized as follows: [(Yb2+)2(Li+)][(4b-In-) (2b-Ge2-)2]. Here, the In atom is tetrahedrally surrounded by four Ge atoms (Ge1 × 2 and Ge2 × 2) and is therefore assigned a formal charge of "-1", while the Ge atoms are 2-bonded, carrying a formal charge of "-2" each (4-bonded and 2-bonded atoms are denoted as 4b- and 2b-, respectively).

Interestingly, the structure of the title compound closely resembles the structure of one of our previously reported antimonides, viz. Ca2CdSb2 (Xia & Bobev, 2007). The latter structure is also made up of corrugated layers of corner-shared [CdSb4] tetrahedra, with Ca2+ cations filling the space between them. The obvious difference between these two structure types is the addition of Li atoms in Yb2LiInGe2, filling small tetrahedral holes between the layers (Figure 1).

Isotypic Ae2LiInGe2 (Ae = Ca, Sr) compounds have been reported by Mao et al. (2001). Other related structures include Ca2CdSb2 and Yb2CdSb2 (Xia & Bobev, 2007), SrInGe and EuInGe (Mao et al., 2002), (Eu1-xCax)3In2Ge3 and (Eu1-xCax)4In3Ge4 (You et al., 2010), and (Sr1-xCax)5In3Ge6 (You & Bobev, 2010). STRUCTURE TIDY (Gelato & Parthé, 1987) was used for standardization of the atomic coordinates.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Combined ellipsoid and polyhedral representations of the crystal structure of orthorhombic Yb2LiInGe2, viewed along [010]. Color code: Yb - light grey, Li - dark yellow, In - light blue, and Ge - magenta. Ellipsoids are drawn at the 90% probability level.
Diytterbium(II) lithium indium(III) digermanide top
Crystal data top
Yb2LiInGe2F(000) = 1024
Mr = 613.02Dx = 7.707 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 735 reflections
a = 7.182 (3) Åθ = 2.4–28.2°
b = 4.3899 (18) ŵ = 50.42 mm1
c = 16.758 (7) ÅT = 200 K
V = 528.3 (4) Å3Needle, grey-silver
Z = 40.04 × 0.02 × 0.02 mm
Data collection top
Bruker SMART APEX
diffractometer
735 independent reflections
Radiation source: fine-focus sealed tube623 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
ω scansθmax = 28.2°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 99
Tmin = 0.258, Tmax = 0.365k = 55
6805 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.P)2 + 1.4209P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.059(Δ/σ)max < 0.001
S = 1.11Δρmax = 2.10 e Å3
735 reflectionsΔρmin = 2.86 e Å3
35 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00117 (14)
Crystal data top
Yb2LiInGe2V = 528.3 (4) Å3
Mr = 613.02Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 7.182 (3) ŵ = 50.42 mm1
b = 4.3899 (18) ÅT = 200 K
c = 16.758 (7) Å0.04 × 0.02 × 0.02 mm
Data collection top
Bruker SMART APEX
diffractometer
735 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
623 reflections with I > 2σ(I)
Tmin = 0.258, Tmax = 0.365Rint = 0.090
6805 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02935 parameters
wR(F2) = 0.0590 restraints
S = 1.11Δρmax = 2.10 e Å3
735 reflectionsΔρmin = 2.86 e Å3
Special details top

Experimental. Selected in the glove box, crystals were put in a Paratone N oil and cut to the desired dimensions. The chosen crystal was mounted on a tip of a glass fiber and quickly transferred onto the goniometer. The crystal was kept under a cold nitrogen stream to protect from the ambient air and moisture.

Data collection is performed with four batch runs at φ = 0.00 ° (607 frames), at φ = 90.00 ° (607 frames), at φ = 180.00 ° (607 frames), and at φ = 270.00 (607 frames). Frame width = 0.30 ° in ω. Data are merged and treated with multi-scan absorption corrections.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Yb10.01067 (8)0.25000.27892 (3)0.00935 (17)
Yb20.15804 (9)0.25000.06161 (3)0.01085 (17)
In0.15783 (13)0.25000.84697 (5)0.0079 (2)
Ge10.22805 (19)0.25000.43629 (8)0.0078 (3)
Ge20.27452 (18)0.25000.68627 (8)0.0065 (3)
Li10.011 (4)0.25000.5672 (16)0.023 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Yb10.0083 (3)0.0110 (3)0.0088 (3)0.0000.0001 (2)0.000
Yb20.0116 (3)0.0121 (3)0.0089 (3)0.0000.0001 (2)0.000
In0.0076 (5)0.0102 (4)0.0060 (5)0.0000.0004 (3)0.000
Ge10.0094 (7)0.0087 (6)0.0052 (7)0.0000.0004 (5)0.000
Ge20.0058 (7)0.0083 (6)0.0054 (7)0.0000.0002 (5)0.000
Geometric parameters (Å, º) top
Yb1—Ge2i3.0583 (13)In—Yb1viii3.4331 (12)
Yb1—Ge2ii3.0583 (13)In—Yb1ix3.4331 (12)
Yb1—Ge13.0646 (18)In—Yb2i3.5087 (12)
Yb1—Ge2iii3.0997 (13)In—Yb2ii3.5087 (12)
Yb1—Ge2iv3.0997 (13)In—Yb2xii3.5969 (18)
Yb1—Ini3.2760 (12)Ge1—Li12.69 (3)
Yb1—Inii3.2760 (12)Ge1—Iniv2.7803 (13)
Yb1—Li1ii3.39 (2)Ge1—Iniii2.7803 (13)
Yb1—Li1i3.39 (2)Ge1—Li1i2.786 (17)
Yb1—Iniii3.4331 (12)Ge1—Li1ii2.786 (17)
Yb1—Iniv3.4331 (12)Ge1—Yb2vi3.0883 (19)
Yb1—Yb2v3.6817 (13)Ge1—Yb2viii3.1460 (13)
Yb2—Ge2iii3.0686 (13)Ge1—Yb2ix3.1460 (13)
Yb2—Ge2iv3.0686 (13)Ge2—Li12.75 (3)
Yb2—Ge1v3.088 (2)Ge2—Inxi2.809 (2)
Yb2—Ge1iv3.1460 (13)Ge2—Yb1i3.0583 (13)
Yb2—Ge1iii3.1460 (13)Ge2—Yb1ii3.0583 (13)
Yb2—Li1iii3.24 (2)Ge2—Yb2ix3.0686 (13)
Yb2—Li1iv3.24 (2)Ge2—Yb2viii3.0686 (13)
Yb2—Li1vi3.33 (3)Ge2—Yb1viii3.0997 (13)
Yb2—Ini3.5087 (12)Ge2—Yb1ix3.0997 (13)
Yb2—Inii3.5087 (12)Li1—Ge1i2.786 (17)
Yb2—Invii3.5969 (18)Li1—Ge1ii2.786 (17)
Yb2—Yb1vi3.6817 (13)Li1—Inx2.91 (3)
In—Ge1viii2.7803 (13)Li1—Li1i3.15 (4)
In—Ge1ix2.7803 (13)Li1—Li1ii3.15 (4)
In—Ge2x2.809 (2)Li1—Yb2viii3.24 (2)
In—Ge22.8203 (19)Li1—Yb2ix3.24 (2)
In—Li1xi2.91 (3)Li1—Yb2v3.33 (3)
In—Yb1i3.2760 (12)Li1—Yb1ii3.39 (2)
In—Yb1ii3.2760 (12)Li1—Yb1i3.39 (2)
Ge2i—Yb1—Ge2ii91.73 (5)Ge1viii—In—Yb2i116.71 (5)
Ge2i—Yb1—Ge1100.19 (4)Ge1ix—In—Yb2i57.43 (4)
Ge2ii—Yb1—Ge1100.19 (4)Ge2x—In—Yb2i56.83 (3)
Ge2i—Yb1—Ge2iii159.57 (3)Ge2—In—Yb2i127.52 (3)
Ge2ii—Yb1—Ge2iii85.45 (3)Li1xi—In—Yb2i110.3 (4)
Ge1—Yb1—Ge2iii100.22 (4)Yb1i—In—Yb2i67.86 (3)
Ge2i—Yb1—Ge2iv85.45 (3)Yb1ii—In—Yb2i117.48 (4)
Ge2ii—Yb1—Ge2iv159.57 (3)Yb1viii—In—Yb2i173.39 (3)
Ge1—Yb1—Ge2iv100.22 (4)Yb1ix—In—Yb2i101.15 (3)
Ge2iii—Yb1—Ge2iv90.16 (5)Ge1viii—In—Yb2ii57.43 (4)
Ge2i—Yb1—Ini52.74 (3)Ge1ix—In—Yb2ii116.71 (4)
Ge2ii—Yb1—Ini110.87 (4)Ge2x—In—Yb2ii56.83 (3)
Ge1—Yb1—Ini137.93 (2)Ge2—In—Yb2ii127.52 (3)
Ge2iii—Yb1—Ini109.62 (4)Li1xi—In—Yb2ii110.3 (4)
Ge2iv—Yb1—Ini52.18 (4)Yb1i—In—Yb2ii117.48 (4)
Ge2i—Yb1—Inii110.87 (4)Yb1ii—In—Yb2ii67.86 (3)
Ge2ii—Yb1—Inii52.74 (3)Yb1viii—In—Yb2ii101.15 (3)
Ge1—Yb1—Inii137.93 (2)Yb1ix—In—Yb2ii173.39 (3)
Ge2iii—Yb1—Inii52.18 (4)Yb2i—In—Yb2ii77.45 (4)
Ge2iv—Yb1—Inii109.62 (4)Ge1viii—In—Yb2xii57.42 (3)
Ini—Yb1—Inii84.13 (4)Ge1ix—In—Yb2xii57.42 (3)
Ge2i—Yb1—Li1ii106.8 (4)Ge2x—In—Yb2xii101.46 (4)
Ge2ii—Yb1—Li1ii50.2 (4)Ge2—In—Yb2xii162.69 (4)
Ge1—Yb1—Li1ii50.8 (4)Li1xi—In—Yb2xii60.4 (5)
Ge2iii—Yb1—Li1ii86.9 (3)Yb1i—In—Yb2xii130.10 (2)
Ge2iv—Yb1—Li1ii149.6 (4)Yb1ii—In—Yb2xii130.10 (2)
Ini—Yb1—Li1ii155.1 (4)Yb1viii—In—Yb2xii109.38 (3)
Inii—Yb1—Li1ii92.3 (3)Yb1ix—In—Yb2xii109.38 (3)
Ge2i—Yb1—Li1i50.2 (4)Yb2i—In—Yb2xii64.13 (2)
Ge2ii—Yb1—Li1i106.8 (4)Yb2ii—In—Yb2xii64.13 (2)
Ge1—Yb1—Li1i50.8 (4)Li1—Ge1—Iniv127.56 (6)
Ge2iii—Yb1—Li1i149.6 (4)Li1—Ge1—Iniii127.56 (6)
Ge2iv—Yb1—Li1i86.9 (3)Iniv—Ge1—Iniii104.27 (6)
Ini—Yb1—Li1i92.3 (3)Li1—Ge1—Li1i70.1 (7)
Inii—Yb1—Li1i155.1 (4)Iniv—Ge1—Li1i63.1 (5)
Li1ii—Yb1—Li1i80.7 (6)Iniii—Ge1—Li1i142.4 (5)
Ge2i—Yb1—Iniii149.31 (4)Li1—Ge1—Li1ii70.1 (7)
Ge2ii—Yb1—Iniii86.68 (4)Iniv—Ge1—Li1ii142.4 (5)
Ge1—Yb1—Iniii50.28 (2)Iniii—Ge1—Li1ii63.1 (5)
Ge2iii—Yb1—Iniii50.84 (3)Li1i—Ge1—Li1ii104.0 (9)
Ge2iv—Yb1—Iniii105.90 (4)Li1—Ge1—Yb1113.9 (6)
Ini—Yb1—Iniii153.95 (3)Iniv—Ge1—Yb171.75 (4)
Inii—Yb1—Iniii92.39 (3)Iniii—Ge1—Yb171.75 (4)
Li1ii—Yb1—Iniii50.6 (4)Li1i—Ge1—Yb170.6 (5)
Li1i—Yb1—Iniii101.1 (4)Li1ii—Ge1—Yb170.6 (5)
Ge2i—Yb1—Iniv86.68 (4)Li1—Ge1—Yb2vi124.8 (6)
Ge2ii—Yb1—Iniv149.31 (4)Iniv—Ge1—Yb2vi73.22 (3)
Ge1—Yb1—Iniv50.28 (2)Iniii—Ge1—Yb2vi73.22 (3)
Ge2iii—Yb1—Iniv105.90 (4)Li1i—Ge1—Yb2vi128.0 (4)
Ge2iv—Yb1—Iniv50.84 (3)Li1ii—Ge1—Yb2vi128.0 (4)
Ini—Yb1—Iniv92.39 (3)Yb1—Ge1—Yb2vi121.28 (5)
Inii—Yb1—Iniv153.95 (3)Li1—Ge1—Yb2viii66.8 (4)
Li1ii—Yb1—Iniv101.1 (4)Iniv—Ge1—Yb2viii146.46 (6)
Li1i—Yb1—Iniv50.6 (4)Iniii—Ge1—Yb2viii74.45 (4)
Iniii—Yb1—Iniv79.49 (4)Li1i—Ge1—Yb2viii136.4 (5)
Ge2i—Yb1—Yb2v53.19 (3)Li1ii—Ge1—Yb2viii67.9 (5)
Ge2ii—Yb1—Yb2v53.19 (3)Yb1—Ge1—Yb2viii134.98 (3)
Ge1—Yb1—Yb2v74.08 (4)Yb2vi—Ge1—Yb2viii74.48 (3)
Ge2iii—Yb1—Yb2v134.90 (2)Li1—Ge1—Yb2ix66.8 (4)
Ge2iv—Yb1—Yb2v134.90 (2)Iniv—Ge1—Yb2ix74.45 (4)
Ini—Yb1—Yb2v102.32 (3)Iniii—Ge1—Yb2ix146.46 (6)
Inii—Yb1—Yb2v102.32 (3)Li1i—Ge1—Yb2ix67.9 (5)
Li1ii—Yb1—Yb2v54.3 (4)Li1ii—Ge1—Yb2ix136.4 (5)
Li1i—Yb1—Yb2v54.3 (4)Yb1—Ge1—Yb2ix134.98 (3)
Iniii—Yb1—Yb2v103.64 (3)Yb2vi—Ge1—Yb2ix74.48 (3)
Iniv—Yb1—Yb2v103.64 (3)Yb2viii—Ge1—Yb2ix88.48 (5)
Ge2iii—Yb2—Ge2iv91.33 (5)Li1—Ge2—Inxi122.1 (6)
Ge2iii—Yb2—Ge1v98.63 (3)Li1—Ge2—In119.2 (6)
Ge2iv—Yb2—Ge1v98.63 (3)Inxi—Ge2—In118.72 (5)
Ge2iii—Yb2—Ge1iv155.85 (4)Li1—Ge2—Yb1i71.2 (4)
Ge2iv—Yb2—Ge1iv85.09 (4)Inxi—Ge2—Yb1i133.97 (2)
Ge1v—Yb2—Ge1iv105.52 (3)In—Ge2—Yb1i67.60 (3)
Ge2iii—Yb2—Ge1iii85.09 (4)Li1—Ge2—Yb1ii71.2 (4)
Ge2iv—Yb2—Ge1iii155.85 (4)Inxi—Ge2—Yb1ii133.97 (2)
Ge1v—Yb2—Ge1iii105.52 (3)In—Ge2—Yb1ii67.60 (3)
Ge1iv—Yb2—Ge1iii88.48 (5)Yb1i—Ge2—Yb1ii91.73 (5)
Ge2iii—Yb2—Li1iii51.6 (4)Li1—Ge2—Yb2ix67.4 (4)
Ge2iv—Yb2—Li1iii110.4 (4)Inxi—Ge2—Yb2ix73.16 (3)
Ge1v—Yb2—Li1iii137.2 (3)In—Ge2—Yb2ix134.18 (3)
Ge1iv—Yb2—Li1iii107.5 (4)Yb1i—Ge2—Yb2ix73.87 (3)
Ge1iii—Yb2—Li1iii49.9 (4)Yb1ii—Ge2—Yb2ix138.50 (5)
Ge2iii—Yb2—Li1iv110.4 (4)Li1—Ge2—Yb2viii67.4 (4)
Ge2iv—Yb2—Li1iv51.6 (4)Inxi—Ge2—Yb2viii73.16 (3)
Ge1v—Yb2—Li1iv137.2 (3)In—Ge2—Yb2viii134.18 (3)
Ge1iv—Yb2—Li1iv49.9 (4)Yb1i—Ge2—Yb2viii138.50 (5)
Ge1iii—Yb2—Li1iv107.5 (4)Yb1ii—Ge2—Yb2viii73.87 (3)
Li1iii—Yb2—Li1iv85.4 (7)Yb2ix—Ge2—Yb2viii91.33 (5)
Ge2iii—Yb2—Li1vi108.7 (3)Li1—Ge2—Yb1viii134.90 (3)
Ge2iv—Yb2—Li1vi108.7 (3)Inxi—Ge2—Yb1viii67.14 (3)
Ge1v—Yb2—Li1vi140.2 (5)In—Ge2—Yb1viii70.71 (3)
Ge1iv—Yb2—Li1vi50.9 (2)Yb1i—Ge2—Yb1viii138.24 (5)
Ge1iii—Yb2—Li1vi50.9 (2)Yb1ii—Ge2—Yb1viii74.31 (3)
Li1iii—Yb2—Li1vi57.3 (6)Yb2ix—Ge2—Yb1viii140.26 (5)
Li1iv—Yb2—Li1vi57.3 (6)Yb2viii—Ge2—Yb1viii75.87 (3)
Ge2iii—Yb2—Ini104.61 (4)Li1—Ge2—Yb1ix134.90 (3)
Ge2iv—Yb2—Ini50.01 (3)Inxi—Ge2—Yb1ix67.14 (3)
Ge1v—Yb2—Ini49.35 (3)In—Ge2—Yb1ix70.71 (3)
Ge1iv—Yb2—Ini91.33 (3)Yb1i—Ge2—Yb1ix74.31 (3)
Ge1iii—Yb2—Ini153.64 (4)Yb1ii—Ge2—Yb1ix138.24 (5)
Li1iii—Yb2—Ini152.4 (5)Yb2ix—Ge2—Yb1ix75.87 (3)
Li1iv—Yb2—Ini92.2 (4)Yb2viii—Ge2—Yb1ix140.26 (5)
Li1vi—Yb2—Ini140.83 (7)Yb1viii—Ge2—Yb1ix90.16 (5)
Ge2iii—Yb2—Inii50.01 (3)Ge1—Li1—Ge2101.1 (9)
Ge2iv—Yb2—Inii104.61 (4)Ge1—Li1—Ge1i109.9 (7)
Ge1v—Yb2—Inii49.35 (3)Ge2—Li1—Ge1i116.0 (6)
Ge1iv—Yb2—Inii153.64 (4)Ge1—Li1—Ge1ii109.9 (7)
Ge1iii—Yb2—Inii91.33 (3)Ge2—Li1—Ge1ii116.0 (6)
Li1iii—Yb2—Inii92.2 (4)Ge1i—Li1—Ge1ii104.0 (9)
Li1iv—Yb2—Inii152.4 (5)Ge1—Li1—Inx155.0 (11)
Li1vi—Yb2—Inii140.83 (7)Ge2—Li1—Inx103.9 (8)
Ini—Yb2—Inii77.45 (4)Ge1i—Li1—Inx58.3 (5)
Ge2iii—Yb2—Invii132.91 (3)Ge1ii—Li1—Inx58.3 (5)
Ge2iv—Yb2—Invii132.91 (3)Ge1—Li1—Li1i56.3 (8)
Ge1v—Yb2—Invii90.63 (3)Ge2—Li1—Li1i123.5 (10)
Ge1iv—Yb2—Invii48.13 (3)Ge1i—Li1—Li1i53.5 (5)
Ge1iii—Yb2—Invii48.13 (3)Ge1ii—Li1—Li1i120.3 (13)
Li1iii—Yb2—Invii91.7 (5)Inx—Li1—Li1i108.1 (11)
Li1iv—Yb2—Invii91.7 (5)Ge1—Li1—Li1ii56.3 (8)
Li1vi—Yb2—Invii49.6 (5)Ge2—Li1—Li1ii123.5 (10)
Ini—Yb2—Invii115.87 (2)Ge1i—Li1—Li1ii120.3 (13)
Inii—Yb2—Invii115.87 (2)Ge1ii—Li1—Li1ii53.5 (5)
Ge2iii—Yb2—Yb1vi52.94 (3)Inx—Li1—Li1ii108.1 (11)
Ge2iv—Yb2—Yb1vi52.94 (3)Li1i—Li1—Li1ii88.4 (13)
Ge1v—Yb2—Yb1vi132.81 (4)Ge1—Li1—Yb2viii63.3 (5)
Ge1iv—Yb2—Yb1vi107.80 (4)Ge2—Li1—Yb2viii61.0 (5)
Ge1iii—Yb2—Yb1vi107.80 (4)Ge1i—Li1—Yb2viii170.3 (8)
Li1iii—Yb2—Yb1vi58.2 (4)Ge1ii—Li1—Yb2viii85.27 (12)
Li1iv—Yb2—Yb1vi58.2 (4)Inx—Li1—Yb2viii130.8 (5)
Li1vi—Yb2—Yb1vi87.0 (5)Li1i—Li1—Yb2viii119.2 (13)
Ini—Yb2—Yb1vi97.34 (3)Li1ii—Li1—Yb2viii62.8 (6)
Inii—Yb2—Yb1vi97.34 (3)Ge1—Li1—Yb2ix63.3 (5)
Invii—Yb2—Yb1vi136.56 (3)Ge2—Li1—Yb2ix61.0 (5)
Ge1viii—In—Ge1ix104.27 (6)Ge1i—Li1—Yb2ix85.27 (12)
Ge1viii—In—Ge2x113.31 (4)Ge1ii—Li1—Yb2ix170.3 (8)
Ge1ix—In—Ge2x113.31 (4)Inx—Li1—Yb2ix130.8 (5)
Ge1viii—In—Ge2115.24 (4)Li1i—Li1—Yb2ix62.8 (6)
Ge1ix—In—Ge2115.24 (4)Li1ii—Li1—Yb2ix119.2 (13)
Ge2x—In—Ge295.85 (4)Yb2viii—Li1—Yb2ix85.4 (6)
Ge1viii—In—Li1xi58.5 (2)Ge1—Li1—Yb2v85.0 (7)
Ge1ix—In—Li1xi58.5 (2)Ge2—Li1—Yb2v173.9 (10)
Ge2x—In—Li1xi161.9 (5)Ge1i—Li1—Yb2v61.2 (5)
Ge2—In—Li1xi102.3 (5)Ge1ii—Li1—Yb2v61.2 (5)
Ge1viii—In—Yb1i169.90 (3)Inx—Li1—Yb2v70.0 (6)
Ge1ix—In—Yb1i85.79 (4)Li1i—Li1—Yb2v59.9 (8)
Ge2x—In—Yb1i60.68 (3)Li1ii—Li1—Yb2v59.9 (9)
Ge2—In—Yb1i59.66 (3)Yb2viii—Li1—Yb2v122.7 (6)
Li1xi—In—Yb1i129.7 (3)Yb2ix—Li1—Yb2v122.7 (6)
Ge1viii—In—Yb1ii85.79 (4)Ge1—Li1—Yb1ii130.3 (6)
Ge1ix—In—Yb1ii169.90 (3)Ge2—Li1—Yb1ii58.6 (4)
Ge2x—In—Yb1ii60.68 (3)Ge1i—Li1—Yb1ii119.9 (9)
Ge2—In—Yb1ii59.66 (3)Ge1ii—Li1—Yb1ii58.5 (3)
Li1xi—In—Yb1ii129.7 (3)Inx—Li1—Yb1ii65.5 (5)
Yb1i—In—Yb1ii84.13 (4)Li1i—Li1—Yb1ii173.3 (13)
Ge1viii—In—Yb1viii57.97 (4)Li1ii—Li1—Yb1ii95.2 (4)
Ge1ix—In—Yb1viii118.63 (5)Yb2viii—Li1—Yb1ii67.4 (3)
Ge2x—In—Yb1viii127.87 (3)Yb2ix—Li1—Yb1ii119.6 (8)
Ge2—In—Yb1viii58.45 (3)Yb2v—Li1—Yb1ii117.3 (6)
Li1xi—In—Yb1viii64.0 (4)Ge1—Li1—Yb1i130.3 (6)
Yb1i—In—Yb1viii118.08 (3)Ge2—Li1—Yb1i58.6 (4)
Yb1ii—In—Yb1viii67.29 (3)Ge1i—Li1—Yb1i58.5 (3)
Ge1viii—In—Yb1ix118.63 (5)Ge1ii—Li1—Yb1i119.9 (9)
Ge1ix—In—Yb1ix57.97 (4)Inx—Li1—Yb1i65.5 (5)
Ge2x—In—Yb1ix127.86 (3)Li1i—Li1—Yb1i95.2 (4)
Ge2—In—Yb1ix58.45 (3)Li1ii—Li1—Yb1i173.3 (13)
Li1xi—In—Yb1ix64.0 (4)Yb2viii—Li1—Yb1i119.6 (8)
Yb1i—In—Yb1ix67.29 (3)Yb2ix—Li1—Yb1i67.4 (3)
Yb1ii—In—Yb1ix118.08 (3)Yb2v—Li1—Yb1i117.3 (6)
Yb1viii—In—Yb1ix79.49 (4)Yb1ii—Li1—Yb1i80.7 (6)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1; (iii) x+1/2, y+1, z1/2; (iv) x+1/2, y, z1/2; (v) x1/2, y, z+1/2; (vi) x+1/2, y, z+1/2; (vii) x, y, z1; (viii) x+1/2, y+1, z+1/2; (ix) x+1/2, y, z+1/2; (x) x1/2, y, z+3/2; (xi) x+1/2, y, z+3/2; (xii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaYb2LiInGe2
Mr613.02
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)200
a, b, c (Å)7.182 (3), 4.3899 (18), 16.758 (7)
V3)528.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)50.42
Crystal size (mm)0.04 × 0.02 × 0.02
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.258, 0.365
No. of measured, independent and
observed [I > 2σ(I)] reflections
6805, 735, 623
Rint0.090
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.059, 1.11
No. of reflections735
No. of parameters35
Δρmax, Δρmin (e Å3)2.10, 2.86

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Selected bond lengths (Å) top
In—Ge1i2.7803 (13)In—Ge2iii2.809 (2)
In—Ge1ii2.7803 (13)In—Ge22.8203 (19)
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1/2, y, z+1/2; (iii) x1/2, y, z+3/2.
 

Acknowledgements

The authors acknowledge financial support from the University of Delaware Research Foundation – Strategic Initiative Grants (UDRF).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143.  CrossRef Web of Science IUCr Journals Google Scholar
First citationMao, J.-G., Goodey, J. & Guloy, A. M. (2002). Inorg. Chem. 41, 931–937.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMao, J.-G., Xu, Z. & Guloy, A. M. (2001). Inorg. Chem. 40, 4472–4477.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, S.-Q. & Bobev, S. (2007). J. Am. Chem. Soc. 129, 4049–4057.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYou, T.-S. & Bobev, S. (2010). J. Solid State Chem. doi:10.1016/j.jssc.2010.03.036.  Google Scholar
First citationYou, T.-S., Tobash, P. & Bobev, S. (2010). Inorg. Chem. 49, 1773–1783.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds